用户名: 密码: 验证码:
低品位氧化锌矿元素硫水热硫化应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属锌被称为“现代工业的保护剂”,是国民经济健康发展不可缺少的战略金属,也是目前用量最大的有色金属冶金产品之一。随着硫化锌资源的日益枯竭,氧化锌资源的开发利用已引起人们重视。低品位氧化锌矿水热硫化转化预处理-浮选新工艺能显著改善氧化锌矿常规浮选工艺存在的不足之处,本论文在前期系统工艺研究基础上,开展了低品位氧化锌矿水热硫化转化基础理论研究,主要成果如下:
     (1)采用多种检测手段对云南兰坪地区的碳酸盐类低品位氧化锌矿和硅酸盐类低品位氧化锌矿进行矿物学分析。矿石中主要的锌矿物为菱锌矿、闪锌矿,脉石矿物主要为石英、方解石等;菱锌矿、闪锌矿与脉石矿物之间紧密连生、交代或穿切形成错综复杂的镶嵌关系。硅酸盐类低品位氧化锌矿中异极矿及硅锌矿矿物部分以不规则状、粒状嵌布于脉石矿物,部分与菱锌矿以集合体的形式嵌布于脉石矿物,使得有价金属与脉石矿物难以分离。
     (2)对低品位氧化锌矿元素硫水热硫化高温热力学过程进行了分析。绘制了工艺条件温度下S-H2O系E-pH图,随着体系温度的升高,S2-的优势区面积增大,S2-、H2S、HS-离子的稳定区域向低pH的方向移动;氧化锌矿中锌的主要单矿物水热硫化反应高温热力学分析结果表明,菱锌矿、异极矿、硅锌矿和红锌矿在高温水热体系下的水热硫化反应都易于发生
     (3)分别研究了合成异极矿和纯菱锌矿的元素硫水热硫化转化过程动力学机理。异极矿元素硫水热硫化转化反应初期受化学反应控制,反应表观活化能分别为50.23kJ/mol;而后期逐步转变为受固体产物层的扩散控制,反应表观活化能为11.12kJ/mol。纯菱锌矿元素硫水热硫化转化过程受穿过固体产物层的扩散控制,其表观活化能为14.67kJ/mol。在200℃下硫化120min后菱锌矿的水热硫化过程已基本完成。
     (4)开展了碳酸盐类低品位氧化锌矿水热硫化预处理-浮选实验研究。在水热硫化优化技术参数矿浆起始pH=9、颗粒粒度57-74μm、硫磺摩尔倍数2.0、转化温度180℃、硫化时间240min、搅拌转速500rpm的条件下,锌和铅的硫化转化率分别达73%和86%以上,硫化产物中分别有61%的锌和94%的铅以硫化物形式存在。采用铅锌混合浮选工艺流程获得的合精矿中铅品位19.59%,锌品位35.76%,铅锌回收率分别达69%和81%,铅锌回收率大幅度提高。
     (5)开展了硅酸盐类低品位氧化锌矿水热硫化预处理-浮选实验研究。在水热硫化优化技术参数矿浆起始pH=9、颗粒粒度57-74μm、硫磺摩尔倍数2.5、转化温度180℃、硫化时间240min、搅拌转速600rpm的条件下,锌和铅的硫化转化率分别达55%和83%以上,大部分异极矿发生矿相重构生成硫化锌,而脉石矿物如石英、方解石等则不发生变化,从而改变了有用矿物与脉石矿物因表面性质相似而无法高效分离的局面,为后续的浮选富集创造了有利条件。采用铅锌混合浮选工艺流程获得的混合精矿中铅品位15.84%,锌品位34.53%,铅锌回收率分别达73%和83%。
Zinc, which is known as the modern industrial protective agent, is an indispensable strategic metal to the healthy development of national economy and is one of the current largest amounts of non-ferrous metallurgical products. The development and utilization of zinc oxide resource has paid much attention with the dipletion of zinc sulfide ores. The new flowsheet on pretreatment of low grade zinc oxide ore by hydrothermal sulphidation and further flotation of the suphidised products will obtain a better parameter. At the basis of our previous technology study, the present paper mainly focused on the theory foundation of hydrothermal sulphidation of low grade zinc oxide ore. Listed below are the main results:
     (1) The carbonate-hosted zinc oxide ore and silicate-hosted zinc oxide ore form Lanping of Yunnan was analyzed by modern analysis methods. The main zinc ore minerals are smithsonite and sphalerite, and gangue minerals include quartz, calcite. etc. Smithsonite, sphalerite and gangue minerals usually exist in complex relationships. Hemimorphite and zinc silicate in silicate-hosted zinc oxide ore are irregular embeding of hemimorphiteq with quarz will cause it more difficult to enrich by flotation.
