用户名: 密码: 验证码:
新型分布式供能系统热力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网压力的逐渐增加和天然气的广泛使用,分布式供能系统得到了广泛的关注。本论文研究讨论了一种新型的分布式供能系统(简称新型系统)。该系统中原动机产生的电能不用于照明等设施,而是用于驱动热泵空调为用户提供热/冷量;原动机中产生的热能驱动吸收式冷热水机组产生的热/冷量,二者共同来满足建筑物的需求,使系统脱离电网独立供冷或供热。
     该新型系统的特点是联产与单供的结合,即热和电的联产、热或冷的单供。其主要优点是一次能源利用率高;没有多种产品相互牵制的问题;天然气总耗量比热电联产方案降低很多;避免了电上网的问题;能有效缓解其冬季用气高峰与夏季用气低谷对供气所造成的压力;大大减少夏季空调用电,从而在削峰同时优化用电结构,保证了电网运行的安全性。
     本文主要研究该新型分布式供能系统的热力特性。
     本文对新型系统部件组成及其适用性进行研究。得出因新型系统的各个组成部件都有不同的形式,不同形式的部件组成的新型系统的性能和适用性可能会各不相同。
     本文从热力学第一定律出发,在新型系统的供热/冷模型的基础上,进行敏感性分析。得到原动机发电效率和热泵机组的性能系数对新型系统影响显著。对比分析发现,新型系统的能源利用效率高于土壤源热泵和直燃机。
     基于第二定律的(?)分析方法,本文采用单耗理论和分析方法,进行新型系统拥传递特性研究。为分析系统在多工况条件下的平均炯效率,本文首次推导出了针对供热制冷系统的平均拥效率的计算方法,一种是供冷/热量加权温度的方法,一种是燃料加权的方法;从而将(?)分析从设计工况推广到全工况,其中第二种方法适合于任何过程。
     针对吸收式制冷循环,有必要对溴化锂浓溶液对水蒸气的吸收与凝结的热力学过程进行研究分析。Fick定律不能从机理上解释这一现象,为此本论文首次提出了用化学势来解释溶液对蒸气吸收这种传质过程。在吸收器的吸收过程中,从蒸发器来的水蒸气虽然温度低于喷淋溶液的温度,但它的化学势高于溶液中水的化学势,所以水蒸气扩散到了温度高于它的溶液之中而被吸收;而且当溶液温度越高,水蒸气越易被溶液吸收。化学势的引入进一步从热力学本质上解释了吸收这一热力学过程。
     本文建立了新型系统中各主要部件的数学模型。在建模的基础上,进行不同原动机匹配的新型系统的变工况特性研究。对于内燃机,由于发电效率高且变工况性能好,故内燃机-新型系统在部分负荷下的性能相较于热泵、直燃机的性能较好。在此基础上进行内燃机-新型系统能耗分析,结果表明该内燃机-新型系统相较于热泵、直燃机全年的节能率可高达24.1%和37.5%,即节能效果显著。而燃气轮机由于本身的发电效率不高,变工况的特性不如内燃机,所以虽然燃气轮机-新型系统在额定设计工况具有一定的节能性,但随着偏离设计工况其节能性逐渐减小直至消失。但将燃气轮机-新型系统应用于具有鲜明时间特点、负荷波动不大的建筑物,在调节负荷时具有节能性。
     最后,通过对不同负荷、几种典型类型建筑物(包含宾馆、写字楼、塔楼和板楼住宅小区以及综合建筑群)匹配新型系统的案例进行分析研究,结果表明新型系统是一个节能的、值得推广的系统。
Due to the increasing stress of state grid and the progressive using of natural gas, Distributed Energy Resources (DER) has drawn extensive attention by now. This paper studies a new Distributed Energy Resources (NDER). The electric power generated by the prime mover is not used for lighting as usual, but drive electrical air conditioning system to produces cooling/heating capacity to meet the cooling/heating demands, together with the cooling/heating capacity generated from the absorption chiller/heater that is driven by the heat from the prime mover. So the NDER can perform heating or cooling independent of the state grid.
