用户名: 密码: 验证码:
血管功能药理学以及重大心脏疾病的致病基因和蛋白质组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对常见的三种心脏疾病(冠心病、心脏瓣膜病以及先天性心脏病)的不同方面分别进行了研究。论文第一部分对治疗冠心病的冠状动脉旁路移植外科手术中移植血管的功能进行了药理学研究。第二部分对心脏瓣膜病进行了差异蛋白质组学研究,同时对可能与先天性心脏病相关的PLAGL1基因进行了突变分析的研究。
     第一部分血管功能药理学与冠状动脉旁路移植术
     研究背景及目的:
     移植血管痉挛仍然是冠状动脉旁路移植术中的挑战。临床上钙拮抗剂常用于治疗冠心病患者。本部分我们将对新型第三代二氢吡啶类钙拮抗剂阿折地平在人体内乳动脉中对于血管收缩的抑制效应进行研究。
     内皮细胞胞内的钙调节依赖于瞬时受体电位通道(TRPs)。标准型瞬时受体电位离子通道(TRPCs)目前被认为是血管内皮细胞中最重要的钙离子透过性阳离子通道而TRPC3通道被报道在动物动脉中与血管的舒张功能相关。然而,TRPCs在人体动脉中的作用尚不明确。因此我们对科研假说,标准型瞬时受体电位离子通道在人体动脉中发挥作用,进行了验证。
     实验方法:
     离体的内乳动脉环(n=68,来自28个进行冠状动脉旁路移植术的患者)在myograph上进行两方面研究:阿折地平对KC1和U46619预收缩的内乳动脉的舒张作用以及在正常血药浓度时阿折地平对收缩的抑制作用。
     人体内乳动脉环(n=42,来自28个进行冠状动脉旁路移植术的患者)按如下方法在myograph上进行研究:分别作出以U46619(-8log M)预收缩后乙酰胆碱的浓度依赖性舒张曲线,记录在加入SKF96365(10μmol/L)或者Pyr3(3μmol/L)孵育前后曲线的变化。同时利用Western Blot和免疫组化对TRPC3蛋白的表达进行鉴定。
     实验结果:
     阿折地平能够几乎完全舒张KCl(96.5%±0.7%)或U46619(96.5%±1.4%)预收缩的人体内乳动脉(n=8)且对KCl的敏感性相对U46619更高(EC50:-7.49±0.21vs-6.03±0.11log M,p<0.01);预孵育阿折地平(-6.1log M)可以有效的抑制KCl(最大收缩值从25.8±2.2mN下降至16.0±1.5mN,p<0.01)或U46619(最大收缩值从30.6±4.0mN下降至16.5±2.2mN,p<0.05)引起的人体内乳动脉收缩。
     由乙酰胆碱引起的最大舒张值由于非特异性阳离子通道抑制剂SKF96365(48.2±3.7vs.66.0±0.9%in control,p<0.01)或TRPC3通道特异性抑制剂Pyr3(58.4±2.3%vs.67.7±1.1%in control,p<0.01)而明显减小。同时,在人体内乳动脉中检测到TRPC3通道蛋白的表达。
     实验结论:
     阿折地平对于不同类型的血管收缩剂在人体内乳动脉中引起的收缩均具有有效的抑制作用。因此,阿折地平应用于冠状动脉旁路移植术患者有望可以有效治疗和预防移植血管的痉挛。
     TRPC3通道存在于人体内乳动脉中,并且在乙酰胆碱引起的内皮依赖性舒张作用中发挥功能。本部分研究提示TRPC3可能成为在内皮功能障碍疾病如冠心病中潜在的保护内皮功能以改善移植血管远期通畅率的靶点。
     第二部分重大心脏疾病的致病基因和蛋白质组学的研究
     研究背景及目的:
     心脏瓣膜病的遗传基础和蛋白质组学研究能够为诊断和治疗此类疾病提供重要信息。然而,关于心脏瓣膜病(VHD)包括风湿性(RVD)和退行性心脏瓣膜病(DVD)生物标记物的研究尚不明确。本部分实验意在探索血浆中表达量变化与心脏瓣膜病的病理变化相关的蛋白质。
     室间隔缺损(VSD)是最常见的先天性心脏病之一。许多遗传学研究提示PLAGL1基因与先天性心脏病的病因学相关。本部分的研究意在鉴别PLAGL1基因中潜在的致病突变,为单纯性室间隔缺损的病因学研究提供参考。
     实验方法:。
     采用双向电泳联合质谱的方法对RVD.DVD和正常人群对照组的血浆进行差异蛋白质的检测。同时对找出的差异蛋白中可能与VHD病理变化相关的蛋白质进行ELISA验证。
     300例单纯性VSD患者和300例健康人群PLAGL1基因中两个编码蛋白的外显子经PCR扩增后,PCR产物采用ABI公司3730自动测序仪测序。应用CLCworkbench software对PLAGL1蛋白进行多物种氨基酸保守性分析。
     实验结果:
     双向电泳联合质谱共找出差异蛋白点18个,包括14个蛋白质或者多肽。对两个上调的(补体C4A和碳酸酐酶1)和三个下调的(血清铁传递蛋白、alpha-1抗胰凝乳蛋白酶和波连蛋白)可能与VHD病理变化相关的蛋白质进行ELISA验证。补体C4A在RVD病人血浆中含量(715.8±35.6vs.594.7±28.2ng/ml, n=40,P=0.009)以及碳酸酐酶1在DVD病人血浆中含量(237.70±15.7vs.184.7±10.8U/L,n=40,P=0.007)均较正常对照组显著升高。血清铁传递蛋白在RVD病人血浆中含量(2.36±0.20vs.2.93±0.16mg/ml,n=40,P=0.025)以及alpha-1抗胰凝乳蛋白酶在RVD病人血浆中含量(370.0±13.7vs.413.0±116μg/ml,n=40,P=0.019)较正常对照组显著降低。此外,波连蛋白在RVD病人(281.3±11.0vs.323.2±10.0μg/ml,n=40,P=0.006)和DVD病人(283.6±11.4vs.323.2±10.0μg/ml,n=40,P=0.011)血浆中含量均较正常对照组显著降低。
     在PLAGL1基因两个编码蛋白的外显子中未检测到任何错义突变或移码突变,只在编码蛋白的外显子2中检测到一个同义突变(c.486A>G,p.E162E).突变位置的密码子翻译的谷氨酸在与其他物种的比对中显示具有保守性。
     实验结论:
     补体C4A在RVD病人血浆中含量的上升,碳酸酐酶1在DVD病人血浆中含量的上升,血清铁传递蛋白在RVD病人血浆中含量的下降以及alpha-1抗胰凝乳蛋白酶在RVD病人血浆中含量的下降为VHD提供了可能的生物标记物。同时,与瓣膜形成相关的蛋白——波连蛋白在RVD和DVD病人血浆中含量均降低提示在这些病人中可能存在基因缺陷。
     我们在单纯性室间隔缺损患者PLAGL1基因编码蛋白的外显子2中检测出一个同义突变,尽管这个突变并未造成氨基酸的变化,但这个突变仍可能与PLAGL1基因的表达调控相关,比如甲基化作用。
Part-I Pharmacology of vasomotion and coronary artery bypass grafting
     Background and Objectives:
     Graft spasm remains challenging in coronary artery bypass grafting (CABG) surgery. Calcium antagonists are commonly used in patients with coronary artery disease. We investigated the inhibitory effect of a new third-generation dihydropyridine calcium antagonist azelnidipine on the vasoconstriction in human internal mammary artery (IMA) from patients undergoing CABG.