     (2)Hydrothermal sulphidation of low grade zinc oxide ore with elemental sulfur was thermodynamically analysed. The potential-pH diagrams for sulfur water were plotted at experimental temperautre. The stablity regions S2-、H2S、and HS-moved to lower pH values with rising temperature. According to the thermodynamic analysis results smithsonite, hemimorphite, zinc silicate and zinc oxide can easily be conversed to zinc sulphide at experimental temperature.
     (3) The kinetics of hydrothermal sulphidation of hemimorphite and smithsonite with elemental sufur were studied respectively. Sulphidation of hemimorphite was controlled by the chemical reaction during the early stage of reaction with activation energy of50.23kJ/mol, and then was controlled by solid product layer diffusion with activation energy of11.12kJ/mol. Sulphidation product was detected by XRD and the result shows that it would be helpful for conversion of hemimorphite to zinc sulfide with an increase of temperature. Sulphidation of smithsonite was controlled by solid product layer diffusion with activation energy of14.67kJ/mol. hydrothermal sulphidation of smithsonite almost completed at200℃for120min.
     (4) Experiments of hydrothermal sulphidation of carbonate-hosted zinc oxide ore by technology of presulphidation-flotation were carried out. Sulphidation rate of zinc and lead were over73%and86%nder the optimized technical parameters of pulp initial pH=9, particle size57-74μm, sulfur mole raito2.0, temperature180℃.240min and stirring speed of500rpm. Sulphidation products were dressed by mixed flotation flowsheet, which gave much higher recoveries of69%lead and81%zinc. A flotation concentrate was obtained with35%Zn and19%Pb from the material which was treated by sulfidation.
     (5) Experiments of hydrothermal sulphidation of silicate-hosted zinc oxide ore by technologies of presulphidation-flotation were carried out. Sulphidation rate of zinc and lead were over55%and83%under the optimized technical parameters of pulp initial pH=9, particle size57-74μm, sulfur mole raito2.5, temperature180℃,240min and stirring speed of600rpm. During the sulphidation procees most of the hemimorphite was conversed to zinc sulfide, while gangue minerals such as quartz and calcite were still in their original forms, and the diffferent surface property between useful minerals and gangues would be advantage for further flotation. Sulphidation products were dressed by mixed flotation flowsheet, which gave much higher recoveries of73%lead and83%zinc. A flotation concentrate was obtained with34%Zn and15%Pb from the material which was treated by sulfidation.
引文
[1]文奚甡.世界铅锌资源开发现状及其利用[J].中国金属通报,2009,37:32-33.
    [2]葛振华.我国铅锌资源现状及其未来的供需形式[J].世界有色金属,2003,9:4-7.
    [3]杜强.某氧化铅锌矿选矿工艺研究[J].云南冶金,1998,27(2):24-29.
    [4]Shirin Espiari, Fereshteh Rashchi, Sadrnezhaad S.K.. Hydrometallurgical treatment of tailings with high zinc content [J]. Hydrometallurgy,2006,82:54-62.
    [5]张覃,邱跃琴,唐云,江声扬.氧化铅锌矿石工艺特性研究[J].贵州工业大学学报(自然科学版).2000,29(6):49-53.
    [6]冯其明,陈云,张国范,欧乐明,卢毅屏.我国几种难处理矿石的加工利用现状[J].金属矿山,2006,Suppl:5-13.
    [7]戴自希.世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,2005,3:15-23.
    [8]王凤琴.国内氧化锌矿的处理方法[J].有色矿冶,1994,10(1):31-35.
    [9]蒋继穆,王忠实.中国冶锌现状[J].有色冶炼,1996(6):1-5.
    [10]梅光贵,王德润,周敬元等.湿法炼锌学[M].长沙:中南大学出版社,2001.
    [11]魏昶,王吉昆.湿法炼锌理论与应用[M].昆明:云南科技出版社,2003.
    [12]戴自希,张家睿.世界铅锌资源和开发利用现状[J].世界有色金属,2004,3:22-23.
    [13]张覃,唐云.氧化锌矿石活化浮选行为的观察[J].贵州工业大学学报,1998,19(2):89-91.
    [14]Majid Ejtemaei, Mchdi Irannajad, Mahdi Gharabaghi. Influence of important factors on flotation of zinc oxide mineral using cationic, anionic and mixed (cationic/anionic) collectors [J]. Minerals Engineering,2011,24(13):1402-1408.