     The most distinct characteristic of this NDER is to combine the cogeneration (combined heat and power) and the single provision (heating or cooling). Consequently, it has the following advantages:1) having a high primary energy ratio,2) avoiding the mutual dependance among different products,3) having far less natural gas consumption than in the cogeneration,4) avoiding the problem of interconnecting with public power grid,5) relieving the stress of inadequate natural gas supply in winter and relatively redundant gas supply in summer,6) substantially reducing the power supply for air-conditioning system in summer, thereby to shift peak load, optimize the structure of energy consumption, and increase the reliability of the energy network.
     This paper studies the thermodynamic characteristics of the NDER.
     The NDER's components and their applicability are studied. The assembly of the NDER can be different, so that different system performance can be gained, and each component corresponds to a specific application.
     The coefficients of cooling and heating supply of NDER are obtained from the First Law of Thermodynamics, and the sensitivity analysis of NDER shows that these coefficients are affected remarkably by the generating efficiency and the COP of heat pump. For comparison, the NDER's energy efficiency is higher than the ground source heat pump and the direct-fired lithium bromide water chiller/heater.
     The exergy transfer characteristics of NDER are obtained from the specific consumption analysis based on the Second Law of Thermodynamics. To achieve the average exergetic efficiency in multi-operation condition, we firstly developed two methods to calculate the average exergetic efficiency for the heating and cooling system one is the heat-weighed-temperature method and the other is the fuel-weighed method. As a result, the exergy analysis can be extended from design condition to all conditions. And the second method is applicable to any process.
     We also analyzed the thermodynamic process of strong water/lithium-bromide solution absorbing water vapor, in the absorption refrigeration cycle. It seems that Fick law is not applicable for this process, so the chemical potential is introduced for the first time to explain this mass transfer process. The analysis shows that in the absorption process, although the temperature of the water vapor from the evaporator is lower than that of the sprinkling solution, its chemical potential is higher than that of the water in the solution. As a result, the solution absorbs the water vapor. The higher the solution temperature is, the easier the water vapor is absorbed. The introduction of chemical potential helps to explain the absorption process essentially from thermodynamics.
     This paper also presents the mathematical models established for the NDER's main components. The off-design characteristics of NDER are simulated basing on different prime movers. Because internal combustion engine has high power efficiency and good off-design performance, the internal combustion engine-NDER has a better partial load performance than the ground source heat pump and the direct-fired lithium bromide water chiller/heater. Moreover, this system is an energy-saving system with a yearly energy saving rate of 24.1% compared to the ground source heat pump, and 37.5% compared to the direct-fired lithium bromide water chiller/heater. However, because the gas turbine's power efficiency is low and its off-design performance isn't good, even if the gas turbine-NDER is energy saving at design condition, its energy saving effect slowly disappears as load decreases. Nevertheless, if the gas turbine-NDER is used in large public buildings with designated cooling/heating time and small load fluctuations, it can shift peak load and be energy-saving.
     Finally, various NDERs are designed for typical buildings (e.g. hotel, office building, tower block, apartment building, building complex) with different loads. From these case studies, NDER is shown to be energy-saving, and therefore is a worthy and remarkable system.