     Intracellular calcium regulation in endothelial cells depends on transient receptor potential channels (TRPs). Canonical TRPs (TRPCs) are now recognized as the most important Ca2+-permeable cation channels in vascular endothelium and TRPC3channel is reported to play a role in vasodilation in animal vessels. However, little is known about the role of TRPCs in the human arteries. We therefore tested the hypothesis that TRPCs plays a role in the human arteries.
     Methods:
     Isolated IMA rings (n=68, taken from28patients) were studied in myograph in two ways:the relaxing effect of azelnidipine on vasoconstrictor-induced precontraction by KCl and U46619and the depressing effect of azelnidipine at plasma concentrations on the contraction.
     Cumulative concentration-relaxation curves to acetylcholine (-11to-4.5log M) were established in the human internal mammary artery (IMA) rings (n=42) taken from28patients undergoing coronary artery bypass grafting in pre-contraction induced by U46619(-8log M) in the absence or presence.of SKF96365(10μmol/L) or Pyr3(3μmol/L). Protein expressions of TRPC3were determined by Western Blot and Immunohistochemistry Staining.
     Results:
     Azelnidipine caused full relaxation in KCl-contracted (96.5%±0.7%) and in U46619-contracted (96.5%±1.4%) IMA rings (n=8) with28.8-fold higher potency to KC1than to U46619(EC50:-7.49±0.21vs-6.03±0.11log M, p<0.01). Pretreatment of IMA with plasma concentrations of azelnidipine (-6.1log M) significantly depressed subsequent contraction to KCl (from25.8±2.2mN to16.0±1.5mN, p<0.01) and U46619(from30.6±4.0mN to16.5±2.2mN, p<0.05).
     The maximal relaxation induced by acetylcholine was significantly attenuated by the non-specific cation channels inhibitor, SKF96365(48.2±3.7vs.66.0±0.9%in control, P<0.01) or the selective TRPC3blocker, Pyr3(58.4±2.3%vs.67.7±1.1%in control, P<0.01). The protein expression of TRPC3was detected in human IMA.
     Conclusions:
     We conclude that in human IMA azelnidipine has a potent inhibitory effect on the vasoconstriction mediated by a variety of vasoconstrictors. Thus, use of azelnidipine in CABG patients is favored in treating and preventing graft spasm.
     TRPC3exists and plays a role in the acetylcholine-induced endothelium-dependent relaxation in the human IMA. This study suggests that TRPC3may have the potential to be a new target in endothelial protection in patients with endothelial dysfunction such as in patients with coronary artery disease in order to improve the long term patency of the grafting vessels.
     Part-Ⅱ Genetic and proteomic study on heart disease
     Background and Objectives:
     The genetic basis and proteomics of common valvular heart disease (VHD) are important to provide information for diagnosis and treatment of these diseases. However, little is known about biomarkers in VHD including rheumatic (RVD) and degenerative (DVD) valvular disease. The present proteomic study examined the hypothesis that certain proteins may be related to the pathological changes in the plasma of VHD.
     Ventricular septal defect (VSD) is the most common congenital heart disease (CHD). A number of genetic studies have linked the gene oiPLAGLl to the etiology of CHD. The present study aimed to identify potential pathogenic mutations for PLAGL1and to provide insights into the etiology of isolated VSD.
     Methods:
     Differential protein analysis was performed in the plasma of patients with RVD, DVD and normal controls by using two-dimensional electrophoresis (2-DE) and mass spectrometry. Candidate proteins that might relate to disease processes were further confirmed by enzyme-linked immunosorbent assays (ELISA) in enlarging samples.
     Case-control mutational analysis was performed in300patients with isolated VSD and300healthy controls. Two protein-coding extons of PLAGL1and their partial flanking intron sequences were amplified by polymerase chain reaction and sequenced on an ABI3730Automated Sequencer. CLC workbench software was used to compare the conservatism of PLAGL1protein with other multiple species.
     Results:
     Eighteen differentially expressed protein spots and the14corresponding proteins or polypeptides were identified by two-dimensional electrophoresis (2-DE) and mass spectrometry. Further, two up-regulated (complement C4A and carbonic anhydrase1) and three down-regulated proteins (serotransferrin, alpha-1-antichymotrypsin, and vitronectin) as candidate proteins for validation were measured by ELISA in the above and new samples. The plasma levels (n=40in each group) of complement C4A in RVD (715.8±35.6vs.594.7±28.2ng/ml, P=0.009) and carbonic anhydrase1(237.70±15.7vs.184.7±10.8U/L, P=0.007) in DVD patients were significantly higher than those in normal controls. The plasma levels of serotransferrin (2.36±0.20vs.2.93±0.16mg/ml, P=0.025) and alpha-1-antichymotrypsin (370.0±13.7vs.413.0±11.6μg/ml, P=0.019) in RVD patients were significantly lower than those in normal controls. In addition, the plasma vitronectin level in both RVD (281.3±11.0vs.323.2±10.0μg/ml, P=0.006) and DVD (283.6±11.4vs.323.2±10.0μg/ml, P=0.011) groups were significantly lower than those in normal controls.
     Neither missense nor frame-shift mutations were detected in two protein-coding extons of PLAGL1. But a novel synonymous variation (c.486A>G, p. E162E) was detected in protein-coding exon-2. The glutamic that translated with the mutational codon is conservative when compared with other species.
     Conclusions:
     The elevation of plasma complement C4A in RVD and carbonic anhydrase1in DVD and the decrease of serotransferrin and alpha-1-antichymotrypsin in RVD patients may be useful biomarkers for these valvular diseases. In addition, the decreased plasma level of vitronectin-a protein related to the formation of valvular structure-in both RVD and DVD patients might indicate the possible genetic deficiency in these patients.
     We detected a synonymous variation in the protein-coding exon-2of PLAGL1in isolated VSD patients. It is possible that the etiology of isolated VSD might not be directly linked with this mutation, but might be associated with other patterns of gene expression regulation in PLAGL1, such as in the methylation-dependent manner.
引文
[I]Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature. Circulation.1979.59(3):607-9.
    [2]胡盛寿,孔灵芝.《中国心血管病报告2010》.中国大百科全书出版社.2011.3.
    [3]Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update:a report from the American Heart Association. Circulation.2010.121(7): e46-e215.
    [4]Yamada Y, Ichihara S, Nishida T. Molecular genetics of myocardial infarction. Genomic Med.2008.2(1-2):7-22.