    [15]Abramov A.A. Use of cationic agents for oxide lead-zinc minerals [J]. Chemical abstracts, 1961,55:269.
    [16]Billi M., Quai V. Development and results obtained in the treatment of zinc oxide ores at AMMI mines [C]. In:Ⅺ International Mineral Processing Congress, Cannes,1963,631-649.
    [17]Bulatovic, Srdjan M. Handbook of Flotation Reagents [M]. Elsevier Science &Technology Books,2007.
    [18]张心平.氧化铅锌矿石浮选新药剂的应用研究[J].矿冶,1996,5(3):40-45.
    [19]Rey M. Memoirs of milling and process metallurgy:1-flotation of oxide ores[J]. Institution of Mining and Metallurgy Section C,1979,88:245-250.
    [20]Marabini, A. M氧化铅锌矿的浮选[J].国外金属矿选矿,1990,(7):1-11.
    [21]陈家镛.湿法冶金中铁的分离与应用[M].北京:冶金工业出版社,1991.
    [22]段秀梅,罗琳.氧化锌矿浮选现状评述[J].矿冶,2000,9(4):47-51.
    [23]Zielinski P.A., Larson K.A., Stradling A.W. Preferential deportment of low-iron sphalerite to lead concentrates [J]. Minerals Engineering,2000,13(4):357-363.
    [24]李江涛,刘全军,库建刚等.某氧化锌矿浮选试验研究[J].有色金属(选矿部分),2007,2:23-25.
    [25]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,27(5):31-35.
    [26]王淑秋,罗琳,张心平.难选氧化铅锌矿浮选工艺研究[J].有色金属(选矿部分),1998,3:17-20.
    [27]马忠臣,韩潮,孟宪瑜.某氧化铅锌矿石选别工艺研究[J].有色矿冶,1998,6:15-28.
    [28]胡岳华,徐竞,罗超奇,袁诚.菱锌矿-方解石胺浮选溶液化学研究[J].中南工业大学学报,1995,590-594.
    [29]童雄,杨敖,石道民.激光辐照对菱锌矿浮选行为影响的研究[J].云南冶金,1992,(1):9-11.
    [30]谭欣,李长根.国内外氧化铅锌矿浮选研究进展[J].国外金属矿选矿,2000,37(3):7-14.
    [31]铅锌冶金学编委会.铅锌冶金学[M].北京:科学出版社,2003:454-455.
    [32]张俊辉.浅谈氧化铅锌矿的浮选现状[J].四川有色金属,2004,4:13-18.
    [33]李金荣.铅、锌氧化矿浮选工艺研究评述[J].国外金属矿选矿,1981,1:27-31.
    [34]Marabini A.优先浮选氧化铅锌矿的新型合成捕收剂[C].第十六届国际选矿会议论文集,译文集(1).1989.
    [35]王桂茗.两性捕收剂AE-12及水接聚丙烯脯浮选氧化锌矿石[J].有色金属(选矿部分),1983,(5):40-45.
    [36]Cases J.M. et al. International Mineral Process congress [C],13th,1979,4:37-42.
    [37]Douglas R.S., Dodecyl Mereaptam. A superior collecter for sulfide ores [J]. Mining Engineering,1981,33(6):686-692.
    [38]朱从杰.矿泥对氧化锌矿物浮选行为的影响[J].矿产综合利用,2005,(1):7-11.
    [39]朱从杰,刘志斌,张汉平,张旭东.某铅锌矿深部矿体选矿试验研究[J].矿冶工程,2004,24(6):31-36.
    [40]周德炎,陈锦全,黄汉波.某选矿厂细微粒铅锌浮选试验研究[J].矿业研究与开发,2007,27(6):40-41.
    [41]刘荣荣,文书明.氧化锌浮选现状与前景[J].国外金属矿选矿,2002,(7):17-19.
    [42]Wen-qin QING, Ming-fei HE, Yu-ping CHEN. Improvement of flotation behavior of Mengzi lead-silver-zinc ore by pulp potential control flotation [J].Transactions of Nonferrous Metals Society of China,2008,18(4):949-954.
    [43]吴晓清.电化学法分离多金属矿浮选混合精矿[J].国外选矿快报,1996,23:10-14.
    [44]Bezuidenhout M., Van Deventer, Moolman D.W. The identification of perturbations in a base metal flotation plant using computer vision of the froth surface [J]. Minerals Engineering, 1997,10(10):1057-1073.
    [45]杨大锦,朱华山,陈加希等.湿法提锌工艺与技术[M].北京:冶金工业出版社,2006:67-73.
    [46]孙月强.回转窑处理氧化锌矿研究[J].工程设计与研究,2000,108:4-6.
