用户名: 密码: 验证码:
珠江口盆地干酪根热模拟生烃及油气充注期次分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珠江口盆地是中国南海大陆边缘盆地北部最大的中新生代沉积盆地,具有丰富的石油和天然气资源。番禺低隆起-白云凹陷北坡油气地质地球化学特征表明,天然气及凝析油主要来自下渐新统恩平组河沼相煤系烃源岩。恩平组烃源岩生烃演化机理、成烃潜力及其影响因素是该区油气地质地球化学研究的关键;珠三坳陷勘探区具有多期成烃、多期运移的特征,其油气来源及运移等方面的问题还有待进一步的研究。本文通过密封金管-高压釜体系对珠江口盆地番禺低隆起-白云凹陷北坡恩平组炭质泥岩的干酪根(PY),进行热模拟生烃实验,同时与典型的Ⅰ型和Ⅱ型干酪根Green River页岩(GR)和Woodford泥岩(WF)的干酪根进行对比研究;通过流体包裹体镜下显微观察、荧光分析和伴生盐水包裹体均一温度测量等对珠三坳陷文昌A、B凹陷烃源和油气充注期次进行了研究。获得如下主要认识:
     1.PY热演化产物中总油气量明显低于GR和WF干酪根,且气态烃(C1-5)最高产率是液态烃的1.5倍,揭示恩平组炭质泥岩以形成气态烃为主。
     2.在热演化过程中,有机质成熟度和母质类型是控制油气比的主要因素,气态烃和轻烃(C6-14)的产率比值主要受热演化成熟度的影响。
     3.液态烃族组分的分布特征与有机质母质来源和热演化成熟度有关。总体而言,在R0≤1.2%的演化阶段,非烃大量裂解形成小分子化合物,且产物以饱和烃为主;当R0>1.2%时,饱和烃急剧减少,芳构化作用明显增强。
     4.干酪根残余有机质碳同位素和沥青质碳同位素在热演化过程中受有机质成熟度的影响较小,δ13C残佘和δ13C沥青质可以间接反映原始母质的特征,为高演化烃源岩油气生成量评价提供依据。
     5.珠三坳陷新近纪以来主要发生过两期油气充注:第一期充注油气主要发黄-浅黄褐色荧光,以浅褐色液态烃包裹体的低熟油气为主,原油主要来自文昌组烃源岩,伴生盐水包裹体的均一温度范围为130~142℃,推断油气充注发生在早中新世;第二期油气主要发蓝白色荧光,以黑色气态烃和褐色液态烃的成熟油气为主,原油主要来自恩平组烃源岩,伴生盐水包裹体的均一温度主要分布在148~155℃,充注时间为晚中新世-第四纪。
Pearl River Mouth Basin is the largest middle Cenozoic basin in the continental margin of south China sea which is abundant in petroleum and natural gas deposits. Natural gas and condensate oil in Panyu low massif and north slope of Baiyun sag were mainly derived from late Oligocene Enping fluvial-lacustrine facies coal measures as source rocks. The multi-stage oil and gas generation and migration in Zhu3depression make oil and gas exploration more difficult. In order to evaluate the Enping source rocks hydrocarbon potential to guide the exploration activities, it is necessary to develop new method and set up a new identification and evaluation criterion for evaluating quantity of the source rocks.
     In this paper, a series of kerogen pyrolysis in gold tube reactors were conducted with the kerogen (PY) concentrated from Enping Formations, an immature carboniferous mudstone in the Panyu Low Massif and North Slope of Baiyun Sag in Pearl River Mouth Basin, China. For comparison purpose, the isolated kerogens from Green River shale (GR) and Woodford Shale (WF) representing typical type I and II kerogens were employed as well. The organic inclusion of Wengchang A、B sub-depressions were applied to study the hydrocarbon source and determine the timing of oil and natural gas charging in Zhu3#depression. Multiple analyses include type, distribution, fluorescence and homogenization temperature of fluid inclusions were used. The following main achievements were made in this study:
     1. The total yield of hydrocarbons is low from PY kerogen pyrolysis, and the yield of gaseous hydrocarbons is1.5times to liquid hydrocarbons. In contrast, the total yields of hydrocarbons from GR and WF kerogen pyrolysis are apparently great, and are dominated by liquid hydrocarbons. This indicates PY kerogen thermal decomposition is favorable to natural gas formation.
