用户名: 密码: 验证码:
电纺半导体纳米纤维的结构设计与调控及器件应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料既可实现纳米尺度的连接与信息传输,又可体现自身的量子特征,近年来成为功能纳米器件领域的研究与应用热点。电纺半导体纳米纤维作为一种独特的一维纳米结构,具有超长连续的一维结构、大而可调的比表面积及孔隙率、多变而可精细控制的组分、低廉的技术成本以及方便的组装工艺等优点,在纳米器件领域展现了良好的应用前景。然而,电纺纳米纤维在纳米器件领域的应用还存在许多问题:目前大多数工作都只是从零维或其它一维纳米结构简单地移植到纳米纤维,比较缺乏针对具体器件应用而对纳米纤维进行的结构设计与调控,这也直接导致了纳米纤维器件的性能普遍不高,在很多方面性能逊色于其它一维结构,甚至于体相材料,进而影响电纺丝技术在电子器件领域的应用发展。
     本文以电纺丝技术为平台,以三类极具代表性的电子器件(气体/电化学传感器、光电子器件、场效应晶体管)为研究对象,旨在通过对纳米纤维结构的设计与调控来对器件性能进行有力调控与改善,并深入研究构效关系,期待能够使电纺丝纳米纤维在纳电子器件领域的应用有所突破。其中的结构调控手段包括:①构建p/n异质结、吸附剂/半导体高分子一维核壳敏感结构、双金属氧化物电催化剂;②设计高分子弱受体/给体核壳纳米纤维;③在高分子半导体纳米纤维中植入金纳米粒子或引入聚电解质调节作用。具体内容如下:
     1.首先针对气体传感器开展工作。电纺丝纳米纤维已经在化学传感器领域得到了较成功的应用,但为了不断提高器件性能和更深入的研究构效关系,本章从无机氧化物半导体和导电高分子纳米纤维两方面入手开展深入研究。(1)在无机氧化物半导体方面,我们将p/n结引入到纳米纤维中,通过电纺丝技术结合高温热处理工艺,制备了含有不同含量Cr_2O_3的p-Cr_2O_3/n-ZnO异质结纳米纤维气体传感器,当复合纤维中Cr_2O_3的含量为4.5wt%时,器件对100ppm乙醇的响应值为24、最低检测浓度仅为1ppm、响应时间为1s、回复时间为5s、稳定性也很好。该材料的乙醇传感性能是所有无机氧化物酒敏器件的佼佼者。同时我们分析了Cr_2O_3组分、p/n结、电纺纳米纤维结构使传感性能提高的机制。(2)在高分子半导体传感器方面,避开原有的、最常用的通过引入无机活化剂(半导体或贵金属)来提高性能的方法,结合电纺丝技术与液相聚合的方法设计并合成一个新颖的气体敏感结构:高分子吸附剂(磺化聚醚醚酮)/导电高分子(聚吡咯)一维核壳纳米纤维。作为活化剂,核层高分子吸附剂与待测气体的结合作用会促使更多的气体通过壳层导电高分子并与之反应,从而使该传感器在极低浓度氨气下(20ppb)就展示了很大的气体响应。该工作为高性能、高柔性、低成本的导电高分子基化学传感器的制备提供新颖而有效的思路。
     2.除了大气环境的检测外,液态环境的电化学检测也具有重要应用价值。本章首先制备了氧化镍、氧化铜单组份纳米纤维,并用它们来修饰电化学电极,在三电极的体系下研究了它们对葡萄糖的无酶电传感特性;随后受合金和双金属电催化剂的启发,通过电纺丝法与高温后处理相结合构建了钯/铜双金属氧化物纳米纤维葡萄糖无酶电化学传感器,该电化学传感器展示了很低的过电位(~0.32V),超高的灵敏度(1061.4μA mM~(-1)cm~(-2)),超快的响应行为(0.5~1s)以及优异的抗干扰能力和稳定性;在实验中我们还侧重分析了异种组分引入,及一维纳米结构对传感性能的提高作用。
     3.光电器件性能的提高是近年来的研究热点与难点。受体相异质结光电器件的启发,本章通过电纺丝技术和液相聚合的方法设计并制备了一种新颖的一维纳米核壳高分子异质结光电导器件——弱受体-聚丙烯腈/给体-聚苯胺核壳纳米纤维。一方面,核壳纳米结构能够为光生电荷的分离提供相分离的纳米界面;另一方面,一维结构能够为电荷的传导与收集提供有利途径。因此,基于PAN/PANi核壳纳米纤维的光电导器件展示了非常优异的性能:超低的工作电压(有利于低能耗器件的制备),超快的光电响应回复行为,优异的重复使用性和稳定性,大的电流开关比,高的光电响应值,及优异的柔性等。这些数据表明此思想有利于明晰材料结构与光电性能之间的联系,并且有助于在实际应用中设计高性能高分子太阳能电池。
     4.场效应晶体管可以用来增强化学/电化学传感器和光电器件的信号。为了解决高分子场效应晶体管中普遍存在的迁移率低(普遍低于0.5cm~2/Vs),以及提高迁移率的方法繁琐等问题,本章以电纺丝技术为平台,开发了两条路线。(1)在高分子半导体一维纳米沟道材料中引入金属纳米电极来提电荷的传导与渗漏。结合电纺丝技术与原位气相聚合的方法,制备了金纳米粒子活化的模板高分子/导电高分子核壳纳米纤维(聚丙烯腈/聚苯胺、聚吡咯、聚噻吩),这类材料的场效应迁移率普遍大于1cm~2/Vs。该体系中高分子半导体是无定形的,场效应迁移率的提高不是通过提高分子的规整度或结晶度来实现的,而是由于纤维的一维纳米特性以及金纳米粒子的调控作用引起的。(2)首次将电解质/半导体双层结构模型引入到高分子一维纳米场效应晶体管中。采用电纺丝方法结合液相选择性聚合制备了磺化聚芳醚酮/聚苯胺核壳纳米纤维,并用之构筑场效应晶体管。这种结构的优势是:一方面,一维纳米结构可以改善电荷的传导,减少边界效应,另一方面,在栅压下聚电解质纳米核层又可以为高分子半导体壳层提供源源不断的内部调节。该材料的场效应迁移率可以达到3cm~2/Vs,同时开关比也大于10~4,这两项指标都远好于以往报道的聚苯胺基场效应晶体管。而且该工作体系是采用液相生长的方法,具有环境友好的优势。
Rational design and fabrication of nano-devices based on one-dimensionalnanostructures have flourished in the digital age, due to their broad application andhigh performance. Among the huge variety of1D nanostructures, nanofibersfabricated by electrospinning technology are attracting increasing research attention innano-device fabrication, due to their unique advantages, such as super-long andcontinuous1D structure, large and tunable surface area and porosity, varied andcontrolled components, low-cost and convenient assembly, and so on. However thereare still lots of problems hindering the practical application. By far, most of the formerresearch on electrospun nanofiber nano-devices is imitated from0D or other1Dnanostructures, and few research attention has been paid on structure design andmodulation for nanofibers toward devices. As a result, the performances of thenanofiber devices were often lower than conventional1D nanostructures in manyfields, and even worse than their bulk counterparts sometimes.