    [47]陈华,廖明.回转窑冶炼生产氧化锌的工艺方法[P].C02108607.9,2002.03.29.
    [48]李时晨,朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌矿[J].云南冶金,1992,4:13-15.
    [49]郭晓军.氧化锌矿石除铅、除镉工艺[P].C89104956.8,1989.07.17.
    [50]梁杰,王华.低品位氧化铅锌矿的烟化富集工艺[J].有色金属(冶炼部分),2005,4:5-7.
    [51]高云岁,刘德心.锌工业的良机[J].世界有色金属,1997,11:15-19.
    [52]傅作健,王辉.方兴未艾的中国铅锌工业[J].有色金属,1996,(1):4-10.
    [53]陈德春,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003,2:52-55.
    [54]Gray P. Warner zinc process source [A]. Proceeding of the International Symposium on Zinc. Australasian inst of mining and metallurgy,1993:483.
    [55]Gray P. Warner process [J]. Mining Magazine.1992,166(1):14.
    [56]Warner N.A., Davies M.W., Holdsworth M.L. Direct zinc smelting with virtually zero gas emission [A]. Proeeedings of the Zn International symposium on metallurgical processes for the year 2000 and beyond and the 1994 TMS extraction and Process metallurgy meeting, Part 2(Minerals, metals&materials soc),1994:333.
    [57]刘志宏.国内处锌冶炼技术的现状与发展动向[J].世界有色金属,2000,1:23-26.
    [58]陈俊.炼锌电炉设计探索及实践[J].冶金信息导刊,2003,3:20-21.
    [59]何醒民,舒见义.试论小型炼锌厂工艺流程的选择[J].湖南有色金属,2000,3:15-17.
    [60]李龙生.电炉炼锌工艺及炉龄问题的探讨[J].有色金属(冶炼部分),2001,1:14-15.
    [61]刘特明,陈德喜,胡丕成.电炉炼锌工艺实践与探讨[J].有色冶炼,1998,5:1 1-15.
    [62]Donald J. R., Pickles, C. A. A kinetic study of the reaction of zinc oxide with iron powder [J]. Metallurgical and Materials Transactions B,1996,27 B (6):363-373.
    [63]Rankin W.J., Wright S. The reductions of zinc from slags by an iron-carbon melt [J]. Metallurgical and materials transactions B,1990,21B (10):885-897.
    [64]伊藤聪,吴继宝.氧化锌的铁还原挥发反应[J].有色矿冶,1991(4):33-40.
    [65]郭兴忠,张丙怀,阳海彬等.氧化锌矿火法处理新工艺铁浴熔融还原法[J].有色冶炼,2002,2:18-22.
    [66]Rankin W.J., Wright S. The reductions of zinc from slags by an iron-carbon melt [J]. Metallurgical and materials transactions B,1990,21B (10):885-897.
    [67]Donald J. R., Pickles, C. A. A kinetic study of the reaction of zinc oxide with iron powder [J]. Metallurgical and Materials Transactions B,1996,27 B (6):363-373.
    [68]熊秦.真空冶炼氧化锌矿生产工艺:中国,1814832A[P].2006-08-09.
    [69]熊利芝,陈启元,尹周澜,张平民.真空碳热还原氧化锌矿动力学[J].过程工程学报,2010,10(1):133-137.
    [70]Dawkins J.M. Zinc Proceeding of International Symposium on Extractive metallurgy of zinc [J]. warrendule,1985:659-674.
    [71]TemPle D.A. Zinc Proeeeding of International Symposium on Extractive metallurgy of zinc [J]. warrendule,1985:3-16.
    [72]竺培显.锌工业的发展与等离子炼锌[J].昆明理工大学学报,1998,23(5):108-113.
    [73]Cheng T.M., Demopoulos G.P. Analysis of the hematite precipitation process from crystallization point of view [J]. TMS annual meeting,1997:599-617.
    [74]Pelino M., Cantalini C., Abbruzzese C, etal. Treatment and recycling of goethite waste arising from the hydrometallurgy of zinc [J]. Hydromatellury,1996,40(1-2):25-35.
    [75]林书英.针铁矿法在温州冶炼厂锌技改工程中的应用[J].有色金属,1996,5:4-6.
    [76]张元福,陈家蓉,黄光裕等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究[J].湿法冶金,1999,2:36-40.
    [77]Elgersma F., Witkamp G.J., VanRosmalen. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite [J]. Hydrometalllurgy.1993,34(1):23-27.
    [78]王顺才,张豫.热酸浸出黄钾铁钒工艺的生产实践[J].有色冶炼,2001,2:19-22.