引文
[1]BP Statistical Review of World Energy.2009:8-43
    [2]魏楚.中国能源效率问题研究[D].浙江:浙江大学,2009:45-47
    [3]姚文涛,徐浩,葛琳.中国的能源现状及发展前景展望[J].科技促进发展,2009,(1):189-191
    [4]徐二树.分布式能量系统的研究与应用[D].华北电力大学,2003:3-6
    [5]钱必华.采用燃气空调缓解电力负荷的若干思考[J].暖通空调,2004,34(2):33-36
    [6]Lasseter R H. Microgrids and distributed generation [J]. Journal of Energy Engineering,2007,133(3):144-149
    [7]Michiel Houwing, Austin N. Ajah, Petra W. Heijnen, et al. Uncertainties in the design and operation of distributed energy resources:The case of micro-CHP systems [J]. Energy,2008,33(10):1518-1536
    [8]张沈生.城市供热模式评价理论方法及应用研究[D].长春:吉林大学,2009:35
    [9]北京市今冬继续对居民供热实行补贴政策[EB/OL].(2009-11-04).[2010-11-01].http://www.gov.cn/jrzg/2009-11/04/content_1456474.htm
    [10]今冬北京供暖需用天然气总量将达47.6亿立方米[EB/OL].(2009-11-06).[2010-11-01]. http://hudong.wlstock.com/InfoLibrary/cd4292271.aspx
    [11]2008年北京供热节能改造将出台优惠政策[EB/OL].(2008-030-10).[2010-11-01]. http://info.hvacr.hc360.com/2008/03/10101287032.shtml
    [12]曹瑾.北京用电负荷达到1327.7万千瓦[N].中国电力报,2009年7月7日第001版
    [13]Nelson Fumo, Pedro J. Mago, Louay M. Chamra. Analysis of cooling, heating, and power systems based on site energy consumption [J]. Applied Energy,2009, 86(6):928-932
    [14]王振铭.树立科学发展观,积极发展小型热电冷联产.第五届国际热电联产分布式能源联盟年会论文集[C].北京,2004:26-33
    [15]宋之平.一种值得关注的城市天然气消费方式:双源可逆型供暖(空调)系统[J].工程热物理学报,2006,27(2):181-184
    [16]陈康民,蔡小舒.“能源岛”——分布式热电冷三联供的进展与实践[J].上海理工大学学报,2004,26(5):385-387
    [17]Benjmain Kroposki, Thomas Basso, Riehard DeBlasio. Interconnection testing of distributed resources[C]. Proceedings of Power Engineering Society General Meeting, IEEE,2004,2:1892-1897
    [18]Tae-Eung Kim, Jae-Eon Kim. Considerations for the feasible operating range of distributed generation interconnected to power distribution system [C]. Proceedings of Power Engineering Society Summer Meeting,2002 IEEE,2002, 1:42-48
    [19]Meendez Quezada Victor. H., Rivier Abbad Juan, Gomez San Roman Tomas. Assessment of energy distribution losses for increasing penetration of distributed generation[J]. IEEE Transactions on Power Systems,2006,21(2):533-540
    [20]Freitas Walmir, Vieira Jose Carlos M., Morelato Andre, et al. Influence of excitation system control modes on the allowable penetration level of distributed synchronous generators[J]. IEEE Transactions on Energy Conversion,2005, 20(2):474-480
    [21]Kabouris J., Contaxis G.C.. Optimum expansion planning of an unconventional generation system operating in parallel with a large scale network[J]. IEEE Transactions on Energy Conversion,1991,6(3):394-400
    [22]Katsigiannis P. A., Papadopoulos D. P. A general techno-economic and environmental procedure for assessment of small-scale cogeneration scheme installations:Application to a local industry operating in Thrace, Greece, using micro turbines [J]. Energy Conversion and Management,2005,46(20):3150-3174
    [23]G. G. Maidment, R. M. Tozer. Combined cooling heat and power in supermarkets [J]. Applied Thermal Engineering,2002,22(6):653-665
    [24]Y. Zoka, A. Sugimoto, N. Yorino, et al. An economic evaluation for an autonomous independent network of distributed energy resources [J]. Electric Power Systems Research,2007,77(4):831-838
    [25]Karl Magnus Maribu, Ryan M. Firstone, Chris Marnay, et al. Distributed energy resources market diffusion model [J]. Energy Policy,2007,35(9):4471-4484
    [26]Nelson Fumo, Pedro J. Mago, Louay M. Chamra. Energy and economic evaluation of cooling, heating, and power systems based on primary energy [J]. Applied Thermal Engineering,2009,29(13):2665-2671
    [27]Pedro J. Mago, Anna K. Hueffed. Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies [J]. Energy and Buildings,2010,42(10):1628-1636
    [28]Olivier Le Corre, Guillaume Brecq, Mohand Tazerout. Thermoeconomic analysis based on energy structure for combined heat and power[J]. Applied Thermal Engineering,2002,22(5):561-566
    [29]Jarmo Soderman, Frank Petterssona. Structural and operational optimisation of distributed energy systems [J]. Applied Thermal Engineering,2006, 26(13):1400-1408
