用户名: 密码: 验证码:
乙醛氧化制备乙二醛的反应和分离过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙二醛是重要的化工原料和中间体,广泛地应用于纺织印染、医药、造纸等领域,尤其是随着医药行业的发展高纯度乙二醛的需求逐渐增加。目前,乙二醛的工业生产工艺存在着环境污染严重、纯度低、能耗高、收率低、易爆炸等问题。乙醛法生产乙二醛工艺具有产品质量高、能耗低等优点,本文对硝酸氧化乙醛法制备乙二醛的氧化反应机理、合成及分离过程进行深入研究。研究内容如下:
     采用离子排阻色谱法测定乙二醛溶液组成,选用示差检测器、氨基色谱柱、稀硫酸为流动相进行乙二醛溶液中各组分的定性分析,并采用外标法对其中乙醛酸、乙醇酸、草酸、甲酸、乙酸等组分建立了定量分析方法,实现了乙二醛溶液的快速、准确的测定。
     通过分析硝酸氧化乙醛过程,可知氧化反应是按自由基机理进行,从而推导出硝酸氧化乙醛制备乙二醛的反应体系中主、副产物的生成机理。实验研究了乙二醛、甲酸和乙酸的生成反应动力学,得出了这三个反应的动力学模型。
     对电渗析法分离硝酸进行了实验研究。使用J-1-18膜组装的电渗析装置分离硝酸,建立该过程的传质过程方程并得到传质模型。研究膜堆电压以及不同硝酸初始浓度等因素对电渗析分离硝酸过程的影响,结果表明在低电压条件下,电渗析法可有效的分离硝酸。
     实验研究气提法分离乙醛的过程,并建立了该过程的稳态非平衡级模型,采用收敛性很好的Newton同伦算法进行模型的求解,模拟结果与实验结果吻合度很高。利用模型分析了气提过程的稳态特性,系统考察了液气比、进料温度、塔板数等对于产品中乙醛浓度的影响。研究结果表明气提法可在较低温度下有效地脱除乙醛,解决了乙二醛溶液在高温下变质的问题。
     采用J-18均相离子交换膜和大孔离子交换树脂组装电去离子装置,对电去离子分离乙酸进行了实验研究,建立了该过程的传质过程方程并得到传质模型。考察了不同的操作条件对乙酸分离的影响,实现乙二醛溶液中乙酸的深度分离。
Glyoxal is a kind of important chemical material and intermediate with a widerange of applications in printing and dyeing textile, medicine, paper making et al.Especially with the development of pharmaceutical industry, there is an increasingdemand for high-purity glyoxal gradually. At present, the industrial manufactureprocess suffered from severe pollution, lower purity, high energy consumption, lowyields and tends to explode et al.. While the production process of glyoxal fromacetaldehyde has merits of higher quality product and lower power consumption etc..The reaction mechanism, synthesis and separation process of the method of nitric acidoxidizing acetaldehyde were investigated intensively in this paper. And the researchcontents are as follows:
     Ion-exclusive chromatography analysis was selected to analyze glyoxal solution.Qualitative analysises of each component in glyoxal solution were obtained with theapplication of differential refraction detector, column aminex HPX-87H and dilutesulphuric acid as the mobile phase. Quantitative analysis of glyoxylic acid, glycollicacid, oxalic acid, formic acid and acetic acid et al. was estabilished by externalstandard method. Then the rapid and accurate analysis for the oxidation solution wasachieved.
     The possible formation mechanism of the principal product and byproduct in thereaction system of the glyoxal preparation with the method of nitric acid oxidizingacetaldehyde were deduced by means of oxidation process analysis. It can beconsidered that the reactions were conducted in term of free radical mechanism. Theformation kinetics of glyoxal, formic acid and acetic acid were researchedexperimentally and the kinetic models of the three reactions were concluded.
     Nitric acid separation using electrodialysis technique was researchedexperimentally. The experiments were conducted in electrodialysis equipmentequipped with membrane J-1-18. The mass transfer equation was established and themass transfer model was obtained. The effects of membrane stack voltage, the initialconcentration of nitric acid et al. on separation process were investigated. Theresearch results show that nitric acid can be removed effectively at low-voltage.