     In this thesis, we engage in structure design and modulation for nanofibers toimprove the performance of the corresponding devices, based on electrospinningtechnology. We will choose three kinds of typical and important electronic devices:chemical/electrochemical sensors, photoelectronic devices, and field-effect transistors(FETs). Firstly, inorganic p/n heterojunction, polymeric adsorbent/conducting polymer1D core-shell structure, and bimetalic oxide catalysts are designed and prepared toimprove the performance of chemical/electrochemcail sensors. Secondly,1Dweak-acceptor/donor core-shell polymeric heterojunction nanofibers are constructedfor high-performance photoelectronic devices. Thirdly, metal nanoparticelsimpregnated polymer semiconductor nanofibers and polyelectrodes/polymer semiconductors core-shell nanofibers are fabricated to improve the properties ofpolymer OFETs. The details are exhibited as follows:
     1. Electrospun nanofibers have been successfully applied for chemical sensors.In order to further improve the performance and do in-depth research, inorganic andpolymeric semiconductor devices have been investigated here.(i) For inorganicdevices, certain amount of Cr_2O_3has been in situ added into ZnO nanofibers duringthe electrospinning process and subsequent calcination to form p-Cr_2O_3/n-ZnOheterojunction (C/Z) nanofibers. The effect of the Cr_2O_3component in the C/Znanofibers on the gas sensing properties has been evaluated by the responses toethanol vapor. The results have showed that the C/Z nanofibers containing4.5wt%Cr_2O_3exhibit the best sensing properties to ethanol vapor. The response to1ppmethanol vapor is as high as3.6, and the response and recovery time are about1and5s,respectively. The as-prepared sensors also exhibit excellent selectivity and stability.(ii)For conducting polymers devices, we use polymeric adsorbents as sensitizers, insteadof inorgainc sensitizers (oxides or metals), and design a novel gas sensing structure:polymeric adsorbents/conducting polymers one-dimensional core-shell nanostructure,based on sulfonated poly(ether ether ketone)(SPEEK)/polypyrrole (PPy) core-shellnanofibers, via electrospinning and solution-phase polymerization. The SPEEK coresserve as sensitizers, which can not only provide excellent mechanical flexibility, butalso one-dimensional charge transport and collection. Most importantly, they canfacilitate more tested gases to pass through and react with the conducting polymershells, hence increasing the sensing response. Based on the SPEEK/PPy nanofibers,the sensors exhibit large gas responses, even when exposed to very low concentrationof NH_3(20ppb) at room temperature. The work can be extended to other polymericsensitizers, and can develop a new platform to understand and designhigh-performance conducting polymer gas sensors
     2. Electrospun oxide semiconductors are used for electrochemical detectors, forthe first time in this part. Firstly, we fabricate NiO and CuO pure nanofibers and studytheir non-enzyme sensing properties towards glucose. Then a novel amperometricnon-enzymatic glucose sensor based on Pd/Cu bimetal oxide nanofibers (PCNFs) hasbeen successfully fabricated via electrospinning and calcination, and then employed toconstruct an amperometric non-enzymatic glucose sensor. The PCNFs glucose sensors display distinctly enhanced electrochemical sensing properties towards glucose,showing significantly lower overvoltage (~0.32V), ultrafast (0.5s) and ultrasensitivecurrent (1061.4μA mM~(-1)cm~(-2)) response, as well as good stability andanti-interference ability. Additionally, the effect of the1D nanostructure of nanofibers,and the inhomogeneous components on the electrochemical sensing properties arealso discussed.
     3. Promoted by the bulk heterojunction photoelectronic devices, a novelpolymeric heterojunction based on weak-acceptor-polyacrylonitrile/donor-polyanilinecore-shell nanofibers is designed for photoconductive devices through electrospinningfollowed by solution polymerization. The heterojunction provides phase-separatednano-interface for charges separation between the cores and shells, andquasi-one-dimensional charge collection and transport along the nanofiber structure,resulting in greatly enhanced optoelectronic performance. The short0.1secondresponse time upon irradiation is among the fastest values, as is the short0.1secondtime for return to the non-irradiated state. Extremely high on-off resistivity ratios(exceeding4×10~4) result for a drive voltage of only0.01V, which indicates the energyrequired for electrical input is small. Higher drive voltages (a modest10V) provide avery high responsivity of20AW–1driven by365nm UV irradiation. In addition, theas-prepared flexible photoconductive device maintains performance even afterbending fatigue tests for bending angles as large as180o.
     4. Polymeric field-effect transistors (FETs) have been widely investigated fortheir broad applications. They can increase the signal of chemical/electrochemicalsensors, photoelectronic devices, etc. In order to improve the generally low carriermobilities of polymeric FETs, we develop two effective approaches by structuredesign and modulation via electrospinning.(i) Au nanoparticles impregnatedpolyacrylonitrile (PAN)/conducting polymers (PANi, PPy, PTH) core–shell nanofibersare fabricated, which involves electrospinning of the cores and subsequent in-situgas-phase polymerization of the shells. These nanofibers provide very high mobilities(generally larger than1cm~2/Vs), without crystallizing the molecular structures ofpolymers. These high mobilities owe to the nanofiber structure, which promotescharge transfer and reduces the grain-boundary effect; and the insertion of Au nanoparticles, which can be regarded as “nano-electrodes” to shorten the effectivechannel length and polymer semiconducting interconnections.(ii) Two effectiveroutes have been developed to improve the performance of FETs by researchers. Oneis the combination of semiconductors with electrolytes, the other is to useone-dimensional nanostructure as active channel. we herein introduce theelectrolytes-modulation route into one-dimensional core-shell nanostructure forOFETs for the first time, and fabricate sulfonated poly(arylene ether ketone)(SPAEK)/polyaniline (PANi) core-shell nanofibers via electrospinning combiningsolution-phase selective polymerization. Different from the reportedelectrolyte/semiconductor structures, the SPAEK core nanofibers do not serve as gatedielectric, but can provide an internal modulation. Based on the SPAEK/PANinanofibers, a high mobility of≈3cm~2/Vs is obtained with the current on/off ratio ofexceeding10~4. Those figures of merits are both much better than previous PANi FETs.
引文
[1] HUANG Y, DUAN X F, CUI Y, LIEBER C M, et al. Logic Gates andComputation from Assembled Nanowire Building Blocks [J]. Science,2001,294:1313–1317.
    [2] XIA Y, YANG P, SUN Y, et al. One-Dimensional Nanostructures: SynthesisCharacterization and Application [J]. Adv. Mater.,2003,15:353–389.
    [3] BRUMLIK C J, MARTIN C R, Template Synthesis of Metal Microtubules [J]. JAm. Chem. Soc.,1991,113:3174–3175.
    [4] BACHMANN J, JING J, KNEZ M, et al. Ordered Iron Oxide Nanotube Arrays ofControlled Geometry and Tunable Magnetism by Atomic Layer Deposition [J]. J.Am. Chem. Soc.2007,129:9554–9555.
    [5] ZHANG Z, GEKHTMAN D, DRESSELHAUS M S, et al. Processing andCharacterization of Single-Crystalline Ultrafine Bismuth Nanowires [J]. Chem.Mater.,1999,11:1659–1665.
    [6] ERTS D, POLYAKOV B, DALY B, et al. High Density Germanium NanowireAssemblies: Contact Challenges and Electrical Characterization [J]. J. Phys.Chem. B,2006,110:820–826.
    [7] LEW K K, REDWING J M, Growth Characteristics of Silicon NanowiresSynthesized by Vapor-Liquid-Solid Growth in Nanoporous Alumina Templates[J]. J. Cryst. Growth,2003,254:14–22.
    [8] BARTH S, HERNANDEZ-RAMIREZ F, HOLMES J D, et al. Synthesis andApplications of One-Dimensional Semiconductors [J]. Prog. Mater. Sci.,2010,55:563–627.
    [9] FAN H J, KNEZ M, SCHOLZ R, et al. Monocrystalline Spinel NanotubeFabrication Based on the Kirkendall Effect [J]. Nat. Mater.,2006,5:627–631.
    [10] PAN L, PU L, SHI Y, et al. Synthesis of Polyaniline Nanotubes with a ReactiveTemplate of Manganese Oxide [J]. Adv. Mater.,2007,19:461–464.
    [11] MIESZAWSKA A J, JALILIAN R, SUMANASEKERA G U, et al. TheSynthesis and Fabrication of One-Dimensional Nanoscale Heterojunctions [J].Small,2007,3:722–756
    [12] LAN Z H, LIANG C H, HSU C W, et al. Nanohomojunction (GaN) andNanoheterojunction (InN) Nanorods on One-Dimensional GaN NanowireSubstrates [J]. Adv. Funct. Mater.,2004,14:233–237.