    [30]Hongbo Ren, Weijun Gao. A MILP model for integrated plan and evaluation of distributed energy systems[J]. Applied Energy,2010,87(3):1001-1014
    [31]Cardona E, Piacentino A. A methodology for sizing a trigeneration plant in Mediterranean areas [J]. Applied Thermal Engineering,2003,23(13):1665-1680
    [32]Saha A.K., Chowdhury S., Chowdhury S.P., et al. Modeling and simulation of microturbine in islanded and grid-connected mode as distributed energy resource[C]. IEEE Power and Energy Society 2008 General Meeting:Conversion and Delivery of Electrical Energy in the 21st Century, PES. Pittsburgh, PA, United states,2008 (7pp)
    [33]Svein J.Nesheim, Ivar S.Ertesvag. Efficiencies and indicators defined to promote combined heat and power [J]. Energy Conversion and Management,2007, 48(3):1004-1015
    [34]Nelson Fumo, Louay M. Chamra. Analysis of combined cooling, heating, and power systems based on source primary energy consumption[J]. Applied Energy, 2010,87(6):2023-2030
    [35]Abdul Khaliq, Rajesh Kumar. Thermodynamic performance assessment of gas turbine trigeneration system for combined heat cold and power production [J]. Journal of Engineering for Gas Turbines and Power.2008,130(2):024501(4pp)
    [36]Aaron Smith, Rogelio Lucka, Pedro J. Mago. Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty[J]. Energy and Buildings,2010,42(11):2231-2240
    [37]A Zaltash, A Y Petrov, D T Rizy, et al. Laboratory R&D on integrated energy systems[J]. Applied Thermal Engineering,2006,26(1):28-35
    [38]J.C.Ho, K.J.Chua, S.K.Chou. Performance study of a micro-turbine system for cogeneration application[J]. Renewable Energy,2004, (29):1121-1133
    [39]Campanari S, Macchi E. Technical and tariff scenarios effect on microturbine tri-generative applications[J]. Journal of Engineering for Gas Turbines and Power, 2004,126(3):581-589
    [40]Sahm Michael K., Zhang Jifeng, Wagner Tim, Jung Sunghan. Optimal integration of a microturbine-absorption chiller cooling, heating and power system for highest overall CHP system value[J]. Heat Transfer Division of ASME, 2004:469-477
    [41]Parsons J.A., Li Bin, Sweetser R.S. A CHP system optimization with microturbine recuperation control[J]. ASHRAE Transactions:Symposia, 2005:779-790
    [42]Sepehr Sanaye, Mehdi Aghaei Meybodi, Shahabeddin Shokrollahi. Selecting the prime movers and nominal powers in combined heat and power systems[J]. Applied Thermal Engineering,2008,28(10):1177-1188
    [43]Hongwei LI, Razi Nalim, P. A. haldi. Thermal-economic optimization of a distributed multi-generation energy system-a case study of beijing [J]. Applied Thermal Engineering,2006,26(7):709-719
    [44]Y. T. Ge, I. Chaer, S. A. Tassou, et al. Performance analysis of a combined cooling heating and power[C]. Proceedings of the Inaugural US-EU-China Thermophysics Conference,2009, Beijing, China
    [45]Hannu E. Jaaskelainen, James S. Wallace. Thermal performance of a combined heating, cooling, and power microturbine system[C]. Proceedings of the ASME 3rd International Conference on Energy Sustainability 2009, ES2009,2:209-219, San Francisco, USA
    [46]A. G. Tsikalakis, N. D. Hatziargyriou. Environmental benefits of distributed generation with and without emissions trading [J]. Energy Policy.2007, 35(6):3395-3409
    [47]Neslon Fumo, Pedro J. Mago, Louay M. Chamra. Emission operational strategy for combined cooling, heating, and power systems [J]. Applied Energy,2009, 86(11):2344-2350
    [48]Yunho Hwang. Potential energy benefits of integrated refrigeration system with microturbine and absorption chiller [J]. International J. of refrigeration,2004, 27(8):816-829
    [49]Arturo Alarcon-Rodriguez, Graham Ault, Stuart Galloway. Multi-objective planning of distributed energy resources:A review of the state-of-the-art. [J] Renewable and Sustainable Energy Reviews,2010,14(5):1353-1366
    [50]我国最大分布式能源项目竣工一期两台机组运营[EB/OL].(2009-10-22).[2010-11-01]. http://www.gov.cn/jrzg/2009-10/22/content_1446377.htm
    [51]徐二树.分散能源浅析(上)[J].节能与环保,2003,(8):8-10
    [52]徐二树.分散能源浅析(下)[J].节能与环保,2003,(9):15-17
    [53]宋之平.分布式能量系统浅析[J].中国工程科学,2004,6(12):78-84.