     Experimental study about the separation of acetaldehyde with the method ofgas-stripping was researched. A non-equilibrium model for describing the GS process was proposed and solved with a Newton-Homotopy method. This model is verifiedby the comparison of simulation results with experimental results. The steady-stateperformance of GS process, such as the influence of liquid-gas ratio, feedingtempearure and theoretical plate was investigated systematically using the model. Theresearch results show that the acetaldehyde in the solution can be removed effectivelywith the application of GS technique. Furthermore, the separation temperature can belowered to the level of avoiding the metachromatism of the glyoxal solution athigh-temperature.
     Acetic acid separation using EDI technique was studied experimentally. Theexperiments were conducted in electrodialysis equipment packed with membraneJ-1-18and macroporous ion-exchange resin. The mass transfer equation wasestablished and the mass transfer model was obtained. The effects of differentoperation conditions on acetic acid separation were investigated. The research resultsshow that the deep deacidification of glyoxal solution can be obtained.
引文
[1]吕咏梅,乙二醛生产及应用,精细石油化工进展,2001,2(3):29~32
    [2] Earl E W, The Structure of Glyoxal in Water,J. Am. Chem. Soc.1970,92,24.
    [3] Mattioda G,Blanc A,in Ullmann’s Encyclopedia of Industrial Chemistry,1989,A12:491~494
    [4] Chastrette F, Bracoud C, Chastrette M et al, Etude de la composition desolutions aqueuses de glyoxal en RMN-13C, Bulletin de la Société Chimique deFrance,1983,2:33~40
    [5] Fratzke A R, Reilly P J, Thermodynamic and kinetic analysis of thedimerization of aqueous glyoxal, Int. J. Chem. Kinet.,1986,18(7):775~789
    [6] Slonim I Ia, Arshava B M, Kliuchnikov V N, Jurina F.G., Kaliya T.K., Jurn.prikl. spectroscopii,1990,52,(2),327
    [7]李玉芳,我国乙二醛的生产应用及市场分析,上海化工,2003,(1):39~42
    [8]崔小明,乙二醛的生产应用及市场分析,甲醛与甲醇,2003,3:20~27
    [9]中国化工信息中心.中国化工产品目录.北京:化学工业出版社,2005:56~59
    [10]李滨涛,李玉英,李光伟,乙二醛的工业生产,化工科技,2001,9(1):68~72
    [11]许树松,乙二醛生产工艺评述,化学工业与工程技术,2000,21(4):39~43
    [12]石磊,乙二醛的工业生产现状与发展建议,化工中间体,2002,5:11~16
    [13]江镇海,乙二醛的生产应用及市场分析,四川化工与腐蚀控制,2001,4(5):49~57
    [14]刘惠仙,王晋黄.乙二醛生产技术进展,湖北化工,1997,(4):9~10
    [15] Bredenberg Johan B-Son, Nyman G A., Production of glyoxal by oxidation ofethylene with selenium dioxide.Kem.Teollisuus,1970,27(12):903~909
    [16] JP7005522,1970
    [17] Kozlov A I, Brailovskii S M, Temikin O N, Oxidative transformations ofalkynes catalysed by Pd(Ⅱ) complexes in nitric acid solutions, Kinetics andcatalysis,1994,35(4):504~506
    [18] Kozlov A I, Brailovskii S M,Temikin O N, Catalytic-oxidation of acetylenewith nitric acid in solutions of metal-complexes, Kinetics and catalysis,1995,36(2):205~210
    [19] Steiniger M, Voss H, Method of purification of aqueous glyoxal solutions.德国专利,3900379A1,1990