    [5]BAILEY CP, MAY A, LEMMON WM. Survival after coronary endarterectomy in man. J Am Med Assoc.1957.164(6):641-6.
    [6]LONGMIRE WP Jr, CANNON JA, KATTUS AA. Direct-vision coronary endarterectomy for angina pectoris. N Engl J Med.1958.259(21):993-9.
    [7]Kolesov VI, Kolesov EV. Twenty years' results with internal thoracic artery-coronary artery anastomosis. J Thorac Cardiovasc Surg.1991.101(2):360-1.
    [8]Lev-Ran O, Mohr R, Pevni D, et al. Bilateral internal thoracic artery grafting in diabetic patients:short-term and long-term results of a 515-patient series. J Thorac Cardiovasc Surg.2004.127(4):1145-50.
    [9]Loop FD, Lytle BW, Cosgrove DM, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med.1986.314(1):1-6.
    [10]Acar C, Jebara VA, Portoghese M, et al. Revival of the radial artery for coronary artery bypass grafting. Ann Thorac Surg.1992.54(4):652-9; discussion 659-60.
    [11]Acar C, Ramsheyi A, Pagny JY, et al. The radial artery for coronary artery bypass grafting: clinical and angiographic results at five years. J Thorac Cardiovasc Surg.1998.116(6): 981-9.
    [12]VINEBERG AM. Development of an anastomosis between the coronary vessels and a transplanted internal mammary artery. Can Med Assoc J.1946.55(2):117-9.
    [13]Cameron A, Kemp HG Jr, Green GE. Bypass surgery with the internal mammary artery graft:15 year follow-up. Circulation.1986.74(5 Pt 2):Ⅲ30-6.
    [14]Okies JE, Page US, Bigelow JC, Krause AH, Salomon NW. The left internal mammary artery:the graft of choice. Circulation.1984.70(3 Pt 2):1213-21.
    [15]Grondin CM, Campeau L, Lesperance J, Enjalbert M, Bourassa MG Comparison of late changes in internal mammary artery and saphenous vein grafts in two consecutive series of patients 10 years after operation. Circulation.1984.70(3 Pt 2):1208-12.
    [16]Barner HB, Barnett MG Fifteen- to twenty-one-year angiographic assessment of internal thoracic artery as a bypass conduit. Ann Thorac Surg.1994.57(6):1526-8.
    [17]Luscher TF, Diederich D, Siebenmann R, et al. Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med.1988.319(8):462-7.
    [18]Pearson PJ, Evora PR, Schaff HV. Bioassay of EDRF from internal mammary arteries: implications for early and late bypass graft patency. Ann Thorac Surg.1992.54(6): 1078-84.
    [19]Barner HB. Double internal mammary-coronary artery bypass. Arch Surg.1974.109(5): 627-30.
    [20]Hashimoto H, Isshiki T, Ikari Y, et al. Effects of competitive blood flow on arterial graft patency and diameter. Medium-term postoperative follow-up. J Thorac Cardiovasc Surg. 1996.111(2):399-407.
    [21]Seki T, Kitamura S, Kawachi K, et al. A quantitative study of postoperative luminal narrowing of the internal thoracic artery graft in coronary artery bypass surgery. J Thorac Cardiovasc Surg.1992.104(6):1532-8.
    [22]Sabik JF 3rd, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg.2005.79(2):544-51; discussion 544-51.
    [23]Huddleston CB, Stoney WS, Alford WC Jr, et al. Internal mammary artery grafts: technical factors influencing patency. Ann Thorac Surg.1986.42(5):543-9.
    [24]Rankin JS, Newman GE, Bashore TM, et al. Clinical and angiographic assessment of complex mammary artery bypass grafting. J Thorac Cardiovasc Surg.1986.92(5):832-46.
    [25]Cameron A, Davis KB, Green G, Schaff HV. Coronary bypass surgery with internal-thoracic-artery grafts--effects on survival over a 15-year period. N Engl J Med. 1996.334(4):216-9.
    [26]Johnson WD, Brenowitz JB, Kayser KL. Factors influencing long-term (10-year to 15-year) survival after a successful coronary artery bypass operation. Ann Thorac Surg. 1989.48(1):19-24; discussion 24-5.
    [27]Boylan MJ, Lytle BW, Loop FD, et al. Surgical treatment of isolated left anterior descending coronary stenosis. Comparison of left internal mammary artery and venous autograft at 18 to 20 years of follow-up. J Thorac Cardiovasc Surg.1994.107(3):657-62.
    [28]Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation.1983.68(4):785-95.
    [29]Canver CC, Heisey DM, Nichols RD, Cooler SD, Kroncke GM. Long-term survival benefit of internal thoracic artery grafting is negligible in a patient with bad ventricle. J Cardiovasc Surg (Torino).1998.39(1):57-63.
    [30]Lytle BW, Blackstone EH, Loop FD, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg.1999.117(5):855-72.
    [31]Lytle BW, Blackstone EH, Sabik JF, Houghtaling P, Loop FD, Cosgrove DM. The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. Ann Thorac Surg.2004.78(6):2005-12; discussion 2012-4.
    [32]Sanders LH, Newman MA. Intractable postoperative internal thoracic artery spasm managed with angiographic intraluminal papaverine. J Thorac Cardiovasc Surg.2005. 130(3):938-40.
    [33]Harskamp RE, McNeil JD, van GMW, Bastos RB, Baisden CE, Calhoon JH. Postoperative internal thoracic artery spasm after coronary artery bypass grafting. Ann Thorac Surg. 2008.85(2):647-9.
    [34]He GW, Buxton BF, Rosenfeldt FL, Angus JA, Tatoulis J. Pharmacologic dilatation of the internal mammary artery during coronary bypass grafting. J Thorac Cardiovasc Surg.1994. 107(6):1440-4.
    [35]He GW. Verapamil plus nitroglycerin solution maximally preserves endothelial function of the radial artery:comparison with papaverine solution. J Thorac Cardiovasc Surg.1998. 115(6):1321-7.
    [36]He GW, Rosenfeldt FL, Buxton BF, Angus JA. Reactivity of human isolated internal mammary artery to constrictor and dilator agents. Implications for treatment of internal mammary artery spasm. Circulation.1989.80(3 Pt 1):1141-50.
    [37]He GW, Yang CQ. Comparison among arterial grafts and coronary artery. An attempt at functional classification. J Thorac Cardiovasc Surg.1995.109(4):707-15.
    [38]Nap A, Mathy MJ, Balt JC, Pfaffendorf M, van ZPA. The evaluation of the N-type channel blocking properties of cilnidipine and other voltage-dependent calcium antagonists. Fundam Clin Pharmacol.2004.18(3):309-19.
    [39]Yamagishi S, Inagaki Y, Nakamura K, Imaizumi T. Azelnidipine, a newly developed long-acting calcium antagonist, inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in endothelial cells through its anti-oxidative properties. J Cardiovasc Pharmacol.2004.43(5):724-30.