    [54]宋之平.议分布式能量系统[J].沈阳工程学院学报,2005,1(1):11-16
    [55]宋之平.议分布式能量系统在电力建设中的地位[J].华北电力大学学报,2005,32(1):54-58
    [56]杨勇平,徐二树.分布式能量系统[J].现代电力.2007,24(5):72-76
    [57]华贲.我国发展分布式能源的迫切性、意义及前景[J].沈阳工程学院学报(自然科学版),2005,1(2):1-6
    [58]李永兵,岳建华,沈炳耘.冷热电分布式供能系统的应用和发展[J].燃气轮机技术,2008,21(3):4-7
    [59]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,25(12):53-56
    [60]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60
    [61]梁有伟,胡志峰,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-76
    [62]陈琳.分布式发电接入电力系统若干问题的研究[D].浙江:浙江大学.2007:25-100
    [63]崔金兰.分布式发电技术及其并网问题研究综述[J].现代电力,2007,24(3):53-57
    [64]徐二树,郭喜燕,宋之平.评估、优化分散能源的经济性和环保效益[J].工程热物理学报,2004,25(2):189-192
    [65]徐二树,谷根代,宋之平.分散式能源的经济性评价[J].华北电力大学学报,2004,31(1):53-57
    [66]刘殿海,宋之平,杨勇平,等.分布式能量系统的案例分析[J].华北电力大学学报,2006,33(1):67-71
    [67]刘殿海,杨勇平,杨昆,等.分布式能量系统的综合评价[J].工程热物理学报,2005,26(3):382-384
    [68]王敏,丁明.分布式发电及其效益[J].合肥工业大学学报.2004,27(4):354-358
    [69]钱科军,袁越,石晓丹,等.分布式发电的环境效益分析[J].中国电机工程学报,2008,28(29):11-15
    [70]华贲,岳永魁,田中华,等.考虑环境影响的分布式能源系统优化设计与运行策略研究[J].沈阳工程学院学报(自然科学版),2005,1(1):6-11
    [71]冯志兵,金红光.冷热电联产系统的评价准则[J].工程热物理学报,2005,26(5):725-728
    [72]毕庆生,宋之平,杨勇平,等.分布式冷热电三联供系统的单耗分析模型研究[J].工程热物理学报,2007,28(6):905-908
    [73]张洪伟,龙妍,黄素逸.分布式能源系统的方案选择及性能分析[J].暖通空调,2004,34(5):47-51
    [74]徐二树,宋之平.分散能源的研究与应用[J].动力工程,2004,24(2):291-297
    [75]Wang Jiang-Jiang, Zhang Chun-Fa, Jing You-Yin. Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China [J]. Applied Energy,2010,87(4):1247-1259
    [76]黄锦涛,丰镇平,袁劲松.分布式冷热电联供系统经济性分析[J].沈阳工程学院学报(自然科学版),2005,1(1):17-21
    [77]徐建中.科学用能与分布式用能系统[J].中国能源,2005,27(8):10-13
    [78]冯志兵,金红光.燃气轮机冷热电联产系统及其热力分析[J].动力工程,2005,25(4):487-492
    [79]冯志兵,金红光.冷热电联产系统节能性分析[J].工程热物理学报,2006,27(4):541-544
    [80]马婉玲,丁明,吴红斌,等.分布式能源系统中燃气轮机热电联产运行方式的优化[J].发电设备,2008,(2):107-110
    [81]X.Q. Kong, R.Z. Wang, Y. Li, et al. Optimal operation of a micro-combined cooling, heating and power system driven by a gas engine [J]. Energy Conversion and Management,2009,50(3):530-538
    [82]张士杰,李宇红,叶大均.燃机热电冷联供自备电站优化配置研究[J].中国电机工程学报.2004,24(10):183-188
    [83]王丽慧,吴喜平.分布式能源系统运行效果受负荷稳定性的影响[J].建筑节能,2007,35(1):48-51
    [84]Y. Huangfu, J.Y. Wu, R.Z. Wang, et al. Evaluation and analysis of novel micro-scal combined cooling, heating and power (MCCHP) system [J]. Energy Conversion and Management,2007,48(5):1703-1709
    [85]冯志兵,金红光.燃气轮机冷热电联产系统与蓄能变工况特性[J].中国电机工程学报,2006,26(4):25-30