    [13] ZHANG H, ZHANG S, ZUO M, et al. Synthesis of ZnS Nanowires andAssemblies by Carbothermal Chemical Vapor Deposition and TheirPhotoluminescence [J]. Eur. J. Inorg. Chem.,2005,47–50.
    [14] TRENTLER T J, HICHMAN K M, GEOL S C, et al. Solution-Liquid-SolidGrowth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-SolidGrowth [J]. Science,1995,270:1791–1794.
    [15] GUDIKSEN M S, LIEBER C M, Diameter-Selective Synthesis ofSemiconductor Nanowires [J] J. Am. Chem. Soc.,2000,122:8801–8802.
    [16] HEATH J R, LEGOUES F K, A Liquid Solution Synthesis of Single CrystalGermanium Quantum Wires [J]. Chem. Phys. Lett.,1993,208:263–268.
    [17] JIN E, LU X, BIAN X, KONG L, et al. Unique Tetragonal Starlike PolyanilineMicrostructure and Its Application in Electrochemical Biosensing [J]. J. Mater.Chem.,2010,20:3079–3083.
    [18] WANG Z L, Transmission Electron Microscopy of Shape-ControlledNanocrystals and Their Assemblies [J]. J. Phys. Chem. B,2000,104:1153–1175.
    [19] PENG X G, MANNA L, YANG W D, et al. Shape Control of CdSe Nanocrystals[J]. Nature,2000,404:59–61.
    [20] MANNA L, SCHER E C, ALIVISATOS A P, Synthesis of Soluble andProcessable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals[J]. J. Am. Chem. Soc.,2000,122:12700–12706.
    [21] LI D, XIA Y N. Electrospinning of nanofibers: Reinventing the Wheel?[J]. Adv.Mater.,2003,16:1151-1170.
    [22] NIE H, HE A H, ZHENG J, et al. Effects of Chain Conformation andEntanglement on the Electrospinning of Pure [J]. Biomacromolecules,2008,9:1362–1365.
    [23] HUANG Z M, ZHANG Y Z, RAMAKRISHNA S, et al. Electrospinning andMechanical Characterization of Gelatin Nanofibers [J]. Polymer,2004,45:5361–5368.
    [24] BOGNITZKI M, CZADO W, FRESE T, et al. Nanostructured Fibers viaElectrospinning [J]. Adv. Mater.,2001,13:70–72.
    [25] DEMIR M M, YILGOR I, YILGOR E, et al. Electrospinning of PolyurethaneFibers [J]. Polymer,2002,43:3303–3309.
    [26] ZHAO Q, HUANG Z H, WANG C et al. Preparation of PVP/MEH-PPVComposite Polymer Fibers by Electrospinning and Study of TheirPhotoelectronic Character [J]. Mater. Lett.,2007,61:2159–2163.
    [27] MACDIARMID A G, JONES W E, JR NORRIS I D, et al.Electrostatically-Generated Nanofibers of Electronic Polymers [J]. Synth. Met.,2001,119:27–30.
    [28] LU X, WANG C, WEI Y, One-Dimensional Composite Nanomaterials: Synthesisby Electrospinning and Their Applications [J]. Small,2009,5:2349–2370.
    [29] LU X F., ZHAO Y Y, WANG C, et al. Fabrication of PbS Nanoparticles inPolymer-Fiber Matrices by Electrospinning [J]. Adv. Mater.,2005,17:2485–2488.
    [30] LU X F., ZHAO Y Y, WANG C, et al. Fabrication of CdS Nanorods in PVP FiberMatrices by Electrospinning [J]. Macromol. Rapid Commun.,2005,26:1325–1329.
    [31] LI Z, HUANG H., SHANG T, et al. Facile Synthesis of Single-Crystal andControllable Sized Silver Nanoparticles on the Surfaces of PolyacrylonitrileNanofibers [J]. Nanotechnology,17:917–920.
    [32] LI D, XIA Y N, Fabrication of Titania Nanofibers by Electrospinning [J]. NanoLett.,2003,3:555–560.
    [33] BOGNITZKI M, BECKER M, GRAESER M, et al. Preparation ofSub-Micrometer Copper Fibers via Electrospinning [J]. Adv. Mater.,2006,18:2384–2386.
    [34] WU H, HU L, MICHAEL W, et al. Electrospun Metal Nanofiber Webs asHigh-Performance Transparent Electrode [J]. Nano Lett.,2010,10:4242–4248.
    [35] LIN D, WU H, ZHANG R, et al. Enhanced Photocatalysis of ElectrospunAg-ZnO Heterostructured Nanofibers [J]. Chem. Mater.,2009,21,3479–3484.
    [36] OSTERMANN R, LI D, YIN Y, V2O5Nanorods on TiO2Nanofibers: A NewClass of Hierarchical Nanostructures Enabled by Electrospinning andCalcination [J]. Nano Lett.,2006,6:1297–1302.
    [37] CAO T, LI Y, WANG C, et al. Three-Dimensional Hierarchical CeO2Nanowalls/TiO2Nanofibers Heterostructure and its High PhotocatalyticPerformance [J]. J. Sol-Gel. Sci. Technol.,2010,55:105–110
    [38] LOSCERTALES I G, BARRERO A, MARQUEZ M, et al. Electrically ForcedCoaxial Nanojets for One-Step Hollow Nanofiber Design [J]. J. Am. Chem. Soc.,2004,126:5376-5377.
    [39] GU Y, CHEN D, JIAO X, et al. LiCoO2–MgO Coaxial Fibers: Co-ElectrospunFabrication, Characterization and Electrochemical Properties [J]. J. Mater. Chem.,2007,17:1769–1776.
    [40] ZHAO Y, CAO X, JIANG L, et al. Multichannel Microtubes by a Facile Method[J]. J. Am. Chem. Soc.,2007,129:764–765.
    [41] LIU Z, SUN D D, CUO P, et al. An Efficient Bicomponent TiO2/SnO2NanofiberPhotocatalyst Fabricated by Electrospinning with a Side-by-Side Dual SpinneretMethod [J]. Nano Lett.,2007,7:1081–1085.
    [42]王策,卢晓峰,等.有机纳米功能材料——高压静电纺丝技术与纳米纤维[M]北京:科学出版社,2011.
    [43] MELAIYE A, SUN Z, HINDI K,et al. Silver(I)-Imidazole Cyclophane gem-DiolComplexes Encapsulated by Electrospun Tecophilic Nanofibers: Formation ofNanosilver Particles and Antimicrobial Activity [J]. J. Am. Chem. Soc.,2005,127:2285–2291
    [44] PATEL A C, LI S X, YUAN J M, et al. In Situ Encapsulation of HorseradishPeroxidase in Electrospun Porous Silica Fibers for Potential BiosensorApplications [J]. Nano Lett.,2006,6:1042–1046.
    [45] YANG D Y, NIU X, LIU Y Y, et al. Electrospun Nanofibrous Membranes: ANovel Solid Substrate for Microfluidic Immunoassays for HIV [J]. Adv. Mater.,2008,20:4770–4775.
    [46] GOPAL R, KAUR S, MA Z, et al. Electrospun Nanofibrous Filtration Membrane[J]. J. Membrane Sci.,2006,281:581–586
    [47] GOPAL R, KAUR S, FENG C Y, et al. Electrospun Nanofibrous PolysulfoneMembranes as Pre-Filters: Particulate Removal [J]. J. Membrane Sci.,2007,289:210–219.
    [48] YOON K, KIM K, WANG X, et al. High Flux Ultrafiltration Membranes basedon Electrospun Nanofibrous PAN Scaffolds and Chitosan Coating [J]. Polymer,2006,47:2434–2441.