    [79]Dutriza J.E.C. Effeetiveness of jarosite species for precipitating sodium jarostie [J]. JOM, 1999,51(12):30-32.
    [80]Seyer S., Chen T.T., Dutrizac J.E. Jarofix:Addressing iron disposal in the Zinc industry [J]. JOM,2001,53(12):32-35.
    [81]Dutrizae J.E. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite [J].Hydrometallurgy,1994,42(3):293-312.
    [82]李夏湘,何醒民.论常规法与热酸浸出黄钾铁钒法炼锌工艺流程的选择[J].湖南有色金属,2000,6:15-16.
    [83]金忠.浸出热酸黄钾铁钒工艺的改进与实践[J].有色冶炼.2002,1:9-11.
    [84]何洪涛摘译.高硅锌精矿的处理方法[J].有色冶炼.2001,3:36-39.
    [85]Abdelaal E.A., Shukry Z.E. Application of quick leaching method to Egyptian zinc silicate ore [J]. Transactions of the Institution of Mining and Metallurgy (Section C:Mineral Processing and Extractive Metallurgy),1997,106:89-90.
    [86]Dufresne R. E. Quick leache of siliceous zinc ore [J]. Journal of Metals,1976,28:8-12.
    [87]Ikenobu S. Method for processing siliceous zinc ores [C]. Lead-Zinc 2000. Warrendale: Minerals, Metals and Materials Society,2000:427-435.
    [88]Bodas M.G. Hydrometallurgical treatment of zinc silicate ore from Thailand [J]. Hydrometallurgy,1996,40:37-40.
    [89]Matthew I.G., ELSNER D. The hydrometallurgical treatment of zinc silicate ores [J]. Metallurgical Transactions B,1977,8(1):73-83.
    [90]Perry W. Refining zinc silicate ore by special leaching technique [J]. Chemical Engineering, 1966,73(21):182-184.
    [91]Kumar R., Biswas A.K. Zinc recovery from Zawar ancient siliceous slag [J]. Hydrometallurgy, 1986,15:267-280.
    [92]陈爱良,赵中伟,贾希俊等.氧化锌矿综合利用现状与展望[J].矿冶工程,2008,28(6):62-66.
    [93]李勇,王吉坤,任占誉等.氧化锌矿处理的研究现状[J].矿冶,2009,18(2):57-63.
    [94]梅光贵,王德润,周敬元等.湿法炼锌学[M].长沙:中南大学出版社,2001:183-196.
    [95]常发科.高硅型锌矿直接酸浸的试验研究[J].云南冶金,1995,1:36-38.
    [96]唐泽日.湿法处理高硅氧化锌矿的试验研究[J].大宝山科技,1994,1:4-9.
    [97]林柞彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003,5:9-11,23.
    [98]Hua Y., Lin Z., Yan Z. Application of microwave irradiation to quick leach of zinc silicate ore [J]. Minerals Engineering,2002,15:451-456.
    [99]周德林,窦明民,陈世明.高硅氧化锌矿全湿法冶炼厂艺的研究应用与发展[J].有色金属(冶炼部分),1995,3:1-6.
    [100]范斌.矿石中锌的浓硫酸熟化浸出[J].湿法冶金,1999,3:60-62.
    [101]陈永海,覃文庆,黄红军.高硅氧化锌矿酸浸脱硅过程研究进展[J].湖南有色金属,2005,21(1):14-16.
    [102]马启坤.含硅氧化锌矿湿法冶金过程中脱镁试验研究[J].云南冶金,2000,29(3):22-25.
    [103]马普利,张析.国内高纯氧化锌行业现状和发展趋势[A].重冶学委会2000年学术年会论文集,2000:96-98.
    [104]蓝卓越,胡岳华,黎唯中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65.
    [105]覃文庆,唐双华,厉超.高硅低品位氧化锌矿的酸浸动力学[J].矿业工程,2008,28(1):62-66.
    [106]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金,2005,4:32-35.
    [107]张显生,石明忠,许永红等.高硅天然氧化锌矿浸出新工艺的研究[J].有色金属(冶炼部分),2003,2:14-15.
    [108]李存兄,魏昶,樊刚,杨秀丽,徐红胜,邓志敢,李旻廷,李兴彬.高硅氧化锌矿加压酸浸处理[J].中国有色金属学报,2009,19(9):1678-1683.
    [109]Xu Hongsheng, Wei Chang, Li Cunxiong, Fan Gang, Deng Zhigan, Li Minting, Li Xingbin, Sulfuric acid leaching of zinc silicate ore under pressure [J]. Hydrometallurgy,2010, 105(1-2):186-190.