    [40]Stason WB, Schmid CH, Niedzwiecki D, et al. Safety of nifedipine in angina pectoris:a meta-analysis. Hypertension.1999.33(1):24-31.
    [41]Matsui Y, Eguchi K, O'Rourke MF, Ishikawa J, Shimada K, Kario K. Association between aldosterone induced by antihypertensive medication and arterial stiffness reduction:the J-CORE study. Atherosclerosis.2011.215(1):184-8.
    [42]Yambe T, Sugita N, Yoshizawa M. Development of new quantitative diagnosis machine to evaluate the baroreflex sensitivity of an artery for patients with hypertension. Conf Proc IEEE Eng Med Biol Soc.2009.2009:888-91.
    [43]Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev.1990. 70(4):921-61.
    [44]Angus JA, Wright CE. Techniques to study the pharmacodynamics of isolated large and small blood vessels. J Pharmacol Toxicol Methods.2000.44(2):395-407.
    [45]Moncada S, Korbut R, Bunting S, Vane JR. Prostacyclin is a circulating hormone. Nature. 1978.273(5665):767-8.
    [46]Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature.1980.288(5789):373-6.
    [47]Holzmann S. Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cyclic Nucleotide Res.1982.8(6):409-19.
    [48]Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature.1994. 368(6474):850-3.
    [49]Gupta S, McArthur C, Grady C, Ruderman NB. Stimulation of vascular Na(+)-K(+)-ATPase activity by nitric oxide:a cGMP-independent effect. Am J Physiol. 1994.266(5 Pt 2):H2146-51.
    [50]Vanhoutte PM. Vascular biology. Old-timer makes a comeback. Nature.1998.396(6708): 213,215-6.
    [51]Ge ZD, Zhang XH, Fung PC, He GW. Endothelium-dependent hyperpolarization and relaxation resistance to N(G)-nitro-L-arginine and indomethacin in coronary circulation. Cardiovasc Res.2000.46(3):547-56.
    [52]Gillespie MN, Owasoyo JO, McMurtry IF, O'Brien RF. Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J Pharmacol Exp Ther.1986.236(2):339-43.
    [53]Ochiai M, Ohno M, Taguchi J, et al. Responses of human gastroepiploic arteries to vasoactive substances:comparison with responses of internal mammary arteries and saphenous veins. J Thorac Cardiovasc Surg.1992.104(2):453-8.
    [54]Chardigny C, Jebara VA, Acar C, et al. Vasoreactivity of the radial artery. Comparison with the internal mammary and gastroepiploic arteries with implications for coronary artery surgery. Circulation.1993.88(5 Pt 2):Ⅱ115-27.
    [55]He GW, Acuff TE, Ryan WH, Yang CQ, Mack MJ. Functional comparison between the human inferior epigastric artery and internal mammary artery. Similarities and differences. J Thorac Cardiovasc Surg.1995.109(1):13-20.
    [56]He GW. Arterial grafts for coronary surgery:vasospasm and patency rate. J Thorac Cardiovasc Surg.2001.121(3):431-3.
    [57]He GW. Arterial grafts for coronary artery bypass grafting:biological characteristics, functional classification, and clinical choice. Ann Thorac Surg.1999.67(1):277-84.
    [58]He GW, Yang CQ. "Vasoactivators"-a new concept for naturally secreted vasoconstrictor substances. Angiology.1994.45(4):265-71.
    [59]Schoeffter P, Hoyer D.5-Hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1D receptor subtype. J Pharmacol Exp Ther.1990.252(1):387-95.
    [60]Fukai T, Egashira K, Hata H, et al. Serotonin-induced coronary spasm in a swine model. A minor role of defective endothelium-derived relaxing factor. Circulation.1993.88(4 Pt 1): 1922-30.
    [61]Liu MH, Jin H, Floten HS, Ren Z, Yim AP, He GW. Vascular endothelial growth factor-mediated, endothelium-dependent relaxation in human internal mammary artery. Ann Thorac Surg.2002.73(3):819-24.
    [62]Liu ZG, Ge ZD, He GW. Difference in endothelium-derived hyperpolarizing factor-mediated hyperpolarization and nitric oxide release between human internal mammary artery and saphenous vein. Circulation.2000.102(19 Suppl 3):HI296-301.
    [63]He GW, Liu ZG Comparison of nitric oxide release and endothelium-derived hyperpolarizing factor-mediated hyperpolarization between human radial and internal mammary arteries. Circulation.2001.104(12 Suppl 1):1344-9.
    [64]Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev.2001.81(4):1415-59.
    [65]Minke B. TRP channels and Ca2+ signaling. Cell Calcium.2006.40(3):261-75.
    [66]Montell C. A mint of mutations in TRPM8 leads to cool results. Nat Neurosci.2006.9(4): 466-8.
    [67]Xu H, Ramsey IS, Kotecha SA, et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature.2002.418(6894):181-6.
    [68]Nilius B, Prenen J, Droogmans G, et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem.2003.278(33):30813-20.
    [69]Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol.2001.280(2):F193-206.
    [70]Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF:bringing the concepts together. Trends Pharmacol Sci.2002.23(8):374-80.
    [71]Nilius B, Droogmans G, Wondergem R. Transient receptor potential channels in endothelium:solving the calcium entry puzzle. Endothelium.2003.10(1):5-15.
    [72]Yao X, Garland CJ. Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res.2005.97(9):853-63.
    [73]Freichel M, Suh SH, Pfeifer A, et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol.2001.3(2): 121-7.
    [74]Smedlund K, Vazquez G. Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells.-Arterioscler Thromb Vasc Biol.2008.28(11):2049-55.
    [75]Kohler R, Brakemeier S, Kuhn M, et al. Expression of ryanodine receptor type 3 and TRP channels in endothelial cells:comparison of in situ and cultured human endothelial cells. Cardiovasc Res.2001.51(1):160-8.
    [76]He GW, Yang CQ, Yang JA. Depolarizing cardiac arrest and endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation in coronary arteries:the effect and mechanism. J Thorac Cardiovasc Surg.1997.113(5):932-41.
    [77]Tiruppathi C, Freichel M, Vogel SM, et al. Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung micro vascular permeability. Circ Res. 2002.91(1):70-6.
    [78]Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature.2003. 424(6947):434-8.
    [79]Domenicali M, Ros J, Fernandez-Varo G, et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats:role of cannabinoid and vanilloid receptors. Gut. 2005.54(4):522-7.
    [80]Sapsford RN, Blackstone EH, Kirklin JW, et al. Coronary perfusion versus cold ischemic arrest during aortic valve surgery. A randomized study. Circulation.1974.49(6):1190-9.
    [81]Tiruppathi C, Yan W, Sandoval R, et al. G protein-coupled receptor kinase-5 regulates thrombin-activated signaling in endothelial cells. Proc Natl Acad Sci U S A.2000.97(13): 7440-5.
    [82]Kamouchi M, Trouet D, De Greef C, Droogmans G, Eggermont J, Nilius B. Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells. Cell Calcium.1997.22(6):497-506.