    [49] KI C S, GANG, E H, UM N C, et al. Nanotibrous Membrane of WoolKeratose/Silk Fibroin Blend for Heavy Metal Ion Adsorption [J]. J. MembraneSci.,2007,302:20–26.
    [50] HAIDER S, PARK S Y, Preparation of the Electrospun Chitosan Nanofibers andTheir Applications to the Adsorption of Cu(II) and Pb(II) Ions From an AqueousSolution [J]. J. Membrane Sci.,2009,328:90–96.
    [51] SAEED K, HAIDER S, OH T J, et al. Preparation of Amidoxime-ModifiedPolyacrylonitrile (PAN-Oxime) Nanofibers and Their Applications to Metal IonsAdsorption [J]. J. Membrane Sci.,2008,322:400–405.
    [52] VU D, LI Z, ZHANG H, WANG W, Adsorption of Cu(II) from Aqueous Solutionby Anatase Mesoporous TiO2Nanofibers Prepared via Electrospinning [J]. J.Coll. Interf. Sci.,2012,367:429–435.
    [53] OH G Y, JU Y W, KIM M Y, et al. Adsorption of Toluene on Carbon NanofibersPrepared by Electrospinning [J]. Sci. Total Environ.,2008,393:341–347.
    [54] A. C. PATEL, S. X. LI, C. WANG, et al. Electrospinning of Porous SilicaNanofibers Containing Silver Nanoparticles for Catalytic Applications [J]. Chem.Mater.,2007,19:1231–1238.
    [55] LEI J, WANG W, SONG M, et al. Ag/AgCl Coated Polyacrylonitrile NanofiberMembranes: Synthesis and Photocatalytic Properties [J]. Reactive&FunctionalPolymers,2011,71:1071–1076.
    [56] KIM I D, HONG J M, LEE B H, et al. Dye-Sensitized Solar Cells UsingNetwork Structure of Electrospun ZnO Nanofiber Mats [J]. Appl. Phys. Lett.,2007,91:163109.
    [57] PRIYA A R S, SUBRAMANIA A, JUNG Y S, et al. High-PerformanceQuasi-Solid-State Dye-Sensitized Solar Cell based on an ElectrospunPVDF-HFP Membrane Electrolyte [J]. Langmuir,2008,24:9816–9819.
    [58] KIM C, YANG K S, KOJIMA M, et al. Fabrication of Electrospinning-DerivedCarbon Nanofiber Webs for the Anode Material of Lithium-Ion SecondaryBatteries [J]. Adv. Funct. Mater.,2006,16:2393–2397.
    [59] YU Y, GU L, WANG C L, et al. Encapsulation of Sn@Carbon Nanoparticles inBamboo-Like Hollow Carbon Nanofibers as an Anode Material inLithium-Based Batteries [J]. Angew. Chem. Int. Edit.,2009,48:6485–6489.
    [60] AHN Y R, PARK C R, JO S M, et al. Enhanced Charge-Discharge Characteristicsof RuO2Supercapacitors on Heat-Treated TiO2Nanorods [J]. Appl. Phys. Lett.,2007,90:122106.
    [61] JU Y W, CHOI G R, JUNG H R, et al. Electrochemical Properties of ElectrospunPAN/MWCNT Carbon Nanofibers Electrodes Coated with Polypyrrole [J].Electrochim. Acta,2008,53:5796–5803.
    [62] DONG B, GWEE L, CRUZ D S, et al. Super Proton Conductive High-PurityNafion Nanofibers [J]. Nano Lett.,2010,10:3785–3790.
    [63] LIU H, KAMEOKA J, CZAPLEWSKI D A, et al. Polymeric Nanowire ChemicalSensor [J]. Nano Lett.,2004,4:671–675.
    [64] KIM IL-D, ROTHSCHILD A, LEE B H, et al. Ultrasensitive ChemiresistorsBased on Electrospun TiO2Nanofibers [J]. Nano Lett.,2006,6:2009–2013.
    [65] LI Z, ZHANG H, ZHENG W, WANG W, Highly Sensitive and Stable HumidityNanosensors Based on LiCl Doped TiO2Electrospun Nanofibers [J]. J. Am.Chem. Soc.,2008,130:5036–5037.
    [66] WANG W, LI Z, LIU L, et al. Humidity Sensor based on LiCl-Doped ZnoElectrospun Nanofibers [J]. Sens. Actuators B: Chem.,2009,141:404–409
    [67] ZHANG H N, LI Z Y, LIU L, et al. Mg2+/Na+-doped Rutile TiO2Nanofiber Matsfor High-Speed and Anti-Fogged Humidity Sensors [J]. Talanta2009,79:953–958.
    [68] PINTO N J, JOHNSON A T, MACDIARMID A. G., et al. ElectrospunPolyaniline/Polyethylene Oxide Nanofiber Field-Effect Transistor [J]. Appl. Phys.Lett.,200383:4224–4226.
    [69] LIU H, RECCIUS C H., CRAIGHEAD H G, Single Electrospun RegioregularPoly(3-Hexylthiophene) Nanofiber Field-Effect Transistor [J]. Appl. Phys. Lett.,2005,87:253106(1–3).
    [70] LEE S, MOON G D, JEONG U, Continuous Production of UniformPoly(3-Hexylthiophene)(P3HT) Nanofibers by Electrospinning and TheirElectrical Properties [J]. J. Mater. Chem.,2009,19:743–748.
    [71] BABEL A, LI D, XIA Y, et al. Electrospun Nanofibers of Blends of ConjugatedPolymers: Morphology, Optical Properties, and Field-Effect Transistors [J].Macromolecules2005,38:4705–4711.
    [72] WU H, LIN D D, PAN W, Fabrication, Assembly, and Electrical Characterizationof CuO Nanofibers [J]. Appl. Phys. Lett.,2006,89:133125.
    [73] WU H, LIN D, ZHANG R, et al. ZnO Nanofiber Field-Effect TransistorAssembled by Electrospinning [J]. J. Am. Ceram. Soc.,2008,91:656–659.
    [74] WU H, SUN Y, LIN D D, et al. GaN Nanofibers based on Electrospinning: FacileSynthesis, Controlled Assembly, Precise Doping, and Application as HighPerformance UV Photodetector [J]. Adv. Mater.,2009,21:227–231.
    [75] ZHU Z, ZHANG L, HOWE J Y, et al. Aligned Electrospun ZnO Nanofibers forSimple and Sensitive Ultraviolet Nanosensors [J]. Chem. Commun.,2009,2568–2570.
    [76] SHANG T C, YANG F, ZHENG W, WANG C. Fabrication of ElectricallyBistable Nanofibers [J]. Small,2006,2:1007–1009.
    [1] XUE X Y, CHENY J, WANG Y G, et al. Synthesis and Ethanol Sensing Propertiesof ZnSnO3Nanowires [J]. Appl. Phys. Lett.,2005,86:233101–233103.
    [2] SON J Y, LIM S J, CHO J H, et al. Synthesis of Horizontally Aligned ZnONanowires Localized at Terrace Edges and Application for High Sensitivity GasSensor [J] Appl. Phys. Lett.,2008,93:053109–53111.
    [3] LI D AND XIA Y N, Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater.,2004,16:1151–1170.
    [4] LI D, MCCANN J T, XIA Y N, Electrospinning: A Simple and Versatile Techniquefor Producing Ceramic Nanofibers and Nanotubes [J]. J. Am. Ceram. Soc.,2006,89:1861–1869.
    [5] KIM IL-D, ROTHSCHILD A, LEE B H, et al. Ultrasensitive Chemiresistors basedon Electrospun TiO2Nanofibers [J]. Nano Lett.,2006,6:2009–2013.
    [6] LIU H, KAMEOKA J, CZAPLEWSKI D A, et al. Polymeric Nanowire ChemicalSensor [J]. Nano. Lett.,2004,4:671–675.