    [110]LI Cun-xiong, XU Hong-sheng, DENG Zhi-gan, LI Xing-bin, LI Ming-tin, WEI Chang, Pressure leaching of zinc silicate ore in sulfuric acid medium [J]. Transactions of Nonferrous Metals Society of China,2010,20(4):918-923.
    [111]XU Hongsheng, WEI Chang, LI Cunxiong, DENG Zhigan, LI Jiqiang, LI Minting, LI Xingbin, Pressure Acid Leaching of Zinc Silicate Ore [C]. Lead-Zinc 2010, John Wiley & Sons Ltd,2010,565-572.
    [112]李存兄,魏昶,杨秀丽,徐红胜,邓志敢,李旻廷,李兴彬.高硅低品位氧化锌矿氧压酸浸研究[J].矿冶,2009,18(2):45-49.
    [113]李存兄,魏昶,徐红胜,邓志敢,杨秀丽,樊刚,兰坪高硅氧化锌矿矿物组成及高温酸浸热力学分析[J].矿冶,2010,19(2):38-42.
    [114]杨秀丽,魏昶.某难处理高硅氧化锌矿加压酸浸工艺[J].矿冶工程,2009,29(5):65-69.
    [115]李军旗.湿法处理高硅氧化锌矿的工艺研究[J].湿法冶金,1996,4:32-35.
    [116]杨大锦,谢刚,贾云芝等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):59-62.
    [117]舒毓璋,宝国峰,张琦,杨龙.硫化锌精矿焙砂与氧化锌矿联合浸出工艺[P].02133662,2007.03,07.
    [118]朱云,胡汉,苏云生等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81-85.
    [119]姚耀春,朱云,王平.难选氧化锌矿氨浸过程热力学分析[J].有色金属,2004,56(3):49-51.
    [120]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报:自然科学版,2003,34(6):619-623.
    [121]杨声海,李英念,巨少华,唐谟堂.用NH4Cl溶液浸出氧化锌矿石[J].湿法冶金,2006,25(4):180-182.
    [122]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-120.
    [123]Wang Ruixiang, Tang Motang etc. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system [J]. Journal of central south university of technology,2008,15(5): 679-683.
    [124]Ju Shaohua, Tang Motang, Yang Shenghai, Li Yingnian. Dissolution kinetics of smithsonite ore in ammonium chloride solution[J].Hydrometallurgy,2005,80:67-74.
    [125]李谦.氧化锌矿铵盐浸出动力学的研究[D].硕士学位论文,贵州:贵州工业大学,2000.
    [126]曹琴园,李洁,陈启元.机械活化对氧化锌矿碱法浸出及其物化性质的影响[J].过程工程学报,2009,9(4):669-675.
    [127]曹琴园,李洁,陈启元.机械活化对异极矿碱法浸出及物理性质的影响[J].中国有色金 属学报,2010,20(2):354-362.
    [128]刘三军,欧乐明,冯其明,张国范,卢毅屏.低品位氧化锌矿石的碱法浸出[J].湿法冶金,2005,1:23-25.
    [129]杨天足,任晋,刘伟锋,窦爱春,刘伟,张杜超Zn(Ⅱ)-Glu2--CO32--H2O体系热力学平衡分析[J].中国有色金属学报,2009,19(6):1155-1160.
    [130]司马冰,何良惠,李自强等.氨法分解低品位菱锌矿的研究[J].四川有色金属,1991,1:1-5.
    [131]姚扬.活性氧化锌的氨-碳按浸出工艺研究[J].江苏冶金,1994,2:24-26.
    [132]唐漠堂,录君乐Zn(Ⅱ)-NH4-(NH3)2SO4-H2O系的氨络合平衡[J].中南矿冶学院学报,1994,25(6):701-705.
    [133]刘志宏,李慧君,李启厚.异极矿的氨法浸出研究[J].江西有色金属,2009,23(2):18-22.
    [134]李慧君NH3-(NH4)2SO4-H2O体系浸出异极矿的研究[D].长沙:中南大学,2009,18-28.
    [135]赵廷凯,唐漠堂,梁晶.制取活性锌粉的Zn(Ⅱ)NH3·H2O-(NH3)2SO4体系体系电解法[J].中国有色金属学报,2003,13(3):774-777.
    [136]ZhaoYoucai, Robert Stanforth. Production of Zn Powder by alkaline treatment of smithsonite Zn-Pb ores [J]. Hydrometallurgy,2000,56:237-249
    [137]赵中伟,龙双,陈爱良,霍广生,贾希俊,李洪桂,阎海泉.难选高硅型氧化锌矿机械活化碱法浸出研究[J].中南大学学报(自然科学版),2010,41(4):1246-1250.