    [20]周春生,岳可芬,李东升等,乙二醛的新合成方法研究,化学试剂,2002,24(6):352~377
    [21] Ronzio A R, Waugh T D, Glyoxal Bisulfite, Org. Synth.,1955,3:438
    [22]江苏清江化工研究所,乙二醇空气催化氧化制乙二醛,石油化工,1979,8(10):686~691
    [23] Vodyankina OV, Koscheev S V, Yakushko V T et al, Physicochemicalinvestigation of the copper and silvercatalysts of the ethylene glycol oxidation,Journal of molecular catalysis A: chemical,2000,158(1):381~387
    [24]历仁韬,乙二醇空气催化氧化制乙二醛,石油化工,1981,10(6):376~381
    [25] Mitsui Toatsu,日本专利:60-100533,1983
    [26] Takaishi Y T, Sennan K W, Takaishi T H et al, Preparation process for glyoxal,美国专利,4555583,1985
    [27]杜书,胡椒叶,方明等,在载体银催化剂上乙二醇的空气氧化脱氢制乙二醛的研究,辽宁化工,1989,(1):8~11
    [28]林建刚,晏庆龙,乙二醇催化氧化生产乙二醛工艺探讨,湖北化工,2002,(5):28~29
    [29]邓景发,包信和,王怀明,银-磷催化剂催化乙二醇制乙二醛及其表面性质,催化学报,1994,15(3):167~171
    [30]李洲,王进,乙二醛水溶液的纯化,化工时刊,1996,10(8):3~7,20
    [31]杨代华,李文鸿,何凤明,乙二醛生产及其应用,维纶通讯,2004,24(3):5~10
    [32] Bozel-Maletra, The manufacture of Glyoxal and Polyglyoxal,英国专利,653588,1951
    [33]唐薰,吴席信,韦少义,引发乙醛硝酸氧化合成乙二醛反应的研究,合成化学,1997,5(4):420~423
    [34] Hotanahalli S S, Chandalia S B, Oxidation of acetaldehyde to Glyoxal by NitricAcid, J. appl. Chem. Biotechnol,1972,(22):1243~1252
    [35] Erich Nebe, Heidelberg, Production of Glyoxal,美国专利,3429929,1969
    [36]唐薰,吴席信,韦少义,复合催化剂用于乙醛硝酸氧化合成乙二醛,湖南大学学报,1998,25(2):19~22
    [37]陈坤,成忠兴,徐雄立,硝酸氧化乙醛制乙二醛新工艺,湖北工学院学报,1998,13(2):48~52
    [38]东北制药总厂,乙二醛的合成研究,辽宁化工,1974,23(5):23~25
    [39]蔡昆,张秀英,李滨涛,硝酸氧化乙醛制取乙二醛的新工艺,河南师范大学学报,1986,(1):51~54
    [40]陈彰明,黄当睦,何玉莺等,乙醛硝酸氧化制乙二醛,石油化工,1987,16(8):547~549
    [41]黄泰熙,刑永恒,郁向旭,乙醛氧化制乙二醛的实验研究,吉林化工学院学报,1992,9(4):1~4
    [42]王晋黄,乙醛法生产乙二醛的工艺研究,精细石油化工,1998,(1):41~43
    [43]王红霞,硝酸氧化乙醛法生产乙二醛工艺的改进,河南化工,2004,(9):39~40
    [44] Garcia A A, King C J, Use of basic polymer sorbents for the recovery of aceticacid from dilute aqueous solution, Ind&Eng Chem Res,1989,28(2):204~212
    [45]陈家威,张万轩,乙二醛水溶液的脱酸,湖北大学学报,1997,19(1):72~74
    [46] James H. McCain, Louis F Theiling, Deacidification of Glyoxal by Liquid IonExchange, Ind.Eng.chem.Process Des.Dev.,1980,19:494~497
    [47] Golob J, Grilc V, Zadnik B. Extraction of acetic acid from dilute aqueoussolutions with trioctylphosphine oxid. Ind&Eng Chem. Process Des andDevelop,1981,20(3):433~435
    [48]谪丽巴哈,杨义燕,戴猷元,醋酸稀溶液的络合萃取,高校化学工程学报,1993,7(2):174~179
    [49]文梅,杨义燕,戴猷元,三辛胺萃取有机羧酸的机理(I)三辛胺—醋酸体系,化工学报,1998,49(3):303~309
    [50]杨延钊,杨永会,孙国新等,不同稀释剂中TBP萃取醋酸的研究.高等学校化学学报,1996,17(4):515~518
    [51]徐黔江,许乾丽,乙二醛身产过程中醋酸的分离,贵阳医学院学报,2001,26(1):38~39
    [52]李玉安,田恒水,路秀林,溶剂萃取法从乙二醛水溶液中回收醋酸,高校化学工程学报,1996,10(4):102-405
    [53]李德莹, TRPO萃取分离乙二醛中醋酸杂质的研究,湖北化工,1997,(3):26~27
    [54]丁一刚,吴正舜等,乙醛硝酸氧化液中醋酸溶剂萃取的研究,河南化工,1996,(8):12~15
    [55]胡志坚,乙二醛生产技术的现状与新工艺探讨,化工设计,1993,(4):8~10
    [56]中华人民共和国国家技术监督局,GB6324.5-86,中华人民共和国国家标准,北京:中国标准出版社,1994-11-01
    [57]王玉萍,彭盘英,周耀明,紫外吸光光度法同时测定乙醛酸和乙二醛,理化检验一化学分册,2005,41(3):199~202.