    [7] FENG P, WAN Q, WANG T H, Contact-Controlled Sensing Properties ofFlowerlike ZnO Nanostructures [J]. Appl. Phys. Lett.,2005,87:213111–213113.
    [8] HSUEH T N, CHANG S J, Highly Sensitive ZnO Nanowire Ethanol Sensor withPd Adsorption [J]. Appl. Phys. Lett.,2007,91:053111–53113.
    [9] LI C C, DU Z F, LI L M, et al. Surface Depletion Controlled Gas Sensing of ZnONanorods Grown at Room Temperature [J]. Appl. Phys. Lett.,2007,91:032101–32103.
    [10] GE J P, WANG J, ZHANG H X, et al. High Ethanol Sensitive SnO2Microspheres [J]. Sens. Actuators B: Chem.,2006,113:937–943.
    [11] LIU B, ZENG H C, Hydrothermal Synthesis of ZnO Nanorods in the IameterRegime of50nm [J]. J. Am. Chem. Soc.,2003,125:4430–4431.
    [12] KOLMAKOV A, MOSKOVITS M, Chemical Sensing and Catalysis byOne-Dimensional Metal-Oxide Nanostructures [J]. Annu. Rev. Mater. Res.,2004,34:151–180.
    [13] GAO T, AND WANG T H, Synthesis and Properties of Multipod-Shaped ZnONanorods for Gas-Sensor Applications [J]. Appl. Phys. A: Mater. Sci. Process.,2005,80:1451–1454.
    [14] PATIL D R, PATIL L A, PATIL P P, Cr2O3-Activated ZnO Thick Film Resistorsfor Ammonia Gas Sensing Operable at Room Temperature [J]. Sens. Actuators B:Chem.,207,126:368–374.
    [15] MOON W J, YU J H, CHOI G M, The CO and H2Gas Selectivity of CuO-DopedSnO2-ZnO Composite Gas Sensor [J]. Sens. Actuators B: Chem.,2002,87:464–470.
    [16] HAENG J, CHOI G M, Selective CO Gas Detection of CuO-and ZnO-dopedSnO2Gas Sensor [J]. Sens. Actuators B: Chem.,2001,75:56–61.
    [17] LI C C, LI LM, DU Z F, et al. Rapid and Ultrahigh Ethanol Sensing Based onAu-Coated ZnO Nanorods [J]. Nanotechnology,2008,19:035501–35504.
    [18] SHRIVER D F, ATKINS P W, Inor. Chem.,3rd ed., Oxford University Press,Oxford,2004, pp.627.
    [19] BARSHILIA H C, RAJAM K S, Growth and Characterization of ChromiumOxide Coatings Prepared by Pulsed-Direct Current Reactive UnbalancedMagnetron Sputtering [J]. Appl. Surf. Sci.,2008,255:2925–2931.
    [20] HARJU M, AREVA S, ROSENHOLM J B, et al. Characterization of WaterExposed Plasma Sprayed Oxide Coating Materials Using XPS [J]. Appl. Surf.Sci.,2008,254:5981–5989.
    [21] SIEMONS M, SIMON U, Preparation and Gas Sensing Properties ofNanocrystalline La-doped CoTiO3[J]. Sens. Actuators B: Chem.,2006,120:110–118.
    [22] PATIL D R, PATIL L A, Cr2O3-Modified ZnO Thick Film Resistors as LPGSensors [J]. Talanta,2009,77:1409–1414.
    [23] JANATA J, JOSOWICZ M, Conducting Polymers in Electronic ChemicalSensors [J]. Nat. Mater.,2003,2:19–24.
    [24] VIRJI S, FOWLER J D, BAKER C O, et al. Polyaniline Nanofiber Compositeswith Metal Salts: Chemical Sensors for Hydrogen Sulfide [J]. Small,2005,1:624–627.
    [25] YOON H, JANG J, Conducting-Polymer Nanomaterials for High-PerformanceSensor Applications: Issues and Challenges [J]. Adv. Funct. Mater.,2009,19:1567–1576.
    [26] DONG B, KRUTSCHKE M, ZHANG X, et al. Fabrication of Polypyrrole Wiresbetween Microelectrodes [J]. Small,2005,1:520–524.
    [27] YOON H, CHANG M, JANG J, Sensing Behaviors of Polypyrrole NanotubesPrepared in Reverse Microemulsions: Effects of Transducer Size andTransduction Mechanism [J]. J. Phys. Chem. B,2006,110:14074–14077.
    [28] JANG J, CHANG M, YOON H, Chemical Sensors based on Highly ConductivePoly(3,4-Ethylenedioxythiophene) Nanorods [J]. Adv. Mater.,2005,17:1616–1620.
    [29] ZHANG J, WANG S, XU M, et al. Polypyrrole-Coated SnO2Hollow Spheresand Their Application for Ammonia Sensor [J]. J. Phys. Chem. C,2009,113,1662–1665.
    [30] GONG J, LI Y, HU Z, et al. Ultrasensitive NH3Gas Sensor from PolyanilineNanograin Enchased TiO2Fibers [J]. J. Phys. Chem. C,2010,114:9970–9974.
    [31] WANG Y, JIA W, STROUT T, et al. Ammonia Gas Sensor UsingPolypyrrole-Coated TiO2/ZnO Nanofibers [J]. Electroanal.,2009,21:1432–1438.
    [32] VIBHA S, ASWAL DK, MANMEET K, et al. Enhanced NO2Selectivity ofHybrid Poly(3-Hexylthiophene): ZnO-Nanowire Thin Films [J]. Appl. Phys.Lett.,2007,90,032516(1–3).
    [33] TAI H, JIANG Y, XIE G, et al. Influence of Polymerization Temperature on NH3Response of PANI/TiO2Thin Film Gas Sensor [J]. Sens. Actuators B: Chem.,2008,129:319–326.
    [34] LI X, GAO Y, GONG J, et al. Polyaniline/Ag Composite Nanotubes Preparedthrough UV Rays Irradiation via Fiber Template Approach and Their NH3GasSensitivity [J]. J. Phys. Chem. C,2009,113:69–73.
    [35] HONG L, LI Y, YANG M, Fabrication and Ammonia Gas Sensing ofPalladium/Polypyrrole Nanocomposite [J]. Sens. Actuators B: Chem.,2010,145:25–31.
    [36] JIANG S, CHEN J, TANG J, et al. Au Nanoparticles-FunctionalizedTwo-Dimensional Patterned Conducting PANI Nanobowl Monolayer for GasSensor [J]. Sens. Actuators B: Chem.,2009,140:520–524.
    [37] LI Z, LI Z L, LIU X F, et al. Composite membranes Based on SulfonatedPoly(aryl ether ketone)s Containing the HexafluoroisopropylideneDiphenylmoiety and Poly(amic acid) for Proton Exchange Membrane Fuel CellApplication [J]. Int. J. Hydrogen. Energ.,2011,36:14622–4631.
    [38] ZHANG L, LIU P, JU L, et al. Polypyrrole Nanocapsules via InterfacialPolymerization [J]. Macromol. Res.,2010,18:648–652.
    [39] CHARTUPRAYOON N, HANGARTER C M, RHEEM Y, et al. Wafer-ScaleFabrication of Single Polypyrrole Nanoribbon-Based Ammonia Sensor [J] J.Phys. Chem. C,2010,114:11103–11108.
    [40] BAI H, LI C, CHEN F E, et al. Aligned Three-Dimensional Micro Structures ofConducting Polymer Composites [J]. Polymer,2007,48:5259–5267.
    [41] NGUYEN VAN H, NGUYEN QUOC D, PHUONG DINH T, et al. Thin FilmPolypyrrole/SWCNTs Nanocomposites-Based NH3Sensor Operated at RoomTemperature [J]. Sens. Actuators B: Chem.,2009,140:500–507.
    [42] TRAN H D, SHIN K, HONG W G, et al. A Template-Free Route to PolypyrroleNanofibers [J]. Macromol. Rapid. Comm.,2007,28:2289–2293.