     2. The gas to oil ratio (GOR) is controlled by both of organic matter thermal maturity and kerogen type in the thermal conversion of kerogen to oil and gas, yet the ratio of gas and light hydrocarbons is mainly affected by thermal maturation.
     3. The fraction of liquid hydrocarbon components is related to organic matter type and the levels of thermal stress.The saturate hydrocarbon yield remain essentially constant at low levels of thermal stress (Ro≤1.2%) from NSO's cracking and decrease at higher levels of thermal stress(Ro>1.2%) corresponding to an increase in the aromatic hydrocarbon yields.
     4. The carbon isotopic compositions of residual kerogens and alsphalt fraction are almost identical, and less than0.3‰δ13C enrichment to original value of kerogen is observed from0.7%to2.7%Ro during thermal maturation. This suggests that813C of residual kerogens or alsphaltane could be used as an indicator to the reconstruction of organic matter type for high-mature source rock.
     5. The oil and natural gas bearing hydro-thermal fluids have been charged twice into the sandstone reservoirs in Zhu3" depression in the Neogene reservoir. The first charged stage is characterized by immature oil with yellow-light brown fluorescent light, its hydrocarbon fluid inclusions are dominated by light brown liquid hydrocarbon inclusions. The crude oil was mainly derived from Wenchang source rocks based on the homogenization temperature (Th) of coeval aqueous inclusions ranging from130℃to142℃. The timing of oil and nature gas charging was estimated at early Miocene. The second charged stage is characterized by mature natural gas with blue-white fluorescence, and their hydrocarbon fluid inclusions are dominated by black gas hydrocarbon inclusions and brown liquid hydrocarbon inclusions. The natural gas was mainly derived from Enping source rocks based on the Th, of coeval aqueous inclusions ranging from148℃to155℃, which is about15℃higher than the1st charged stage. And the estimated charging time was late Miocene to Quaternary.
引文
Aiping Fan, Renchao Yang,Qiao Feng, et al. Application of Fluid Inclusions in the Study of Natural Gas Geology in Ordos Basin[J]. China University of Mining and Technology (English Edition),2006,16(4):443-447.
    Behar F, KressmannS, VandenbrouckeM, etal. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking [J].Organic Geochemistry,1991,19:173-189.
    Behar F, VandenbrouckeM, TangY, etal. Thermal cracking of kerogen in open and closed systems:determination of kinetic parameters and stoichiometric coefficients for oil and gas generation [J]. Organic Geochemistry,1997,26(5/6):321-339.
    Behar F, Lorant F, et al.Thermal stability of alkylaromatics in natural systems:kinetics of thermal decomposition of dodecylbenzene[J]. Energy and Fuels,2002,16:831-841.
    Burnham A K, Sweeney J J. A chemical kinetic model of vitrinite maturatiion and reflectance[J]. Geochemical,1989,53:2649-2657.
    Burruss R C. Hydrocarbon fluid inclusions in studies of sedimentary diagenesis[J]. Canada Short Course Hand book,1981,6:138-156.
    Cramer B, Krooss B M, Littke R. Modeling isotope fractionation during primary cracking of natural gas:a reaction kinetic approach [J]. Chemical Geology,1998,149:235-250.
    Cramer B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics [J]. Organic Geochemistry,2004,35(4): 379-392.
    Conliffe J, Blamey N F, Feely M, et al. Hydrocarbon migration in the Porcupine Basin, offshore Ireland:evidence from fluid inclusion studies[J]. Petroleum Geoscience,2010,16(1):67-76.
    Ferket H, Guilhaumou N, Roure F, et al. Insights from fluid inclusions, thermal and PVT modeling for paleo-burial and thermal reconstruction of the Cordoba petroleum system (NE Mexico) [J]. Marine and Petroleum Geology,2010,27:285-297.
    Goldstein R H. Fluid inclusions in sedimentary diagenetic systems[J]. Lithos,2001,55:159-193.