    [83]Luckhoff A, Busse R. Refilling of endothelial calcium stores without bypassing the cytosol. FEBS Lett.1990.276(1-2):108-10.
    [84]Ishimitsu T, Numabe A, Masuda T, et al. Angiotensin-II receptor antagonist combined with calcium channel blocker or diuretic for essential hypertension. Hypertens Res.2009. 32(11):962-8.
    [85]Ramsay L, Williams B, Johnston G, et al. Guidelines for management of hypertension: report of the third working party of the British Hypertension Society. J Hum Hypertens. 1999.13(9):569-92.
    [86]Bond BR, Zellner JL, Dorman BH, et al. Differential effects of calcium channel antagonists in the amelioration of radial artery vasospasm. Ann Thorac Surg.2000.69(4): 1035-40; discussion 1040-1.
    [87]Di SA, Visentin S, Cena C, Gasco AM, Ennondi G, Gasco A. New 1,4-dihydropyridines conjugated to furoxanyl moieties, endowed with both nitric oxide-like and calcium channel antagonist vasodilator activities. J Med Chem.1998.41(27):5393-401.
    [88]Wellington K, Scott LJ. Azelnidipine. Drugs.2003.63(23):2613-21; discussion 2623-4.
    [89]Ogihara T, Saruta T, Shimada K, Kuramoto K. A randomized, double-blind, four-arm parallel-group study of the efficacy and safety of azelnidipine and olmesartan medoxomil combination therapy compared with each monotherapy in Japanese patients with essential hypertension:the REZALT study. Hypertens Res.2009.32(12):1148-54.
    [90]Kuramoto K, Ichikawa S, Hirai A, Kanada S, Nakachi T, Ogihara T. Azelnidipine and amlodipine:a comparison of their pharmacokinetics and effects on ambulatory blood pressure. Hypertens Res.2003.26(3):201-8.
    [91]Yamagishi T. Efficacy of azelnidipine on home blood pressure and pulse rate in patients with essential hypertension:comparison with amlodipine. Hypertens Res.2006.29(10): 767-73.
    [92]Kojima T, Miyauchi K, Yokoyama T, et al. Azelnidipine and amlodipine anti-coronary atherosclerosis trial in hypertensive patients undergoing coronary intervention by serial volumetric intravascular ultrasound analysis in Juntendo University (ALPS-J). Circ J. 2011.75(5):1071-9.
    [93]He GW, Yang CQ. Comparative study on calcium channel antagonists in the human radial artery:clinical implications. J Thorac Cardiovasc Surg.2000.119(1):94-100.
    [94]Bai XY, Liu XC, Jing WB, Yang Q, Tang XD, He GW. Effect of amlodipine in human internal mammary artery and clinical implications. Ann Thorac Surg.2010.90(6):1952-7.
    [95]He GW, Acuff TE, Ryan WH, et al. Inhibitory effects of calcium antagonists on alpha-adrenoceptor-mediated contraction in the human internal mammary artery. Br J Clin Pharmacol.1994.37(2):173-9.
    [96]Fujisawa M, Yorikane R, Matsuoka Y, Koike H, Ueno K. The pharmacological differences in antianginal effects of long-lasting calcium channel blockers:azelnidipine and amlodipine. J Cardiovasc Pharmacol.2013.61(1):63-9.
    [97]He GW, Yang CQ. Use of verapamil and nitroglycerin solution in preparation of radial artery for coronary grafting. Ann Thorac Surg.1996.61(2):610-4.
    [98]He GW, Fan KY, Chiu SW, Chow WH. Injection of vasodilators into arterial grafts through cardiac catheter to relieve spasm. Ann Thorac Surg.2000.69(2):625-8.
    [99]He GW, Fan L, Furnary A, Yang Q. A new antispastic solution for arterial grafting: nicardipine and nitroglycerin cocktail in preparation of internal thoracic and radial arteries for coronary surgery. J Thorac Cardiovasc Surg.2008.136(3):673-80,680.e1-2.
    [100]Zheng SY, Wu M, Huang JS, Mai MJ, Chen TB, He GW. Use of antispastic nicardipine and nitroglycerin (NG) cocktail solution increases graft flow during off-pump coronary artery bypass grafting. J Cardiovasc Surg (Torino).2012.53(6):783-8.
    [101]Stone GW, Hartzler GO. Spontaneous reversible spasm in an internal mammary artery graft causing acute myocardial infarction. Am J Cardiol.1989.64(12):822-3.
    [102]Vogt PR, Hess O, Turina MI. Internal mammary artery spasm immediately after grafting to the left anterior descending artery:diagnosis and treatment. Eur Heart J.1996.17(5):804.
    [103]Sarabu MR, McClung JA, Fass A, Reed GE. Early postoperative spasm in left internal mammary artery bypass grafts. Ann Thorac Surg.1987.44(2):199-200.
    [104]Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature.1987.327(6122):524-6.
    [105]Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation.1993.88(6):2510-6.
    [106]Nilius B. Signaltransduction in vascular endothelium:the role of intracellular calcium and ion channels. Verh K Acad Geneeskd Belg.1998.60(3):215-50.
    [107]Huang JH, He GW, Xue HM, et al. TRPC3 channel contributes to nitric oxide release: significance during normoxia and hypoxia-reoxygenation. Cardiovasc Res.2011.91(3): 472-82.
    [108]Chen J, Crossland RF, Noorani MM, Marrelli SP. Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am J Physiol Heart Circ Physiol.2009. 297(1):H417-24.
    [109]Liu CL, Huang Y, Ngai CY, Leung YK, Yao XQ. TRPC3 is involved in flow-and bradykinin-induced vasodilation in rat small mesenteric arteries. Acta Pharmacol Sin. 2006.27(8):981-90.
    [110]Bergdahl A, Gomez MF, Wihlborg AK, et al. Plasticity of TRPC expression in arterial smooth muscle:correlation with store-operated Ca2+ entry. Am J Physiol Cell Physiol. 2005.288(4):C872-80.
    [111]Thilo F, Suess O, Liu Y, Tepel M. Decreased expression of transient receptor potential channels in cerebral vascular tissue from patients after hypertensive intracerebral hemorrhage. Clin Exp Hypertens.2011.33(8):533-7.
    [112]Smedlund K, Tano JY, Vazquez G. The constitutive function of native TRPC3 channels modulates vascular cell adhesion molecule-1 expression in coronary endothelial cells through nuclear factor kappaB signaling. Circ Res.2010.106(9):1479-88.
    [113]Thilo F, Loddenkemper C, Berg E, Zidek W, Tepel M. Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. Mod Pathol.2009.22(3): 426-30.
    [114]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis.1995.16(7):1090-4.
    [115]Service RF. Proteomics. High-speed biologists search for gold in proteins. Science.2001. 294(5549):2074-7.
    [116]McDonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res.1999.84(1): 9-20.
    [117]Jungblut PR, Zimny-Amdt U, Zeindl-Eberhart E, et al. Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis.1999.20(10):2100-10.