    [58]宋海英,赵地顺,赵莹等,紫外分光光度法测定乙二醛溶液中乙二醛的含量,河北工业科技,2008,24(5):281~283
    [59]陈声培,黄桃,孙世刚等,离子色谱在乙二醛电氧化过程中的应用,精细化工,2004,21(12):934~937.
    [60]方卢秋,高锰酸钾-硫酸体系流动注射化学发光法测定乙二醛的含量,重庆师范大学学报,2006,23(1):58~60.
    [61] Edelkraut F, Brockmann U, Simultaneous determination of carboxylic acidsand carbonyl compounds in estuaries by HPLC, Chromatographia,1990,30:432~435
    [62] William H G, Minoru K, Devon C, Ozonation byproducts2. Improvement of anaqueous-phase derivatization method for the detection of formaldehyde andother carbonyl compounds formed by the ozonation of drinking water, Environ.Sci. Technol.,1989,7,838~847.
    [63] Rodrigues J A, Barros A A, Rodrigues P G., Differential Pulse PolarographicDetermination of-Dicarbonyl Compounds in Foodstuffs after Derivatizationwith o-Phenylenediamine, Agric. Food Chem.,1999,8:3219~3222
    [64] Schramm C, Rinderer B, Determination of Cotton-Bound Glyoxal via anInternal Cannizzaro Reaction by Means of High-Performance LiquidChromatography, Anal. Chem.,2000,23:5829~5833.
    [65] Sheng-Pei C, Tao H, Shi-Gang S, A new method of ion chromatographytechnology for speedy determination and analysis in organic electrosynthesis ofglyoxylic acid, J. Chromatogr. A.,2005,1089:142~147.
    [66]张智勇,乙醛法生产乙二醛的工艺研究:[河北科技大学硕士学位论文],河北:石家庄,2006年
    [67] Walter S, Trahanovsky, Oxidation in organic chemistry, London:Academicpress,297
    [68]陈忠秀,合成二苯甲酮的新方法,精细化工,2003,20(3):179~181
    [69]张小娟,刘长厚,环己醇/环己酮硝酸氧化的反应动力学,高技化学工程学报,1999,13(3)264~268
    [70] Castellan A, Bart J C J, Cavallaro S, Industrial production and use of adipicacid, Catalysis Today,1991,9(3):237~254
    [71] Sudhir R, Joshi, Kamal L, Kinetics of Oxidation of Benzyl Alcohol withDilute Nitric Acid,Ind. Eng. Chem. Res.2005,44:325~333
    [72] Ogata Y, Sawaki Y, Matsunaga F, Kinetics of the Nitric Acid Oxidation ofBenzyl Alcohols to Benzaldehydes, Tetrahedron,1966,22:2655.