    Huang Bao jia, Xiao Xianming, Hu Zhongliang, et al. Geochemistry and episodic accumulation of natural gases from the Ledong gas field in the YinggehaiBasin, off shore SouthChina Sea [J]. Organic Geochemistry,2005,36(12):1689-1702.
    John P, David M, Chen H H, et al. The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation:example from the Jeanne d'Arc Basin, off shore New foundland. Marine and Petroleum Geology,2001(18):535-549.
    Hill R J, Tan Yongchun, Kaplan I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry,2003,34:1651-1672.
    Khaled R A, Jenden P D, Al-Hajji A A. Petroleum inclusions atop Unayzah gas condensate reservoir:Signpost for an undocumented chapter of the Arabian Basin filling history?[J]. Organic Chemistry,2010,41(7):698-705.
    Liu K, Eadington P. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history[J]. Organic Geochemistry,2005,36:1023-1036.
    Munz I A. Petroleum inclusions in sedimentary basins:systematic, analytical methods and application[J]. Lithos,2001,55:195-212.
    Okubo S. Effects of thermal cracking of hydrocarbons on the homogenization temperature of fluid inclusions from the Niigata oil and gas fields, Japan[J]. Applied Geochemistry,2005, 20:255-260.
    Pang X, Yang SK, Zhu M, et al. The deep-water fan systems and petroleum resource in northern slope of South China Sea[J]. Acta Geologica Sinica(English edition),2004,78(3):626-631.
    Pepper A S, Dodd T A.Simple kinetic models of petroleum formation. Part:oil-gas cracking[J]. Marine and Petroleum Geology,1995,12:321-340.
    Prinzhofer A A, HucA Y. Genetic and post genetic molecular and isotopic fractionations in natural gases [J]. Chemical Geology,1995,126(2):281-290.
    Prinzhofer A A, Pernaton E. Isotopically lightmethane in natural gases:bacterial imprint or segregate migration?[J]. Chemical Geology,1997,142:193-200.
    Roedder E. Fluid inclusions[J].Reviews in Mineralogy,1984,12:11-45,251-290.
    Shuai Y, Peng P, Zou Y, et a 1. Kinetic modeling of individual gaseous component formed from coal in a confined system [J]. Organic Geochemial,2006,37:932-943.
    Suchy V, Dobes P, Sykorova I, et al. Oil-bearing inclusions in vein quartz and calcite and, bitumens in veins:Testament to multiple phases of hydrocarbon migration in the Barrandian basin (lower Palaeozoic), Czech Republic[J]. Marine and Petroleum Geology,2010,27: 285-297.
    Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. The American Association of Petroleum Geologists Bulletin,1990, 74(10):1559-1570.
    Tissot B P. Premie'res donne'es sur les me'canismes et la cine'tique de la formation du pe'trole dans les basins se'dimentaires. Simulation d'un sche'ma re'-actionnel sur ordinateur [J]. Oil and Gas Science and Technology,1969,24,470-501.
    Tissot B P, Welte D H. Petroleum formaion and occurrence[M]. Springer-Vevlag,1984, 69-198.
    Tang Y, Stauffer M. Multiple cold trap pyrolysis gas chromatography:a new technique for modeling hydrocarbon generation [J]. Organic Geochemistry,1994,22,863-872.
    Ungerer P, Pelet R. Extrapolation of oil and gas formation kinetics from laboratory experiments to sedimentary basins [J]. Nature,1987,327:52-54.
    Xiao Xianming, XiongMing, Tian Hu, et al. Determination of the source area of the Ya13-1 gas pool in the Qiongdongnan Basin, South China Sea [J]. Organic Geochemistry,2006,37(9): 990-1002.
    Yong Feng, Honghan Chen, Sheng He, et al. Fluid inclusion evidence for a coupling response between hydrocarbon charging and structural movements in Yitong Basin, Northeast China[J]. Geochemical Exploration,2010,106:84-89.
    Zhang Mingjie, Wang Xianbin, Liu Gang, et al. The compositions of upper mantle fluids beneath Eastern China:Implications for mantle evolution[J]. Acta Geologica Sinica (English Edition), 2004,78(1):125-130.
    Zhang Tongwei, Ellis G S, Wang Kangshi, et al. Effect of hydrocarbon type on thermochemical sulfate reduction [J]. Organic Geochemistry,2007,38(6):897-910.