    [138]赵中伟,贾希俊,陈爱良,龙双,霍广生,李洪桂.氧化锌矿的碱浸出[J].中南大学学报(自然科学版),2010,41(1):39-43.
    [139]JeanFrenay. Leaching of oxided zinc ores in various media [J].Hydrometallurgy,1985,15: 243-253.
    [140]Gurnen S., Emre A. M. Laboratory-scale investigation of alkaline zinc electrowinning [J]. Minerals Engineering,2003,16:559-562.
    [141]St-Pierre J., Piron D.L. Electrowinning of zinc from alkaline solutions [J].Journal of Applied Electrochemistry,1986,16:447-456.
    [142]TtingkaviveshkulT., Thiravetyan P., Tanticharoen M. Mechanism for bioleaching of zinc silicate residue byorganic acid-producing microorganisms [J]. In:Vargas T, Jereze, Wiert ZJV eds. Biohydrometallurgical, Vol.1.Santiago:University of Chile,1995,385-393.
    [143]Castre I.M., Fietto J.L.R., Viera R.X. etal. Bioleaching of zinc and nickel from silicates using Aspergillus Niger culture [J]. Hydrometallurgy,2000,57:39-49.
    [144]曾懋华,颜美凤,奚长生,方振鹏,梁凯.从凡口铅锌矿尾矿中回收铅锌[J].金属矿山,2007,375(9):123-125.
    [145]魏岱金,孙培梅.硫化钠在冶金、选矿中的应用[J].湖南冶金,2002,4:7-10.
    [146]万宏民.硫化钠在铅锌中矿分选中的应用[J].矿产保护与利用,2000,2:42-45.
    [147]Dalibor Kuchar, Tadashi Fukut, Maurice S. Onyango, Hitoki Matsud. Sulfidation treatment of metal compounds involved in plating sludges [J]. Desalination,2007,211:44-155.
    [148]Rey M. The flotation of oxidized ores of lead copper and zinc [C]. IMM. Recent Developments in Mineral Dressing Symposium:London,1953:541-548.
    [149]Ozbayoglu G., Atalay U., Senturk B. Flotation of lead and zinc carbonates ore[M]. In: Proceeding of International Conference on Recent Advances in Materials and Mineral Resources, Penang, Malaysia, May 1994, School of Material and Mineral Resources Engineering, pp.504-509, ISBN 938-9700-24-3.
    [150]Pereira C.A., Peres A.E.C. Reagents in calamine zinc ores flotation [J]. Minerals Engineering,2005,18:275-277.
    [151]Peres A.E.C., Borges A.M., Galery R. The effect of dispersion degree on the floatability of an oxidized zinc ore [J]. Minerals Engineering,1994,7(11):1435-1439.
    [152]Malghan S.G. Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores[J]. Miner. Metall. Process.,1986,3:158-163.
    [153]Marabini A.M., Alesse V., Garbassi F. Role of sodium sulphide, xanthate and amine in flotation of lead-zinc oxidized ores [M]. In:Jones, M., Oblatt, R. (Eds.), Reagents in the Minerals Industry. The IMM, London,1985,125-136.
    [154]Onal G., Bulut G., GUl A., Perek K.T., Arslan F. Flotation of Aladag oxide lead-zinc ores[J]. Minerals Engineering,2005,18(2):279-282.
    [155]Barbaro M. Lead and zinc ores-flotation [M]. Instituto Trattamento Minerali CNR, Academic Press. Rome,2000.
    [156]Irannajad M., Ejtemaei M., Gharabaghi M. The effect of reagents on selective flotation of smithsonite-calcite-quartz [J]. Minerals Engineering,2009,22:766-771.
    [157]Thompson J.W. Sulfidation and flotation of ores [P]. United States patent, Patent No.1334721,1960.
    [158]Pereira C.A., Peres. A.E.C. Reagents in calamine zinc ores flotation [J]. Minerals Engineering,2005,18:275-277.
    [159]Keqing F.A., Miller J.D., Guang-hui Li. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores [J]. Transactions of Nonferrous Metals Society of China,2005, 15(5):1138-1147.
    [160]V·鲁格诺夫.氧化铅锌矿石选矿新工艺研究[J].国外金属矿选矿,2001,2:25-28
    [161]Yong Li, Ji-kun Wang, Chang Wei, Chun-Xia Liu, Ji-Bo Jiang and Fan Wang, Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur [J]. Minerals Engineering, 201023(7):563-566.