    [118]Pleissner KP, Soding P, Sander S, et al. Dilated cardiomyopathy-associated proteins and their presentation in a WWW-accessible two-dimensional gel protein database. Electrophoresis.1997.18(5):802-8.
    [119]Heinke MY, Wheeler CH, Chang D, et al. Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis. Electrophoresis.1998.19(11): 2021-30.
    [120]Dos RCG, Liew CC, Allen PD, Winslow RL, Van Eyk JE, Dunn MJ. Genomics, proteomics and bioinformatics of human heart failure. J Muscle Res Cell Motil.2003. 24(4-6):251-60.
    [121]Zhou JJ, Pei JM, Wang GY, et al. Inducible HSP70 mediates delayed cardioprotection via U-50488H pretreatment in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2001.281(1):H40-7.
    [122]Pinet F, Poirier F, Fuchs S, et al. Troponin T as a marker of differentiation revealed by proteomic analysis in renal arterioles. FASEB J.2004.18(3):585-6.
    [123]Logan SK, Falasca M, Hu P, Schlessinger J. Phosphatidylinositol 3-kinase mediates epidermal growth factor-induced activation of the c-Jun N-terminal kinase signaling pathway. Mol Cell Biol.1997.17(10):5784-90.
    [124]Arnott D, O'Connell KL, King KL, Stults JT. An integrated approach to proteome analysis: identification of proteins associated with cardiac hypertrophy. Anal Biochem.1998.258(1): 1-18.
    [125]Kim HJ, Kim MR, So EJ, Kim CW. Comparison of proteomes in various human plasma preparations by two-dimensional gel electrophoresis. J Biochem Biophys Methods.2007. 70(4):619-25.
    [126]Suzuyama K, Shiraishi T, Oishi T, et al. Combined proteomic approach with SELDI-TOF-MS and peptide mass fingerprinting identified the rapid increase of monomeric transthyretin in rat cerebrospinal fluid after transient focal cerebral ischemia. Brain Res Mol Brain Res.2004.129(1-2):44-53.
    [127]Mannes AJ, Martin BM, Yang HY, et al. Cystatin C as a cerebrospinal fluid biomarker for pain in humans. Pain.2003.102(3):251-6.
    [128]Ruetschi U, Zetterberg H, Podust VN, et al. Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF. Exp Neurol.2005.196(2):273-81.
    [129]Sauter ER, Zhu W, Fan XJ, Wassell RP, Chervoneva I, Du Bois GC. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br J Cancer.2002.86(9): 1440-3.
    [130]Grus FH, Podust VN, Bruns K, et al. SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci.2005.46(3):863-76.
    [131]Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res.2003.63(20): 6971-83.
    [132]Adam BL, Vlahou A, Semmes OJ, Wright GL Jr. Proteomic approaches-to biomarker discovery in prostate and bladder cancers. Proteomics.2001.1(10):1264-70.'
    [133]Streckfus CF, Bigler LR, Zwick M. The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva:a feasibility study. J Oral Pathol Med.2006.35(5):292-300.
    [134]Guilherme L, Kohler KF, Kalil J. Rheumatic heart disease:mediation by complex immune events. Adv Clin Chem.2011.53:31-50.
    [135]Guilherme L, Weidebach W, Kiss MH, Snitcowsky R, Kalil J. Association of human leukocyte class II antigens with rheumatic fever or rheumatic heart disease in a Brazilian population. Circulation.1991.83(6):1995-8.
    [136]Rajapakse CN, Halim K, Al-Orainey I, Al-Nozha M, Al-Aska AK. A genetic marker for rheumatic heart disease. Br Heart J.1987.58(6):659-62.
    [137]Hernandez-Pacheco G, Flores-Dominguez C, Rodriguez-Perez JM, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun.2003.21(1):59-63.
    [138]Kamal H, Hussein G, Hassoba H, Mosaad N, Gad A, Ismail M. Transforming growth factor-betal gene C-509T and T869C polymorphisms as possible risk factors in rheumatic heart disease in Egypt. Acta Cardiol.2010.65(2):177-83.
    [139]Messias-Reason IJ, Schafranski MD, Kremsner PG, Kun JF. Ficolin 2 (FCN2) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. Clin Exp Immunol.2009.157(3):395-9.
    [140]Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects:current knowledge:a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young:endorsed by the American Academy of Pediatrics. Circulation.2007.115(23):2995-3014.
    [141]Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. Recurrence of congenital heart defects in families. Circulation.2009.120(4):295-301.
    [142]Gill HK, Splitt M, Sharland GK, Simpson JM. Patterns of recurrence of congenital heart disease:an analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J Am Coll Cardiol.2003.42(5):923-9.
    [143]Silka MJ, Hardy BG, Menashe VD, Morris CD. A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J Am Coll Cardiol.1998.32(1):245-51.
    [144]Gelatt M, Hamilton RM, McCrindle BW, et al. Risk factors for atrial tachyarrhythmias after the Fontan operation. J Am Coll Cardiol.1994.24(7):1735-41.
    [145]Chaturvedi V, Saxena A. Heart failure in children:clinical aspect and management. Indian J Pediatr.2009.76(2):195-205.
    [146]Vongpatanasin W, Brickner ME, Hillis LD, Lange RA. The Eisenmenger syndrome in adults. Ann Intern Med.1998.128(9):745-55.
    [147]Ewart AK, Morris CA, Atkinson D, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet.1993.5(1):11-6.
    [148]Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet.2009.41(8):931-5.
    [149]Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet.1997.15(1):30-5.
    [150]Basson CT, Huang T, Lin RC, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A.1999.96(6):2919-24.
    [151]Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol.1999.211(1):100-8.
    [152]Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998,281:108-11.
    [153]Basson CT, Solomon SD, Weissman B, et al. Genetic heterogeneity of heart-hand syndromes. Circulation 1995,91:1326-9.
    [154]Pauli RM, Scheib-Wixted S, Cripe L, Izumo S, Sekhon GS. Ventricular noncompaction and distal chromosome 5q deletion. Am J Med Genet 1999,85:419-23.
    [155]Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999,104:1567-73.
    [156]Goldmuntz E, Geiger E, Benson DW. NKX2.5 mutations in patients with tetralogy of fallot. Circulation 2001,104:2565-8.
    [157]Elliott DA, Kirk EP, Yeoh T, et al. Cardiac homeobox gene NKX2-5 mutations and congenital heart disease:associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol 2003,41:2072-6.
    [158]McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 2003,42:1650-5.
    [159]Turbay D, Wechsler SB, Blanchard KM, Izumo S. Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx. Mol Med 1996,2:86-96.
    [160]Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 1999,126:1269-80.
    [161]Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 1993,118:719-29.
    [162]Kasahara H, Lee B, Schott JJ, et al. Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J Clin Invest 2000,106:299-308.
    [163]Jamali M, Rogerson PJ, Wilton S, Skerjanc IS. Nkx2-5 activity is essential for cardiomyogenesis. J Biol Chem 2001,276:42252-8.
    [164]Pehlivan T, Pober BR, Brueckner M, et al. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet 1999,83:201-6.