    Zhang Tongwei, Krooss B M. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure [J].Geochemica CosmichicaActa, 2001,65(16):2723-2742.
    Zhang Tongwei, Zhang Mingjie, Bai Baojun, et al. Origin and accumulation of carbon dioxide in the Huanghua depression, Bohai Bay basin, China [J]. AAPG Bulletin,2008,92(3): 341-358.
    蔡周荣,夏斌,万志峰等.珠江口盆地与莺琼盆地油气运聚特征的差异性[J].天然气工业,2009,29(11):9-12.
    程本合,汪集呖,熊亮萍.莺琼盆地流体包裹体对热液活动及油气运移的示踪作用[J].岩石学报,2000,16(4):695-699.
    陈长民,饶春涛.珠江口盆地(东部)新生代油气形成条件及类型.第一届海峡两岸石油科技研讨会论文集,1995,1(1):473-503.
    陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社,2003.
    陈建平,查明,周瑶琪.有机包裹体在油气运移研究中的应用综述[J].地质科技情报,2000,19(1):61-64.
    崔莎莎,何家雄,陈胜红等.珠江口盆地发育演化特征及其油气成藏地质条件[J].天然气地球科学,2009,20(3):384-391.
    傅宁,丁放,何仕斌,等.珠江口盆地恩平凹陷烃源岩评价及油气成藏特征分析[J].中国海上油气,2007,19(5):295-299.
    傅宁,米立军,张功成.珠江口盆地白云凹陷烃源岩及北部油气成因[J].石油学报,2007,28(3):32-38.
    傅宁,李友川,孙建新,等.珠三坳陷烃源岩及油源研究再认识[J].现代地质,2011,25(6):1121-1130.
    郭小文,何生.珠江口盆地番禺低隆起轻质原油地球化学特征及其对比研究[J].地质科技情报,2006,25(5):63-68.
    郭小文,何生.珠江口盆地白云凹陷烃源岩热史及成熟史模拟[J].石油实验地质,2007,29(4):420-425.
    龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997.
    龚再升,李思田.南海北部大陆边缘盆地油气成藏动力学研究[M].北京:科学出版社,2004.
    侯国伟,于兴河,客伟利等.番禺低隆起东区中新世早中期沉积演化特征.石油天然气学报(江汉石油学院学报),2005,(27,1):26-28.
    郝石生,陈章明,高耀武等.天然气的形成和保存[M].北京:石油工业出版社,1995.41-42.
    黄保家,李俊良,李甲,等.文昌A凹陷油气成藏特征与分布规律探讨[J].中国海上油气(地质),2007,19(6):361-366.
    黄正吉.珠江口盆地陆相烃源岩与油气生成[J].中国海上油气(地质),1998,12(4):255-261.
    贾元琴,胡沛青,张铭杰,等.琼东南盆地崖城地区油气充注期次流体包裹体分析[J].沉积学报,2012,30(1):189-196.
    姜华,王华,林正良,等.珠三坳陷古潜山油气藏预测研究[J].石油天然气学报(江汉石油学院学报),2008,30(5):27-31.
    姜华,王华,李俊良,等.珠江口盆地珠三坳陷油气成藏模式与分布规律[J].石油与天然气地质,2009,30(3):275-286.
    姜振学,庞雄奇,黄志龙.吐哈盆地鄯善油田油气运聚期次及成藏过程研究[J].石油大学学报(自然科学版),2000,24(4):104-107.
    李明诚,李剑,万玉金,等.沉积盆地中的流体[J].石油学报,2001,22(4):13-18.
    刘德汉.包裹体研究——盆地流体追踪的有力工具[J].地学前缘,1995,2(3-4):149-153.
    刘德汉,卢焕章,肖贤明.油气包裹体及其在石油勘探和开发中的应用[M].广州:广东科技出版社,2007.
    刘德汉,肖贤明,田辉,等.含油气盆地中流体包裹体类型及其地质意义[J].石油与天然气地质,2008,29(4):491-501.
    刘德良,陶士振,张宝民.包裹体在确定成藏年代中的应用及应注意的问题[J].天然气地球化学,2005,16(1):16-19.
    刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报,1998,43(11):1187-1191.