    [162]Cunxiong LI, Hongsheng XU, Jiqiang LIAO, Chang WEI, Zhigan DENG, Gang FAN, Sulphidization of Oxidic Lead-Zinc Ore with Sulphur under Hydrothermal Conditions [C]. Lead-Zinc 2010, Edited by A. Siegmund, L. Centomo, C. Geenen, N. Piret, G. Richards and R. Stephens, John Wiley & Sons Ltd,2010 p 251-259.
    [163]徐红胜,魏昶,李存兄,樊刚,邓志敢,邱爽,周雪娇.纯氧化锌水热硫化试验研究[J].中国稀土学报,2010,28:735-738.
    [164]李勇,王吉坤,魏昶等.低品位氧化锌矿硫化预处理-浮选新工艺研究[J].中国稀土学报,2008,26:620-623.
    [165]李勇,王吉坤,魏昶,张怀伟,李存兄.水热法硫化低品位氧化锌矿的正交试验研究[J].有色金属:冶炼部分,2009,5:6-9.
    [166]陈继斌.水热硫化法处理难选氧化铜矿[J].有色金属(选矿部分),1980,3:11-14.
    [167]陈继斌.铜录山氧化铜铁矿水热硫化-温水浮选试验[J].矿冶工程,1983,4:21-23.
    [168]陈继斌.水热硫化-温水浮选法处理难选氧化铜矿的试验[J].有色金属(选矿部分),1984,4:12-17.
    [169]钱荣耀.水热硫化法及氨浸硫化沉淀法处理氧化铜矿石过程中铜物相及矿相的研究[J].云南冶金,1990,6:24-26.
    [170]Padilla P R., Pavez M.C., Ruiz. Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4-O2 [J]. Hydrometallurgy,2008,91:113-120.
    [171]Padilla, R., Rodriguez, M., Ruiz, M.C. Sulfidation of chalcopyrite with elemental sulfur [J]. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science 34B:2003a,15-23.
    [172]Padilla R., Olivares, E., Sohn, H.Y., Ruiz, M.C. Kinetics of the sulfidation of chalcopyrite with gaseous sulfur [J]. Metallurgical and Materials Transactions.B, Process Metallurgy and Materials Processing Science 34B,2003b,61-68.
    [173]宋宁,刘纯鹏.黄铜矿加硫焙烧提铜新工艺[J].有色金属,2005,57(2):84-87.
    [174]宋宁.黄铜矿硫化焙烧相变反应动力学研究[J].昆明理工大学学报,2002,27(2):5-8.
    [175]Seidel D.C. etal. TMS-AIME [J]. Trans.1968,241(3):261-268.
    [176]A.C.切尼尔亚科.化学选矿[M].郑飞.北京:中国建筑工业出版社,1982,166-167
    [177]邓彤,柯家骏,陈家镛.元素硫的歧化反应动力学研究[J].化工学报,1984,4:328-333.
    [178]邓彤,陈家镛.相转移催化元素硫的歧化反应[J].无机化学,1984,4:128-131.
    [179]邓彤,陈家铺.相转移催化元素硫歧化反应的动力学[J].化工学报,1988,5:538-543.
    [80]杨显万,何霭平,袁宝州.高温水溶液热力学数据手册[M],北京:冶金工业出版社,1983.
    [181]Lide D.R. Handbook of chemistry and physics [M]. eighty-second ed., Boca Raton, CRC Press, FL,2001.
    [182]Dean J.A. Lange's Chemistry Handbook [M], fifteenth ed., McGraw-Hill, Search New York, 1999.
    [183]Bard A.J., Parsons R., Jordan J. Standard Potentials in Aqueous Solution [M], Marcel Dekker, NewYork, NY,1985.
    [184]Barin. Thermochemical Date of Pure Substances [M]. third edition, WILEY-VCH Verlag GmbH,1995.
    [185]Hogfeldt E (Ed.). Stability Constants of Metal-ion Complexes [M]. New York:Pergamon Press,1983.
    [186]Deltombe E., Zoubov N.D. E., Pourbaix M. Comportement electrochimique du vanadium [M]. Diagramme d'equilibre tension-pH du systeme V-H2O a 25 ℃. Rapporttechnique No. 29 Centre Belged'Etude de la corrosion, Bruxelles,1956.
    [187]Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions [M], oxford, Pergamon,1966.
    [188]杨显万.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983:249-670.
    [189]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:191-211.
    [190]Habashi F. Kinetics of metallurgical process [M], second ed., Metallurgic Extractive Qucbcc, Qucbcc, Canada,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700