    [73] Ross D S, Gu C L, Hum G P, Oxidation of Benzyl Alcohols by Nitrous andNitric Acids in Strong Sulfuric Acid Media, Int. J. Chem. Kinet.,1986,18(11),1277
    [74] Ogata Y, Tezuka H, Kinetics of the nitric acid oxidation of benzaldehydes tobenzoic acid, Tetrahedron,1967,23(2):1007~1014
    [75]李广,梁艳玲,韦宏,电渗析技术的发展及应用,化工技术与开发,2008,37(7):28~30
    [76]张维润等,电渗析工程学,北京:科学出版社,1995
    [77]沈立英,无极水全自动控制电渗析器,中国实用新型专利:ZL90222927
    [78]江维达,无隔板电渗析器,水处理技术,1994,20(5):314~317
    [79]李翔,罗国林,螺旋卷式电除盐器,中国实用新型专利:ZL98223514.3
    [80]张瑞华,液膜电渗析的应用,膜科学与技术,1997,17(3):7~13
    [81]徐铜文,何炳林,双极膜—新的工业革命,世界科技研究与发展,2001,22(3):19~27
    [82] Strathmann H, Krol J J, Reapp H J, Limting current density and waterdissociation in bipolar membranes,Journal of Membrane Science,1997,125:123~142
    [83] Alearaz A, Ramirez R, Mafe S et al, Ion selectivity and water dissociation inPolymer bipolar membranes studied by membrane Potential andcurrent-voltage measurements, Polymer,2000,41:6627~6634
    [84] YapingZhang, TongwenXu, RongqiangFu, Modeling of the streaming Potentialthrough Porous bipolar membranes, Desalination,2005,181:293~302
    [85] Volgin V M, Davydov A D, Ionic transport through ion-exchange and bipolarmembranes, Joumal of Membrane Science,2005,259:110~121
    [86] Rouxde H, Balmann, Bailly M, Modelling of the conversion of weak organicacids by bipolar membrane eletrodialysis, Desalination,2002,149:399~404
    [87] Paleologou M, Thibault A, Wong P Y et al, Enhancement of the currentefficiency for sodium hydroxide production from sodium sulphate in atow-compartment bipolar membrane electrodialysis system, Separation andpurification Technology,1997,11:159~171
    [88]李浔,双极性膜电渗析法用于糖酸分离的研究,华东理工大学学报,2004,30(4):402~405,453
    [89]曾小君,双极膜电渗析技术在亚氨基二乙酸制备中的应用,精细化工,2002,19(4):204~207
    [90]龚燕,唐宁,王晓琳等,电渗析用于1,3丙二醇发酵液脱盐的实验研究,膜科学与技术,2004,10(5):33~36
    [91]唐宁,龚燕,王晓琳等,1,3丙二醇发酵液脱盐的中试研究,化工进展,2004,23(1):84~87
    [92] Burns G, Glueekauf E, Second United Nations Conference on Peaceful Use ofAtomic, Energy Pape,1958,308
    [93] Glueekauf E,Electro-deionization Through a Packed Bed, British ChemicalEngineering,1959,646~651
    [94] Ganzi G C, Wood J H, Griffin C, Water Purification and recycling using the CDIProeess, Environmental Progress,1992,11(1):49~53
    [95] Kyeong-Ho Yeon, Juny-Hoon Song, Seung-Hyeon Moon, A study on stackeconfiguration of Continuous electrodeionization for removal of heavy metalions from the Primary coolant of nuclear power plant, Water Research,2004,38:1911~1921
    [96] Isabelle Monzie, Laurence Muhr, Francois Lapicque et al, Mass transferinvestigation in electrodeionization processes using the microcolumn technique,Chemical Engineering Sienee,2005,60:1389~1399
    [97] Ruimei Wen, Shouquan Deng, Yafeng Zhang, The removal of silicon and boronfrom ultra-Pure Water by electrodeionization technique, Desalination,2005,181:153~159
    [98] Ping Yu, Zehua Zhu, Yunbai Luo et al, Purification of caprolactam by means ofan electrodeionization technique, Desalination,2005,174:231~235
    [99]王建友,王世昌,电去离子(EDI)过程水解离机理的研究,膜科学与技术,2005,25(4): l~7
    [100]王方,电去离子过程的反应叠加的实用模型,清华大学学报,1998,38(7):107~110
    [101] Uchenna chukwu, Munir cheryan, Concentration of Vinegar by electrodialysis,Journal of Food science,1996,61(6):1223~1226
    [102] G.S Luo, Use of the electrodialysis process to concentrate a formic acidsolution, Desalination,2002,150(3):227~234
    [103]李长海,电渗析法浓缩β-萘磺酸的研究,水处理技术,2004,30(2):103~105
    [104]李学梅,发酵液中乳酸的电渗析法分离,高校化学工程学报,1998,2(3):231~235
    [105]赵成茂,用电渗析法分离牛磺酸与硫酸钠混合水溶液,氨基酸及生物资源,2004,26(1):50~52
    [106] Weier A J, Glatz B A, Glatz C E, Recovery of propionic and acetic acid fromfermentation broth by electrodialysis. Biotechnol Prog,1992,8(6):479~485