    刘铁树,何仕斌.南海北部陆缘盆地深水区油气勘探前景[J].中国海上油气,2001,15(3):164-170.
    卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.
    李兆奇,陈红汉,刘惠民,等.流体包裹体多参数综合划分东营凹沙三段油气充注期次及充注时期确定[J].地质科技情报,2008,27(4):69-74.
    米敬奎,李新虎,刘新华,等.利用生烃动力学研究鄂尔多斯盆地抬升后上古生界源岩生气作用结束时间[J].地球化学,2004,33(6):561-566.
    米敬奎,肖贤明,刘德汉,等.利用包裹体信息研究鄂尔多斯盆地上古生界深盆气的运移规律[J].石油学报,2003,24(5):46-51.
    米立军,张功成,傅宁,等.珠江口盆地白云凹陷北坡-番禺低隆起油气来源及成藏分析[J].中国海上油气,2006,18(3):161-168.
    彭大钧,庞雄,陈长民,等.南海珠江深水扇系统的形成特征与控制因素[J].沉积学报,2006,24(1):10-18.
    庞雄,陈长民,朱明,等.南海北部陆坡白云深水区油气成藏条件探讨[J].中国海上油气,2006,18(3):145-149.
    庞雄,申俊,袁立忠,等.南海珠江深水扇系统及其油气勘探前景[J].石油学报,2006,27(3):11-15.
    庞雄,陈长民,吴梦霜,等.珠江深水扇系统沉积和周边重要地质事件[J].地球科学进展,2000,14(1):21-28.
    秦国权.珠江口盆地新生代地层问题讨论及综合柱状剖面图编制[J].中国海上油气(地质),2006,21(8):23-29.
    秦建中,饶丹.高演化海相碳酸盐岩层系古温标的直接指标——包裹体均一温度[J].石油实验地质,2008,30(5):494-498.
    邱楠生,金之钧,胡文喧.东营凹陷油气充注历史的流体包裹体分析[J].石油大学学报(自然科学版),2000,24(4):95-97.
    施和生,秦成岗,高鹏,等.珠江口盆地番禺低隆起—白云凹陷北坡天然气晚期成藏特征[J].中国海上油气,2008,20(2):73-78.
    施继锡,余孝颖.碳酸盐岩中包裹体有机质特征与非常规油气评价[J].矿物学报,1996,16(2):103-108.
    帅燕华,邹艳荣,彭平安.塔里木盆地库车坳陷煤成期甲烷碳同位素动力学研究及其成藏意义[J].地球化学,2003,32(5):469-475.
    孙樯,谢鸿森,郭捷,等.含油气沉积盆地流体包裹体及应用[J].长春科技大学学报,2000,30(1):42-45.
    唐俊红,张同伟,鲍征宇,张铭杰,杨荣生.四川盆地西南部流体包裹体特征及其在石油地质上的应用[J].地质科技情报,2003,22(4):60-64.
    唐俊红,张同伟,鲍征宇,等.四川盆地威远气田碳酸盐岩中有机包裹体研究[J].地质论评,2004,50(2):210-214.
    唐俊红,张同伟,鲍征宇,张铭杰.四川盆地西南部储层有机包裹体组成和碳同位素特征及其对油气来源的指示[J].地质论评,2005,51(1):100-106.
    王存武,陈红汉,施和生,等.珠江口盆地番禺低隆起天然气成因研究[J].天然气工业,2005,25(8):6-8.
    肖晖,任战利.塔里木盆地孔雀1井志留系含气储层成藏期次研究[J].石油实验地质,2008,30(4):357-362.
    谢利华,林畅松,周彤,等.珠江口盆地番禺低隆起油气成藏条件分析[J].天然气工业,2009,29(1):30-34.
    熊永强,耿安松,刘金钟,等.生烃动力学模拟实验结合GC-IRMS测定在有效气源岩判识中的应用[J].地球化学,2002,31:22-26.
    熊永强,耿安松,王云鹏,等.干酪根二次生烃动力学模拟实验研究[J].中国科学,D辑,2001,31(4):315-320.
    熊永强,张海组,耿安松.热演化过程中干酪根碳同位素组成的变化[J].石油实验地质,2004,26(5):484-487.