    [86]杨承,杨泽亮,蔡睿贤.基于全工况性能的冷热电联产系统效率指标比较[J].中国电机工程学报,2008,28(2):8-13
    [87]张雪梅,胡小坚,李伟奇,等.微型燃气轮机分布式能源系统动态能耗分析与优化应用[J].热力发电,2010,39(1):1-5
    [88]X.Q. Kong, R.Z. Wang, J.Y. Wu, et al. Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine. International Journal of Refrigeration,2005,28(7):977-987
    [89]L. Fu, X.L. Zhao, S.G. Zhang, et al. Laboratory research on combined cooling, heating and power (CCHP) systems [J]. Energy Conversion and Management, 2009,50(4):977-982
    [90]毕庆生,宋之平,杨勇平,等.燃气内燃机双源供暖系统的研究[J].暖通空调.2009,39(1):130~132,79
    [91]李霞,徐二树.双源供暖(空调)系统应用分析[J].工程热物理学报,2006,27(增刊1):17-20
    [92]毕庆生,宋之平,杨勇平,等.双源供暖(空调)系统热经济性和环保性能评价[J].天然气工业,2008,28(12):95-97,109,146-147
    [93]孙立香.双源供暖系统的研究[D].北京:华北电力大学,2001:33-47
    [94]李勇平.双源供暖(空调)系统的研究[D].北京:华北电力大学,2002:29-45
    [95]贾新华.联合循环双源供暖(空调)系统的研究[D].北京:华北电力大学,2003:30-48
    [96]金宝生.双源供暖(空调)系统研究及软件开发[D].北京:华北电力大学,2006
    [97]宋之平.从可持续发展的战略高度重新审视热电联产[J].中国电机工程学报,1998,18(4):225-230
    [98]Zhi-ping Song. Total energy system analysis of heating[J]. Energy,2000, 25(9):807-822
    [99]Jiangfeng Wang, Yiping Dai, Lin Gao, et al. A new combined cooling, heating and power system driven by solar energy [J]. Renewable Energy,2009, 34(12):2780-2788
    [100]Huang Jiayi, Jiang Chuanwen, Xu Rong. A review on distributed energy resources and MicroGrid. Renewable and Sustainable Energy Reviews.2008,12(9):2472-2483
    [101]D.W.Wu, R.Z,Wang. Combined cooling, heating and power:A review [J]. Energy and Combustion Science,2006,32(5-6):459-495
    [102]Hycienth I. Onovwiona, V. Ismet Ugursal, Alan S. Fung. Modeling of internal combustion engine based cogeneration systems for residential applications. Applied Thermal Engineering,2007,27(5-6):848-861
    [103]Christianne D. Aussant, Alan S. Fung, V. Ismet Ugursal, et al. Residential application of internal combustion engine based cogeneration in cold climate—Canada. Energy and Buildings,2009,41(12):1288-1298
    [104]Mudathir Funsho Akorede, Hashim Hizam, Edris Pouresmaeil. Distributed energy resources and benefits to the environment [J]. Renewable and Sustainable Energy Reviews,2010,14(2):724-734
    [105]崔平,林汝谋,金红光,等.世界燃气轮机市场厂商与产品性能.燃气轮机技术.2004,17(2):16-23
    [106]李建兴,涂光备,周文忠,等.住宅采暖用中水热泵技术的探讨[J].中国给水排水,2004,20(4):24-26
    [107]马最良,姚杨,赵丽莹.污水源热泵系统的应用前景[J].中国给水排水,2003,19(7):41-43
    [108]杨卫波,董华.土壤源热泵系统国内外研究状况及其发展前景[J].建筑热能通风空调,2003(3):52-55
    [109]北京市建筑设计研究院.北京市建筑设计技术细则——设备专业[S].北京市建筑设计标准化办公室.2005:25-32