    [43] ZHANG L, MENG F, CHEN Y. et al. A Novel Ammonia Sensor Based on HighDensity, Small Diameter Polypyrrole Nanowire Arrays [J]. Sens. Actuators B:Chem.,2009,142:204–209.
    [1] NEWMAN J, TURNER A, Home Blood Glucose Biosensors: a CommercialPerspective [J]. Biosens. Bioelectron.,2005,20:2435–2453.
    [2] ZOU Y, XIANG C, SUN L, et al. Glucose Biosensor based on Electrodepositionof Platinum Nanoparticles onto Carbon Nanotubes and Immobilizing Enzymewith Chitosan-SiO2Sol-Gel [J]. Biosens. Bioelectron.,2008,23:1010–1016.
    [3] LYONS M, KEELEY G, Immobilized Enzyme-Single-Wall Carbon NanotubeComposites for Amperometric Glucose Detection at a Very Low AppliedPotential [J]. Chem. Commun.,2008:2529–2531.
    [4] MANESH K M, KIM J H, SANTHOSH P, et al. Fabrication of A GoldNanoparticles Decorated Carbon Nanotubes Based Novel Modified Electrodefor the Electrochemical Detection of Glucose [J]. J. Nanosci. Nanotechnol.,2007,7:3365–3372.
    [5] WILSON R, TURNER A P F, Glucose Oxidase: an Ideal Enzyme [J]. Biosens.Bioelectron.,1992,7:165–185.
    [6] YUAN J, WANG K, XIA X, Highly Ordered Platinum-Nanotubule Arrays forAmperometric Glucose Sensing [J]. Adv. Funct. Mater.,2005,15:803–809.
    [7] WANG J, THOMAS D F, CHEN A, Nonenzymatic Electrochemical GlucoseSensor Based on Nanoporous PtPb Networks [J]. Anal. Chem.,2008,80:997–1004.
    [8] LIU H, SU X, TIAN X, et al. Preparation and Electrocatalytic Performance ofFunctionalized Copper-Based Nanoparticles Supported on the Gold Surface [J].Electroanal.,2006,18:2055–2060.
    [9] KANG X, MAI Z, ZOU X, et al. A Sensitive Nonenzymatic Glucose Sensor inAlkaline Media with a Copper Nanocluster/Multiwall CarbonNanotube-Modified Glassy Carbon Electrode [J]. Anal. Biochem.,2007,363:143–150.
    [10] CHEN J, ZHANG W D, YE J S, Nonenzymatic Electrochemical Glucose Sensorbased on MnO2/MWNTs Nanocomposite [J]. Electrochem. Commun.,2008,10:1268–1271.
    [11] Reize E, Jia W Z, Gentile M, et al. CuO Nanospheres Based NonenzymaticGlucose Sensor [J]. Electroanalysis2008,20:2482–2486.
    [12] QIU Y, YU J, TAN C, et al. Preparation of Honeycomb-Like NiO withNanogrooves by Using Electrospun Nanofibrous Webs as Templates [J]. Mater.Lett.,2009,63:200–202.
    [13] ZHAO C Z, SHAO C L, LI M H, et al. Flow-Injection Analysis of Glucosewithout Enzyme based on Electrocatalytic Oxidation of Glucose at a NickelElectrode [J]. Talanta,2007,71:1769–1773.
    [14] BATCHELOR-MCAULEY C, DU Y, WILDGOOSE G G, et al. The Use ofCopper(II) Oxide Nanorod Bundles for the Non-Enzymatic VoltammetricSensing of Carbohydrates and Hydrogen Peroxide [J]. Sens. Actuators B: Chem,2008,135:230–235.
    [15] YU J, ZHAO T, ZENG B, Mesoporous MnO2as Enzyme Immobilization Hostfor Amperometric Glucose Biosensor Construction [J]. Electrochem. Commun.,2008,10:1318–1321.
    [16] HOLT-HINDLE P, NIGRO S, ASMUSSEN M, et al. Amperometric GlucoseSensor Based on Platinum-Iridium Nanomaterials [J]. Electrochem. Commun.,2008,10:1438–1441.
    [17] MHO S, JOHNSON D C, Electrocatalytic Response of Carbohydrates atCopper-Alloy Electrodes [J]. J. Electroanal. Chem.,2001,500:524–532.
    [18] YEO I H, JOHNSON D C, Anodic Response of Glucose at Copper-Based AlloyElectrodes [J]. J. Electroanal. Chem.,2000,484:157–163.
    [19] GUAN H Y, SHAO C L, CHEN B, et al. A Novel Method for Making CuOSuperfine Fibres via an Electrospinning Technique [J]. Inorg. Chem. Commun.,2003,6:1409–1411.
    [20] GIRAUDON J M, ELHACHIMI A, WYRWALSKI F, et al. Studies of theActivation Process over Pd Perovskite-Type Oxides Used for CatalyticOxidation of Toluene [J]. Appl. Catal. B-Environ,2007,75:157–166.
    [22] LI X, ZHU Q, TONG S, et al. Self-Assembled microstructure of CarbonNanotubes for Enzymeless Glucose Sensor [J]. Sens. Actuators B: Chem.,2009,136:444–450.
    [22] ZHANG X, WANG G, GU A, et al. CuS Nanotubes for UltrasensitiveNonenzymatic Glucose Sensors [J]. Chem. Commun.,2008:5945–5947.
    [23] LI Z Y, ZHANG H N, ZHENG W, et al. Highly Sensitive and Stable HumidityNanosensors Based on LiCl Doped TiO2Electrospun Nanofibers [J]. J. Am.Chem. Soc.,208,130:5036–5037.
    [24] HUANG J, WANG D, HOU H, et al. Electrospun PalladiumNanoparticle-Loaded Carbon Nanofibers and Their Electrocatalytic Activitiestowards Hydrogen Peroxide and NADH [J]. Adv. Funct. Mater.,2008,18:441–448.
    [1] JIN Y Z, WANG J P, SUN B Q, et al. Solution-Processed UltravioletPhotodetectors Based on Colloidal ZnO Nanoparticles [J]. Nano Lett.,2008,8:1649–1653.
    [2] WU H, SUN Y, LIN D, et al. GaN Nanofibers based on Electrospinning: FacileSynthesis, Controlled Assembly, Precise Doping, and Application as HighPerformance UV Photodetector [J]. Adv. Mater.,2009,21:227–231.
    [3] FANG X, XIONG S, ZHAI T, et al. High-PerformanceBlue/Ultraviolet-Light-Sensitive ZnSe-Nanobelt Photodetectors [J]. Adv. Mater.,2009,21:5016–5021.
    [4] KIND H, YAN H Q, MESSER B, et al. Nanowire Ultraviolet Photodetectors andOptical Switches [J]. Adv. Mater.,2002,14:158–160.
    [5] AMOS F F, MORIN S A, STREIFER J A, et al. Photodetector Arrays DirectlyAssembled onto Polymer Substrates from Aqueous Solution [J]. J. Am. Chem.Soc.,2007,129:14296–14302.
    [6] TONG L, LI C, CHEN F E, et al. Flexible Sandwich Photodetectors Based onThick Polythiophene Films [J]. J. Phys. Chem. C,2009,113:7411–7415.
    [7] ZHOU Y, WANG L, WANG J, et al. Highly Sensitive, Air-Stable PhotodetectorsBased on Single Organic Sub-Micrometer Ribbons Self-Assembled throughSolution Processing [J]. Adv. Mater.,2008,20:3745–3749.
    [8] YAO Y, LIANG Y, SHROTRIYA V, et al. Plastic Near-Infrared PhotodetectorsUtilizing Low Band Gap Polymer [J]. Adv. Mater.,2007,19:3979–3983.
    [9] WAN S, GUO J, KIM J, et al. A Photoconductive Covalent Organic Framework:Self-Condensed Arene Cubes Composed of Eclipsed2D Polypyrene Sheets forPhotocurrent Generation [J]. Angew. Chem. Int. Ed.,2009,48:5439–5442.