    徐世平,孙永革.一种适用于沉积有机质族组分分离的微型柱色谱法[J].地球化学,2006,35(6):681-688.
    杨惠民.包裹体类型和成分特征在油气运移研究和油气储层评价中的应用[J].海相油气地质,1997,12(2):16-21.
    杨甲明,龚再升,吴景富,等.油气成藏动力学研究系统概要(下)[J].中国海上油气,2002,16(6):374-383.
    杨荣生,张铭杰,张同伟,等.川西南碳酸盐岩储层流体包裹体气体地球化学研究[J].沉积学报,2003,21(3):522-527.
    姚伯初,万玲,吴能友.大南海地区新生代板块构造活动[J].中国地质,2004,31(2):113-122.
    尹琴,宋之光,刘金钟.硫对原油裂解气组成及碳同位素组成的影响[J].石油与天然气地质,2010,31(3):309-314.
    于水明,梅廉夫,施和生,秦成岗,汤济广.珠江口盆地番禺低隆起—白云凹陷北坡断层与油气成藏关系.石油勘探与开发,2007,34(5):562-565.
    于晓果,席晓应,周雯雯.珠三坳陷油气成藏的地球化学依据[J].中国海上油气,1999,13(4):268-275.
    于兴河,姜辉,施和生等.珠江口盆地番禺气田沉积特征与成岩演化研究.沉积学报,2007,25(60:876-884.
    袁玉玲,皇甫红英.塔里木盆地塔河南地区良里塔格组成岩环境及油气成藏期次[J].石油实验地质,2008,30(6):580-584.
    张春明.珠江口盆地油气运移主通道的地质-地球化学研究[D].中国地质大学(北京)2003.
    张鼐,邢永亮,曾云,等.塔东地区寒武系白云岩的流体包裹体特征及生烃期次研究[J].石油学报,2009,30(5):694-695.
    张功成.中国近海天然气地质特征与勘探新领域[J].中国海上油气,2005,17(5):289-296.
    张功成,米立军,吴时国,等.深水区——南海北部大陆边缘盆地油气勘探新领域[J].石油学报,2007,28(2):15-21.
    张铭杰,唐俊红,张同伟,等.流体包裹体在油气地质地球化学中的应用[J].地质论评,2004,50(4):397-406.
    张铭杰,王先彬,刘刚,等.中国东部新生代碱性玄武岩及幔源岩捕虏体中的流体组成[J].地质学报,1999,73(2):162-166.
    张铭杰,王先彬,李立武.地幔流体组成[J].地学前缘,2000,7(2):401-412.
    张铭杰,王先彬,李立武,等.幔源矿物中H2赋存状态的初步研究[J].地质学报,2002,76(1):39-44.
    张铭杰,王先彬,郑朋,等.中国东部上地幔原始流体组成[J].矿物岩石地球化学通讯,2005,24:110-111.
    张铭杰,王先彬,胡沛青,等.地幔流体化学组成与成烃[J].天然气地球科学,2006,17(1):31-35.
    张树林,陈多福,黄君权.白云凹陷天然气水合物成藏条件[J].天然气工业,2007,27(9):7-10.
    张义杰,曹剑,胡文瑄.准噶尔盆地油气成藏期次确定与成藏组合划分[J].石油勘探与开发,2010,37(3):257-262.
    赵力彬,黄志龙,高岗等.关于用包裹体研究油气成藏期次问题的探讨[J].油气地质与采收率,2005,12(6):6-9.
    周雯雯,郭迺燕.珠三坳陷有机包裹体初步研究[J].中国海上油气,1997,11(4):233-239.
    周雯雯.有机包裹体在珠三坳陷油气运移研究中的应用[J].地质科技情报,1998,6(17):93-99.
    周雯雯,张伙兰.珠三坳陷有机包裹体应用研究[J].岩石学报,2000,16(4):677-686.
    朱俊章,施和生,庞雄,等.珠江口盆地番禺低隆起天然气成因和气源分析[J].天然气地球科学,2005,16(4):456-459.
    朱俊章,施和生,庞雄,等.珠江口盆地番禺低隆起凝析油地球化学特征及油源分析[J].中国海上油气,2006,18(2):103-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700