    [110]王俊岭.北京某学校雨水利用设计[J].水资源保护,2006,22(1):50-51
    [111]邓波,龙惟定,白玮,等.污水源热泵与中水回用结合系统在住宅小区的应 用[J].暖通空调,2007,37(3):105-119
    [112]何满潮,李学元.混合水源联动运行空调技术及工程应用[J].矿业研究与开发,2004,24(4):31-33
    [113]刘传聚,洪丽娟.浦东国际机场二期水蓄冷空调系统的可行性分析[J].暖通空调,2006,36(3):102-106
    [114]宋之平,王加漩.节能原理[M].北京:水利电力出版社,1985:204-287
    [115]何晓红,蔡睿贤.内燃机及其热电联产系统的典型变工况解析特性[J].工程热物理学报,2008,29(2):191-194
    [116]王景刚,马一太,张子平,等.地源热泵的运行特性模拟研究[J].工程热物理学报,2003,24(3):361-366
    [117]Ozgener Leyla, Hepbasli Arif, Dincer Ibrahim. Energy and exergy analysis of geothermal district heating systems:an application [J]. Building and Environment,2005,40:1309-1322
    [118]Yildiz Abdullah, Gungor Ali. Energy and exergy analyses of space heating in buildings [J]. Applied Energy,2009,86(10):1939-1948
    [119]Bi Yuehong, Wang Xinhong, Liu Yun, et al. Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes [J]. Applied Energy,2009,86(12):2560-2565
    [120]宋之平.单耗分析的理论和实施[J].中国电机工程学报,1992,12(4):15-21
    [121]周少祥,宋之平.论能源利用的评价基准[J].工程热物理学报,2008,29(8):1267-1271
    [122]周少祥,姜媛媛,胡三高,等.单耗分析理论与超(超)临界机组机炉参数匹配问题研究[J].工程热物理学报,2009,30(12):1995-1998
    [123]贺平,孙刚.供热工程[M].北京:中国建筑工业出版社,1993:119-121
    [124]卢苇.蒸汽压缩式集中空调机组能源效率标准的研究[D].天津:天津大学,2004:6
    [125]董天禄,华小龙,姚国琦等.离心式/螺杆式制冷机组及应用[M].北京:机械工业出版社.2002:141-144
    [126]Cecilia Gabrielii, Lennart Vamling. Replacement of R22 in tube-and-shell condensers:experiments and simulations [J]. International Journal of Refrigeration.1997,20(3):165-178
    [127]丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社,2001:6
    [128]A. Cavallini, G. Censi, D. Del Col, et al. Condensation inside and outside smooth and enhanced tubes:a review of recent research [J].International Journal of Refrigeration,2003,26(4):373-392
    [129]M. W. Browne, P. K. Bansal. An overview of condensation heat transfer on horizontal tube bundles[J]. Applied Thermal Engineering,1999,19(6):565-594
    [130]Dongsoo Jung, Chong-Bo Kim, Sungjun Cho, et al. Condensation heat transfer coefficients of enhanced tubes with alternative refrigerants for CFC11 and CFC12 [J]. International Journal of Refrigeration,1999,22(7):548-557
    [131]彦启森.空气调节用制冷技术[M].第三版.北京:中国建筑工业出版社,2006:82-87
    [132]杨世铭,陶文铃.传热学[M].北京:高等教育出版社,1998:103-107
    [133]周国兵.绝热毛细管制冷剂流动特性及与系统匹配研究[D].天津:天津大学,2004:88-96
    [134]T. Y. Choi, Y. J. Kim, M. S. Kim, et al. Evaporation heat transfer of R-32, R-134a, R-32/134a, and R-32/125/134a inside a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer,2000,43(19):3651-3660