    [10] MCDONALD S A, KONSTANTATOS G, ZHANG S, et al. Solution-ProcessedPbS Quantum Dot Infrared Photodetectors and Photovoltaics [J]. Nat. Mater.,2005,4:138–142.
    [11] SOFOS M, GOLDBERGER J, STONE D A, et al. A Synergistic Assembly ofNanoscale Lamellar Photoconductor Hybrids [J]. Nat. Mater.,2009,8:68–75.
    [12] ARNOLD M S, ZIMMERMAN J D, RENSHAW C K, et al. Broad SpectralResponse Using Carbon Nanotube/Organic Semiconductor/C60Photodetectors[J]. Nano Lett.,2009,9:3354–3358.
    [13] HE J H, LIN Y H, MCCONNEY M E, et al. Enhancing UV Photoconductivity ofZnO Nanobelt by Polyacrylonitrile Functionalization [J]. J. Appl. Phys.,2007,102:084303.
    [14] LI G, SHROTRIYA V, HUANG J S, et al. High-Efficiency Solution ProcessablePolymer Photovoltaic Cells by Self-Organization of Polymer Blends [J]. Nat.Mater.,2005,4:864–868.
    [15] YU G, GAO J, HUMMELEN J C, et al. Polymer Photovoltaic Cells: EnhancedEfficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J].Science,1995,270:1789–1791.
    [16] GüNES S, NEUGEBAUER H, SARICIFTCI N S, Conjugated Polymer-BasedOrganic Solar Cells [J]. Chem. Rev.,2007,107:1324–1338.
    [17] HALLS J J M, WALSH C A, GREENHAM N C, et al. Efficient Photodiodesfrom Interpenetrating Polymer Networks [J]. Nature,1995,376:498–500.
    [18] YU G, HEEGER A J, Charge Separation and Photovoltaic Conversion in PolymerComposites with Internal Donoer/Acceptor Heterojunctions [J]. J. Appl. Phys.,1995,7:4510–4515.
    [19] OOSTERHOUT S D, WIENK M M, VAN BAVEL S S, et al. The Effect ofThree-Dimensional Morphology on the Efficiency of Hybrid Polymer SolarCells [J]. Nat. Mater.,2009,8:818–824.
    [20] BHUIYAN A H, RAJOPADHYE N R, BHORASKAR S V, A Few ElectronicProperties of Thin Films of Plasma Polymerized Acrylonitrile [J]. Thin solidfilms,1988,161:187–195.
    [21] WANG W, LI Z Y, XU X R, et al. Au-Doped Polyacrylonitrile–PolyanilineCore–Shell Electrospun Nanofibers Having High Field-Effect Mobilities [J].Small,2011,7:597–600.
    [22] PINTO N J, JOHNSON A T, MACDIARMID A G, et al. ElectrospunPolyaniline/Polyethylene Oxide Nanofiber Field-Effect Transistor [J]. Appl.Phys. Lett.,2003,83:4244-4246.
    [23] MACDIARMID A G, CHIANG J C, RICHTER A F, et al. Polyaniline: A NewConcept in Conducting Polymers [J]. Synth. Met.,1987,18:285–290.
    [24] LIN D D, WU H, PAN W, Photoswitches and Memories Assembled byElectrospinning Aluminum-Doped Zinc Oxide Single Nanowires [J]. Adv. Mater.,2007,19:3968–3972.
    [25] DING B, KIM H Y, LEE S C, et al. Preparation and Characterization ofNanoscaled Poly(vinyl alcohol) Fibers via Electrospinning [J]. Fiber Polym.,2002,3:73–79.
    [26] WENG S H, LIN Z H, CHEN L X, et al. Electrochemical Synthesis and OpticalProperties of Helical Polyaniline Nanofibers [J]. Electrochim. Acta,2010,55:2727–2733.
    [27] ZHU Z, ZHANG L, HOWE J Y, et al. Aligned Electrospun ZnO Nanofibers forSimple and Sensitive Ultraviolet Nanosensors [J]. Chem. Commun.,2009:2568–2570.
    [28] MRIDHA S, BASAK D, Zno/Polyaniline Based Inorganic/Organic HybridStructure: Electrical and Photoconductivity Properties [J]. Appl. Phys. Lett.,2008,92:142111.
    [29] O'BRIEN G A, QUINN A J, TANNER D A, et al. A Single Polymer NanowirePhotodetector [J]. Adv. Mater.,2006,18:2379–2383.
    [30] YU G, PAKBAZ K, HEEGER A J, Semiconducting Polymer Diodes: Large Size,Low Cost Photodetectors with Excellent Visible-Ultraviolet Sensitivity [J]. Appl.Phys. Lett.,1994,64:3422–3424.
    [31] SU Z, LI W, CHU B, et al. High Response Organic Ultraviolet PhotodetectorBased on Blend of4,4’,4’’-Tri-(2-Methylphenyl Phenylamino) Triphenylaineand Tris-(8-Hydroxyquinoline) Gallium [J]. Appl. Phys. Lett.,2008,93:103309.
    [32] SZENDREI K, CORDELLA F, KOVALENKO M V, et al. Solution-ProcessableNear-IR Photodetectors Based on Electron Transfer from PbS Nanocrystals toFullerene Derivatives [J]. Adv. Mater.,2009,21:683–687.
    [33] MONROY E, OMNèS F, CALLE F, Wide-Bandgap Semiconductor UltravioletPhotodetectors [J]. Semicond. Sci. Technol.,2003,18:R33–R51.
    [34] CHIANG J, MACDIARMID A G,“Polyaniline”: Protonic Acid Doping of theEmeraldine form to The Metallic Regime [J]. Synth. Met.,1986,13:193–205.
    [35] AYAD M M, ZAKI E A, Effect of Water on Inorganic Acids Doped Polyaniline[J]. J. Appl. Polym. Sci.,2009,114:1384–1389.
    [1] SCH N J H, KLOC C, HADDON R C, et al. A Superconducting Field-EffectSwitch [J]. Science,2000,288:656–658.
    [2] SCH N J H, KLOC C, SIEGRIST T, et al. Superconductivity in Single Crystalsof the Fullerene C70[J]. Nature,2001,413:831–833.
    [3] KUDO K, WANG D X, IIZUKA M, et al. Organic Static Induction Transistor forDisplay Devices [J]. Syth Metal,2000,111:11–14.
    [4] SCH N J H, KLOC C, DODABALAPUR A, et al. An Organic Solid StateInjection Laser [J].Science,2000,289:599–601.
    [5] LI B, LAMBETH D N, Chemical Sensing Using Nanostructured PolythiopheneTransistors [J]. Nano Lett.,2008,8:3563–3567.
    [6] CRONE B, DODABALAPUR A, Lin Y, et al. Large-Scale ComplementaryIntegrated Circuits Based on Organic Transistors [J]. Nature,2000,403:521–523.
    [7] MURPHY A R, LIU J, LUSCOMBE C, et al. Synthesis, Characterization, andField-Effect Transistor Performance of Carboxylate-FunctionalizedPolythiophenes with Increased Air Stability [J]. Chem. Mater.2005,17:4892–4899.
    [8] LIU Y, VARAHRAMYAN K, CUI T, Low-Voltage All-Polymer Field-EffectTransistor Fabricated Using an Inkjet Printing Technique [J]. Macromol. Rapid.Comm.,2005,26:1955–1959.
    [9] BABEL A, LI D, XIA Y, et al. Electrospun Nanofibers of Blends of ConjugatedPolymers: Morphology, Optical Properties, and Field-Effect Transistors [J].Macromolecules2005,38:4705–4711.
    [10] TSAO H N, CHO D, ANDREASEN J W, et al. The Influence of Morphology onHigh-Performance Polymer Field-Effect Transistors [J]. Adv. Mater.,2009,21:209–212.