    [165]Nemer G, Nemer M. Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Dev Biol 2003,254:131-48.
    [166]Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 1997,11:1061-72.
    [167]Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S. GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol 2004,275:235-44.
    [168]Grepin C, Robitaille L, Antakly T, Nemer M. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol 1995,15:4095-102.
    [169]Grepin C, Nemer G, Nemer M. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 1997,124:2387-95.
    [170]Charron F, Paradis P, Bronchain O, Nemer G, Nemer M. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol 1999,19:4355-65.
    [171]Ellis RW, van CS. A Syndrome Characterized by Ectodermal Dysplasia, Polydactyly, Chondro-Dysplasia and Congenital Morbus Cordis:Report of Three Cases. Arch Dis Child 1940,15:65-84.
    [172]Mckusick VA,Egeland JA,Eldridge R,Krusen DE.dwarfism in the amish I.The ellis-van creveld syndrome. Bull Johns Hopkins Hosp 1964,115:306-36.
    [173]da SEO, Janovitz D, de Albuquerque SC. Ellis-van Creveld syndrome:report of 15 cases in an inbred kindred. J Med Genet 1980,17:349-56.
    [174]McKusick VA. Ellis-van Creveld syndrome and the Amish. Nat Genet 2000,24:203-4.
    [175]Polymeropoulos MH, Ide SE, Wright M, et al. The gene for the Ellis-van Creveld syndrome is located on chromosome 4p16. Genomics 1996,35:1-5.
    [176]Ruiz-Perez VL, Ide SE, Strom TM, et al. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat Genet 2000,24:283-6.
    [177]Galdzicka M, Patnala S, Hirshman MG, et al. A new gene, EVC2, is mutated in Ellis-van Creveld syndrome. Mol Genet Metab 2002,77:291-5.
    [178]Ruiz-Perez VL, Tompson SW, Blair HJ, et al. Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. Am J Hum Genet 2003,72:728-32.
    [179]Vincent MC, Heitz F, Tricoire J, et al.22q11 deletion in DGS/VCFS monozygotic twins with discordant phenotypes. Genet Couns 1999,10:43-9.
    [180]Wilson DI, Cross IE, Goodship JA, et al. DiGeorge syndrome with isolated aortic coarctation and isolated ventricular septal defect in three sibs with a 22q11 deletion of maternal origin. Br Heart J 1991,66:308-12.
    [181]McElhinney DB, Driscoll DA, Levin ER, Jawad AF, Emanuel BS, Goldmuntz E. Chromosome 22q11 deletion in patients with ventricular septal defect:frequency and associated cardiovascular anomalies. Pediatrics 2003,112:e472.
    [182]Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001,27:286-91.
    [183]Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001,410:97-101.
    [184]Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001,104:619-29.
    [185]Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003,362:1366-73.
    [186]Gray JR, Bridges AB, Faed MJ, et al. Ascertainment and severity of Marfan syndrome in a Scottish population. J Med Genet 1994,31:51-4.
    [187]Pyeritz RE. The Marfan syndrome. Annu Rev Med 2000,51:481-510.
    [188]De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996,62:417-26.
    [189]Kainulainen K, Pulkkinen L, Savolainen A, Kaitila I, Peltonen L. Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med 1990,323: 935-9.
    [190]Lee B, Godfrey M, Vitale E, et al. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature.1991.352(6333):330-4.
    [191]Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991,352:337-9.
    [192]Sakai LY, Keene DR, Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 1986,103:2499-509.
    [193]Handford PA, Mayhew M, Brownlee GG. Calcium binding to fibrillin. Nature 1991,353: 395.
    [194]Pereira L, D'Alessio M, Ramirez F, et al. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet 1993,2:961-8.
    [195]Park ES, Putnam EA, Chitayat D, Child A, Milewicz DM. Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development. Am J Med Genet 1998,78:350-5.
    [196]Sharland M, Morgan M, Smith G, Burch M, Patton MA. Genetic counselling in Noonan syndrome. Am J Med Genet 1993,45:437-40.
    [197]Jamieson CR, der Burgt I v, Brady AF, et al. Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nat Genet 1994,8:357-60.
    [198]Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001,29:465-8.
    [199]Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002,70:1555-63.
    [200]Musante L, Kehl HG, Majewski F, et al. Spectrum of mutations in PTPN11 and genotype-phenotype correlation in 96 patients with Noonan syndrome and five patients with cardio-facio-cutaneous syndrome. Eur J Hum Genet 2003,11:201-6.
    [201]Maheshwari M, Belmont J, Fernbach S, et al. PTPN11 mutations in Noonan syndrome type Ⅰ:detection of recurrent mutations in exons 3 and 13. Hum Mutat 2002,20:298-304.
    [202]Sarkozy A, Conti E, Seripa D, et al. Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes. J Med Genet, 2003,40:704-8.
    [203]McElhinney DB, Krantz ID, Bason L, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 2002,106:2567-74.
    [204]Gridley T. Notch signaling and inherited disease syndromes. Hum Mol Genet 2003,12: R9-13.
    [205]Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling:cell fate control and signal integration in development. Science 1999,284:770-6.
    [206]Warthen DM, Moore EC, Kamath BM, et al. Jaggedl (JAG1) mutations in Alagille syndrome:increasing the mutation detection rate. Hum Mutat 2006,27:436-43.
    [207]Ropke A, Kujat A, Graber M, Giannakudis J, Hansmann I. Identification of 36 novel Jaggedl (JAG 1) mutations in patients with Alagille syndrome. Hum Mutat 2003,21:100.
    [208]Krantz ID, Smith R, Colliton RP, et al. Jaggedl mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet 1999,84:56-60.
    [209]Eldadah ZA, Hamosh A, Biery NJ, et al. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet 2001,10:163-9.
    [210]Le CC, Lefevre M, Schott JJ, et al. Familial deafness, congenital heart defects, and posterior embryotoxon caused by cysteine substitution in the first epidermal-growth-factor-like domain of jagged 1. Am J Hum Genet 2002,71:180-6.
    [211]Yin M, Dong L, Zheng J, Zhang H, Liu J, Xu Z. Meta analysis of the association between MTHFR C677T polymorphism and the risk of congenital heart defects. Ann Hum Genet 2012,76:9-16.
    [212]Kusuma L, Dinesh SM, Savitha MR, Krishnamurthy B, Narayanappa D, Ramachandra NB. A maiden report on CRELD1 single-nucleotide polymorphism association in congenital heart disease patients of Mysore, South India. Genet Test Mol Biomarkers 2011,15:483-7.
    [213]Gong LG, Qiu GR, Jiang H, Xu XY, Zhu HY, Sun KL. Analysis of single nucleotide polymorphisms and haplotypes in HOXC gene cluster within susceptible region 12q13 of simple congenital heart disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2005,22:497-501.
    [214]Zeng W, Liu L, Tong Y, Liu HM, Dai L, Mao M. A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genet Mol Res 2011,10:2597-605.
    [215]Song XM, Zheng XY, Zhu WL, Huang L, Li Y. Relationship between polymorphism of cystathionine beta synthase gene and congenital heart disease in Chinese nuclear families. Biomed Environ Sci 2006,19:452-6.