    [135]刘洋,刘金祥,丁高.水源热泵机组变工况运行的数学模型研究[J].暖通空调.2006,37(3):21-24
    [136]龙恩泽.冷热源工程[M].重庆:重庆大学出版社,2002:111-249
    [137]费兰克P.英克鲁佩勒,大卫P.德维特,狄奥多尔L.伯格曼,等.传热和传质基本原理[M].原著第六版.北京:化学工业出版社,2007:530-557
    [138]D. Bredow, P. Jain, A. Wohlfeil, et al. Heat and Mass Transfer Characteristics of a Horizontal Tube Absorber in a Semi-Commercial Absorption Chiller [J]. International Journal of Refrigeration,2008,31(7):1273-1281
    [139]Guozhen Xie, Guogang Sheng, Pradeep Kumar Bansal, et al. Absorber performance of a water/lithium-bromide absorption chiller [J]. Applied Thermal Engineering,2008,28(13):1557-1562
    [140]王补宣.工程传热传质学(下册)[M].北京:科学出版社,1998:401-428
    [141]胡英,吕瑞东,刘国杰,等.物理化学(上册)[M].第四版.北京:高等教育出版社,2002:115-164
    [142]天津大学物理化学教研室编.物理化学(上册)[M].第四版.北京:高等教育出版社,2003:163-207
    [143]朱文涛.物理化学(上册)[M].北京:清华大学出版社,2002:159-210
    [144]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2009:20-115
    [145]戴永庆,耿惠彬,陆震,等.溴化锂吸收式制冷技术及应用[M].北京:机械工业出版社,2001:86-105
    [146]吴业正,朱瑞琪,李新中,等.制冷与低温技术原理[M].北京:高等教育出版社,2004:176-194
    [147]P. Kohlenbach, F. Ziegler. A dynamic simulation model for transient absorption chiller performance. Part I:The model. International of Refrigeration,2008,31(2):217-225
    [148]S. Jeong, B. H. Kang, S. W. Karng. Dynamic simulation of an absorption heat pump for recovering low grade waste heat[J]. Applied Thermal Engineering, 1998,18(12):1-12
    [149]G. P. Xu, Y. Q. Dai. Theoretical analysis and optimization of a double-effect parallel-flow-type absorption chiller[J]. Applied Thermal Engineering,1997, 17(2):157-170
    [150]G. P. Xu, Y. Q. Dai, K. W. Tou, et al. Theoretical analysis and optimization of a double-effect series-flow-type absorption chiller [J]. Applied Thermal Engineering,1996,16(12):975-987
    [151]Khaild A. Joudi, Ali H. Lafta. Simulation of a simple absorption refrigeration system[J]. Energy Conversion and Management,2001,42(6):1575-1605
    [152]周锦生.直燃型吸收式制冷机动态特性的研究[D].上海:上海交通大学,1999:68-88
    [153]Arzu Sencan, Kenmal A. Yakut, Soteris A. Kalogirou. Thermodynamic analysis of absorption systems using artificial neural network [J]. Renewable Energy, 2006,31(1):29-43
    [154]蔡睿贤,张娜.单轴恒速燃气轮机及其功热并供装置的典型变工况特性[J].工程热物理学报,1998,19(2):145-149
    [155]杨卫波,施明恒,陈振乾.土壤源热泵夏季运行特性的实验研究[J].太阳能学报,2007,28(9):1012-1016

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700