    [11] SIRRINGHAUS H, TESSLER N, FRIEND R H, Integrated OptoelectronicDevices Based on Conjugated Polymers [J]. Science,1998,280:1741–1744.
    [12] MCCULLOCH I, HEENEY M, BAILEY C, et al. Liquid-CrystallineSemiconducting Polymers with High Charge-Carrier Mobility [J]. Nat. Mater.,2006,5:328–333.
    [13] SIRRINGHAUS H, Device Physics of Solution-Processed Organic Field-EffectTransistors [J]. Adv. Mater.,2005,17:2411–2425.
    [14] CHANG J F, SUN B, BREIBY D W, et al. Enhanced Mobility ofPoly(3-Hexylthiophene) Transistors by Spin-Coating from High-Boiling-PointSolvents [J]. Chem. Mater.,2004,16,4772–4776.
    [15] BRISENO A L, MANNSFELD S C, LU X, et al. Fabrication of Field-EffectTransistors from Hexathiapentacene Single-Crystal Nanowires [J]. Nano Lett.,2007,7:668–675.
    [16] LI D, XIA Y N, Electrospinning of Nanofibers: Reinventing the Wheel?[J]. Adv.Mater.,2004,16:1151–1170.
    [17] LEE S, MOON G D, JEONG U, Continuous Production of UniformPoly(3-Hexylthiophene)(P3HT) Nanofibers by Electrospinning and TheirElectrical Properties [J]. J. Mater. Chem.,2009,19:743–748.
    [18] LIU H, RECCIUS C H, CRAIGHEAD H G, Single Electrospun RegioregularPoly(3-Hexylthiophene) Nanofiber Field-Effect Transistor [J]. Appl. Phys. Lett.,2005,87:253106.
    [19] PINTO N J, JOHNSON A T, MACDIARMID A G, et al. ElectrospunPolyaniline/Polyethylene Oxide Nanofiber Field-Effect Transistor [J]. Appl. Phys.Lett.,2003,83:4244–4246.
    [20] TANG Q, TONG Y, LI H, et al. High-Performance Air-Stable BipolarField-Effect Transistors of Organic Single-Crystalline Ribbons with an Air-GapDielectric [J]. Adv. Mater.,2008,20:1511–1515.
    [21] MENARD E, PODZOROV V, HUR S H, et al. High-Performance N-and P-TypeSingle-Crystal Organic Transistors with Free-Space Gate Dielectrics [J]. Adv.Mater.2004,16:2097–2101.
    [22] LI Z, HUANG H, SHANG T, et al. Facile Synthesis of Single-Crystal andControllable Sized Silver Nanoparticles on the Surfaces of PolyacrylonitrileNanofibres [J]. Nanotechnology,2006,17:917–920.
    [23] HUANG K, ZHANG Y, LONG Y, et al. Preparation of Highly Conductive,Self-Assembled Gold/Polyaniline Nanocables and Polyaniline Nanotubes [J].2006, Chem. Eur. J.2006,12:5314–5319.
    [24] HUANG H M, LI Z Y, WANG W, et al. Fabrication and Investigation ofCore-Sheath Polymer/Polyaniline Composite Nanofibers [J]. e-polymers,2009,148,(1–7).
    [25] LI Y C, LIN Y J, YEH H J, et al. Ion-Modulated Electrical Conduction inPolyaniline-based Field-Effect Transistors [J]. Appl. Phys. Lett.,2008,92:093508.
    [26] KUO C T, CHIOU W H, Field-Effect Transistor with Polyaniline Thin Film asSemiconductor [J]. Synth. Met.1997,88:23–30.
    [27] ALLARD S, FORSTER M, SOUHARCE B, et al. Organic Semiconductors forSolution-Processable Field-Effect Transistors (Ofets)[J]. Angew. Chem. Int. Ed.2008,47:4070–4098.
    [28] TSENG R J, HUANG J, OUYANG J, et al. Polyaniline Nanofiber/GoldNanoparticle Nonvolatile Memory [J]. Nano Letters,2005,5:1077–1080.
    [29] MACDIARMID A. G,“Synthetic Metals”: A Novel Role for Organic Polymers(Nobel Lecture)[J]. Angew. Chem. Int. Ed.2001,40:2581–2590.
    [30] ROSENBLATT S, YAISH Y, PARK J, et al. High Performance Electrolyte GatedCarbon Nanotube Transistors [J]. Nano Lett.,2002,2:869–872.
    [31] CHAO S C, WRIGHTON M S, Solid-State Microelectrochemistry: ElectricalCharacteristics of a Solid-State Microelectrochemical Transistor based onPoly(3-Methylthiophene)[J]. J. Am. Chem. Soc.,1987,109:2197–2199.
    [32] LIN Y J, LI Y C, YEH C C, et al. Organic Thin Film Transistor by using PolymerElectrolyte to Modulate the Conductivity of Conjugated Polymer [J]. Appl. Phys.Lett.,2006,89:223518.
    [33] LEE S W, LEE H J, CHOI J H, et al. Periodic Array of Polyelectrolyte-GatedOrganic Transistors from Electrospun Poly(3-Hexylthiophene) Nanofibers [J].Nano Lett.,2010,10:347–351.
    [34] PRIGODIN V N, HSU F C, PARK J H, et al. Electron-Ion Interaction in DopedConducting Polymers [J]. Phys. Rev. B2008,78:035203(1–8).
    [35] LI H, ZHANG G, WU J, et al. A Facile Approach to Prepare Self-Cross-LinkableSulfonated Poly(Ether Ether Ketone) Membranes for Direct Methanol Fuel Cells[J]. J. Power Sources,2010,195:8061–8066.
    [36] WENG S H, LIN Z H, CHEN L X, et al. Electrochemical Synthesis and OpticalProperties of Helical Polyaniline Nanofibers [J]. Electrochim. Acta,2010,55:2727–2733.
    [37] LEI T, CAO Y, FAN Y, et al. High-Performance Air-Stable Organic Field-EffectTransistors: Isoindigo-based Conjugated Polymers [J]. J. Am. Chem. Soc.,2011,133:6099–6101.
    [38] TSAO H N, CHO D M, PARK I, et al. Ultrahigh Mobility in PolymerField-Effect Transistors by Design [J]. J. Am. Chem. Soc.,2011,133:2605–2612.
    [39] OSAKA I, ABE T, SHINAMURA S, et al. High-Mobility SemiconductingNaphthodithiophene Copolymers [J]. J. Am. Chem. Soc.,2010,132:5000–5001.
    [40] LI Y, SINGH S P, SONAR P A, High Mobility P-Type DPP-Thieno3,2-bthiophene Copolymer for Organic Thin-Film Transistors [J]. Adv. Mater.,2010,22:4862–4866.
    [41] WANEKAYA A K, BANGAR M A, YUN M, et al. Field-Effect Transistors basedon Single Nanowires of Conducting Polymers [J]. J. Phys. Chem. C,2007,111:5218–5221.
    [42] ALAM M M, WANG J, GUO Y Y, et al. Electrolyte-Gated Transistors based onConducting Polymer Nanowire Junction Arrays [J]. J. Phys. Chem. B,2005,109:12777–12784.
    [43] GAO Y, SHAN D, CAO F, et al. Silver/Polyaniline Composite Nanotubes:One-Step Synthesis and Electrocatalytic Activity for Neurotransmitter Dopamine[J]. J. Phys. Chem. C,2009,113:15175–15181.
    [44] LU J, PINTO N J, MACDIARMID A G, Apparent Dependence of Conductivityof a Conducting Polymer on an Electric Field in a Field Effect TransistorConfiguration [J]. J. Appl. Phys.,2002,92:6033–6038.
    [45] AYAD M M, ZAKI E A, Effect of Water on Inorganic Acids Doped Polyaniline[J]. J. Appl. Polym. Sci.,2009,114:1384–1389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700