    [216]van BIM, Mooij C, Kapusta L, Heil S, den Heijer M, Blom HJ. Common 894G>T single nucleotide polymorphism in the gene coding for endothelial nitric oxide synthase (eNOS) and risk of congenital heart defects. Clin Chem Lab Med 2008,46:1369-75.
    [217]Obermann-Borst SA, Isaacs A, Younes Z, et al. General maternal medication use, folic acid, the MDR1 C3435T polymorphism, and the risk of a child with a congenital heart defect. Am J Obstet Gynecol 2011,204:e1-8.
    [218]Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays.2006.28(5):453-9.
    [219]Temple IK, DJG M, Docherty LE. Diabetes Mellitus,6q24-Related Transient NeonatalBTI-GeneReviews.1993.
    [220]Marko-Varga G, Lindberg H, Lofdahl CG, Jonsson P, Hansson L, Dahlback M, Lindquist E, Johansson L, Foster M, Fehniger TE. Discovery of biomarker candidates within disease by protein profiling:principles and concepts. J Proteome Res.2005; 4:1200-12.
    [221]Chambers G, Lawrie L, Cash P, Murray GI. Proteomics:a new approach to the study of disease. J Pathol.2000; 192:280-8.
    [222]Issaq H, Veenstra T. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques.2008; 44:697-8,700.
    [223]Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Ann Rev Biochem.1995; 64:375-401.
    [224]Hewett-Emmett D, Tashian RE. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol.1996; 5:50-77.
    [225]Henry RP. Multiple roles of carbonic anhydrase in cellular transport and metabolism. Ann Rev Physiol.1996; 58:523-538.
    [226]Carter ND, Dodgson SJ, Gross G, Tashian RE. The Carbonic Anhydrases:Cellular Physiology and Molecular Genetics. New York:Plenum.1991; 197-207.
    [227]Supuran CT. Carbonic anhydrases--an overview. Curr Pharm Des.2008; 14:603-614.
    [228]Parissa M, Koorosh A, Nader M. Investigating the Application of Enzyme Carbonic Anhydrase for CO2 sequestration purposes. Ind Eng Chem Res.2007; 46:921-926.
    [229]Ramanan R, Kannan K, Sivanesan SD, Mudliar S, Kaur S, Tripathi AK, Chakrabarti T. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrbacter freundii. World J Microbiol Biotechnol.2009; 25:981-987.
    [230]Chang X, Zheng Y, Yang Q, Wang L, Pan J, Xia Y, Yan X, Han J. Carbonic anhydrase I is involved in the process of bone formation and is susceptible to ankylosing spondylitis. Arthritis Res Ther.2012; 14:R176.
    [231]Blanchong CA, Chung EK, Rupert KL, Yang Y, Yang Z, Zhou B, Moulds JM, Yu CY. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol.2001; 1:365-92.
    [232]Prodeus AP, Goerg S, Shen LM, Pozdnyakova OO, Chu L, Alicot EM, Goodnow CC, Carroll MC. A critical role for complement in maintenance of self-tolerance. Immunity. 1998; 9:721-31.
    [233]Chen Z, Koralov SB, Kelsoe G. Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J Exp Med.2000; 192: 1339-52.
    [234]Marijon E, Mirabel M, Celermajer DS, Jouven X. Rheumatic heart disease. Lancet.2012; 379:953-64.
    [235]Man XY, Luo HR, Li XP, Yao YG, Mao CZ, Zhang YP. Polymerase chain reaction based C4AQ0 and C4BQ0 genotyping:association with systemic lupus erythematosus in southwest Han Chinese. Ann Rheum Dis.2003; 62:71-3.
    [236]Scully LJ, Toze C, Sengar DP, Goldstein R. Early-onset autoimmune hepatitis is associated with a C4A gene deletion. Gastroenterology.1993; 104:1478-84.
    [237]Messias IJ, Cavalcanti E, Radominski SC. Increased frequency of the C4A*6 rare allele in rheumatic heart disease. Scand J Rheumatol.1995; 24:164-8.
    [238]Baker C, Belbin O, Kalsheker N, Morgan K. SERPENA3 (aka alpha-1-antichymotrypsin). Front Biosci.2007; 12:2821-35.
    [239]Chopra P, Wanniang J, Sampath KA. Immunohistochemical and histochemical profile of Aschoff bodies in rheumatic carditis in excised left atrial appendages:an immunoperoxidase study in fresh and paraffin-embedded tissue. Int J Cardiol.1992; 34: 199-207.
    [240]Aguilera O, Quiros LM, Fierro JF. Transferrins selectively cause ion efflux through bacterial and artificial membranes. FEBS Lett.2003; 548:5-10.
    [241]Otto BR, Verweij-van VAM, MacLaren DM. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol.1992; 18:217-33.
    [242]Legrand D, Mazurier J, Montreuil J, Spik G. Structure and spatial conformation of the iron-binding sites of transferrins. Biochimie.1988; 70:1185-95.
    [243]Andres MT, Fierro JF. Antimicrobial mechanism of action of transferrins:selective inhibition of H+-ATPase. Antimicrob Agents Chemother.2010; 54:4335-42.
    [244]Chapman HA. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol.1997; 9:714-724.
    [245]Akhtar S, Meek KM, James V. Immunolocalization of elastin, collagen type I and type III, 'fibronectin, and vitronectin in extracellular matrix components of normal and myxomatous mitral heart valve chordae tendineae. Cardiovasc Pathol.1999; 8:203-11.
    [246]Bouchey D, Argraves WS, Little CD. Fibulin-1, vitronectin, and fibronectin expression during avian cardiac valve and septa development. Anat Rec.1996; 244:540-51.
    [247]LAMY M, DE GJ, SCHWEISGUTH O. Genetic and non-genetic factors in the etiology of congenital heart disease:a study of 1188 cases. Am J Hum Genet.1957.9:17-41.
    [248]Reamon-Buettner S, Borlak J. Genetic analysis of cardiac-specific transcription factors reveals novel insights into molecular causes of congenital heart disease. Future Cardiol. 2005.1:355-61.
    [249]Liu S, Liu J, Tang J, Ji J, Chen J, Liu C. Environmental risk factors for congenital heart disease in the Shandong Peninsula, China:a hospital-based case-control study. J Epidemiol.2009.19:122-30.
    [250]Valleley EM, Cordery SF, Bonthron DT. Tissue-specific imprinting of the ZAC/PLAGL1 tumour suppressor gene results from variable utilization of monoallelic and biallelic promoters. Hum Mol Genet.2007.16:972-81.
    [251]Yuasa S, Onizuka T, Shimoji K, et al. Zacl is an essential transcription factor for cardiac morphogenesis. Circ Res.2010.106:1083-91.
    [252]Arima T, Kamikihara T, Hayashida T, et al. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res.2005.33:2650-60.
    [253]Bliek J, Verde G, Callaway J, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet.2009.17:611-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700