    [107] Michael Steiniger, Neustadt, Method of refining Glyoxal, US Patent,3507764,1970
    [108] Akira Asahi, Purification of Aqueous Glyoxal Solution, US Patent,5000832,1991
    [109] Punita V V, Separation of inorganic and organic acids from glyoxal byelectrodialysis, Desalination,2001,(140):47~54
    [110]俞卫丽,电渗析法分离中性有机物、强酸和弱酸的实验研究,净水技术,2003,22(6):15~23
    [111]张和,周立,电渗析法处理低浓度乙酸废液的研究,化工环保,1998,18(4):195~198
    [112]余立新,郭庆丰,黄科,蒋维钧,极稀醋酸废水处理的双极性膜电渗析法,膜科学与技术,2000,20(2):31~33
    [113] Lixin Yu, Tao Lin, Qingfeng Guo, Relation between mass transfer andoperation parameters in the eletrodialysis recovery of acetic acid, Desalination,2003,154:147~452
    [114] Lixin Yu,Qingfeng Guo,Jihua Hao.Recovery of acetic acid from dilutewastewater by means of bipolar membrane eletrodialysis, Desalination,2000,129:283~288
    [115] Tanaka K, Chikara H, Hu W et al, Separation of carboxylic acids on a weaklyacidic cation-exchange resin by ion-exclusion chromatography, J. Chromatogr.A,1999,850:187~196
    [116] Ohta K, Tanaka K, Hadda P R, Ion-exclusion chromatography of aliphaticcarboxylic acids on an unmodified silica gel column, J. Chromatogr. A,1996,739:359~365
    [117] Hong Q, Huanan W, Jin W, Ion Exclusion Chromatographic Determination ofOrganic Acids, Journal of Instrumental Analysis,1998,2:62~65
    [118] Peng T, Ye X, Ying L et al, Determination of Twelve Kinds of Organic Acids byIon Exclusion Chromatography, Journal of analytical science,2001,6:483~485
    [119] Fabio C, Umberto S, Claudio R et al, Optimization of the determination oforganic acids and sugars in fruit juices by ion-exclusion liquid chromatography,Journal of Food Composition and Analysis,2005,18:121~130
    [120]袁谓康,朱开宏,化学反应工程分析,上海:华东理工大学出版社,1995,39~46
    [121]韦少义,乙醛硝酸氧化合成乙二醛研究:[硕士学位论文],湖南;湖南大学,1997
    [122]葛道才,均相离子交换膜在我国若干工业领域的应用,膜科学与技术,2003,23(4):202~208
    [123]徐从厚,国外膜工业发展概况,膜科学与技术,2002,22(1):65~72
    [124] Slechta A F, Culp G L, Water reclamation studies at the South Tahoe publicutility district, Journal of Water Pollution Control Federation,1967,39:787~814
    [125] Ball W P, Jones M D, Kavanaugh M C, Mass transfer of volatile organiccompounds in packed tower aeration, Journal of Water Pollution ControlFederation,1984,56:127~135
    [126] Ribeiro C P, Lage P L C, Borges C P, A combined gas-stripping vapourpermeation process for aroma recovery, J. Membrane Sci,2004,238:9~19
    [127] Qureshi N, Blaschek H P, Recovery of butanol from fermentation broth by gasstripping, Renew. Energy,2001,4:557~564
    [128] Namana S A, Tureb I E, Veziroglub T N, Industrial extraction pilot plant forstripping H2S gas from Black Sea water, Int. J. Hydrogen Energy,2008,33:6577~6585
    [129] Krishna R, Taylor R, Handbook of heat and mass transfer, Houston:GulfPublishing Co,1986,259
    [130] Onda K, Takeuchi H, Okumoto Y, Mass transfer coefficients between gas andliquid phases in packed columns, J Chem. Eng. Jpn,1968,1(1):56~66
    [131] Bravo J L, Fair J R, Generalized correlation for mass transfer in packeddistillation columns, Ind. Eng. Chem. Process Des Dev,1982,21(1):162~170
    [132] Mohammad R Riazi,Curts H Whitson, Ind. Eng. Chem. Res.,1993,32:3081~3088
    [133] Caldwell C S,Babb A L Diffusion in the binary system, J Phys Chem,1956,60:1456
    [134] Scheibel E G, Viscosity of gases, Ind Eng Chem,1954,46:2008
    [135]闻瑞梅,范伟,邓守权等,杂离子在EDI中的传质模型,净水技术,2003,22(1):1~4
    [136] Ganzi, G C,Egozy Y,Giuffrida A J,High Purity water by electrodeionization:performance of the Ionpure continuous deionization systems, Ultrapure water,1987,4(3):43~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700