用户名: 密码: 验证码:
mTORC2/Rictor调控非小细胞肺癌转移的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     肺癌是严重危害人类健康的恶性肿瘤之一,在我国肺癌的发病率和死亡人数位于恶性肿瘤的第一位。目前的研究认为转移的发生是导致临床肿瘤患者治疗失败和死亡的主要原因,而癌细胞的趋化运动和上皮间质转化(EMT)在肿瘤转移过程起非常重要的作用,因此明确调控癌细胞趋化运动和EMT发生的详细分子机制对于研究肿瘤转移具有非常重要的意义,同时可以为临床转移肿瘤的诊断和治疗提供新的潜在靶点。
     本课题组前期研究发现构成雷帕霉素不敏感的蛋白激酶复合体mTORC2的关键分子Rictor在多种癌组织中高表达,而且与患者出现转移密切相关,目前对mTORC2/Rictor在肿瘤发生发展中的详细作用机制并不清楚。在本次研究中我们拟采用小RNA干扰等一系列分子生物学和细胞生物学研究技术、并结合EGF诱导的肺癌细胞趋化运动和TGFβ诱导的肺癌细胞EMT发生模型,分析探讨mTORC2/Rictor在调节肺癌细胞迁移和转移能力中的作用机制,最后在免疫缺陷小鼠转移模型中验证Rictor表达下调对肺癌细胞体内转移能力的影响。
     方法:
     1)采用基于慢病毒的小RNA干扰技术下调Rictor在肺癌细胞中的表达水平,研究其表达下调对EGF诱导的肺癌细胞趋化运动能力的影响;
     2)采用伤口愈合实验分析Rictor表达下调对划痕诱导的肺癌细胞极化和定向迁移能力的影响;采用粘附实验观察肺癌细胞中Rictor表达下调对细胞外基质粘附能力的影响;分析Rictor表达下调对EGF诱导的细胞骨架蛋白F-actin聚合能力的影响;
     3)采用Western blotting的方法研究Rictor表达下调对EGF诱导的下游信号分子激活的影响;
     4)采用免疫荧光染色和Western blotting的方法研究Rictor表达下调对TGFβ诱导的肺癌细胞EMT发生的影响;
     5)采用免疫荧光染色和Western blotting的方法分析Rictor表达下调对TGFβ诱导的经典Smads通路和非经典Smads通路中mTORC2/Akt、Erk1/2和GSK3β/β-catenin信号通路激活的影响;
     6)采用免疫荧光染色和Western blotting的方法研究抑制GSK3β活性对TGFβ诱导的肺癌细胞EMT发生的影响;
     7)采用免疫荧光染色和Western blotting的方法分析下调β-catenin的表达对TGFβ诱导的肺癌细胞EMT发生的影响;
     8)采用免疫组织化学的方法分析Rictor在肺癌组织中的表达情况;
     9)在免疫缺陷小鼠转移模型中研究下调Rictor的表达对肺癌细胞转移能力的影响;
     结果:
     1)下调Rictor的表达明显抑制了EGF诱导的蛋白激酶Akt的磷酸化,同时抑制了EGF诱导的肺癌细胞的趋化运动能力和划痕诱导细胞极性的重新建立和定向迁移能力;而且Rictor降表达的细胞对Fibronectin的粘附能力明显降低,对EGF诱导的F-actin聚合能力也明显下降;
     2)下调肺癌细胞A549中Rictor的表达导致细胞中上皮标志性蛋白E-cadheirn表达升高和间质标志性蛋白Vimentin的表达下降即细胞发生类MET变化;
     3)下调Rictor的表达明显抑制了TGFβ诱导的非小细胞肺癌A549和H358细胞EMT的发生;
     4)下调Rictor的表达对TGFβ诱导的经典Smads通路以及Erk1/2的激活没有明显影响,但是抑制了TGFβ诱导的Akt473位点的磷酸化和GSK3β的磷酸化,同时抑制了TGFβ诱导的β-catenin向细胞核转位;
     5)采用GSK3β的抑制剂LiCl抑制Rictor表达下降细胞中GSK3β的活性可以恢复TGFβ诱导的EMT的发生;
     6)下调P-catenin的表达可以明显抑制TGFβ诱导肺癌细胞EMT的发生,但是对TGFβ诱导的经典Smads通路和非经典Smads通路没有明显影响;
     7)免疫组化的结果显示Rictor在肺癌组织中表达上调,而且Rictor表达上调与患者出现远处转移相关,但是与患者的年龄、性别、TNM分期和淋巴结状态没有明显相关性;
     8)免疫缺陷小鼠体内转移模型显示下调Rictor的表达明显抑制了肺癌细胞的转移能力。
     结论:
     下调Rictor的表达可以明显抑制非小细胞肺癌细胞在体外的迁移能力和免疫缺陷小鼠体内的转移能力,表明Rictor是调节癌细胞迁移和转移能力的一个非常关键的因子。进一步的研究发现Rictor主要通过调节癌细胞的趋化运动和肿瘤的上皮间质转化两个方面从而促进肿瘤转移的发生。一方面,Rictor调节肺癌细胞的趋化运动主要通过与mTOR形成的蛋白激酶复合体mTORC2而实现,Rictor/mTORC2通过调节蛋白激酶Akt的活性继而传递了EGF诱导的趋化运动信号通路。下调Rictor的表达抑制了划痕诱导的癌细胞极性重新建立和定向迁移能力;癌细胞对细胞外基质的粘附能力以及细胞迁移过程中细胞骨架蛋白F-actin的重构能力从而抑制了细胞的趋化运动。另一方面下调Rictor的表达诱导肺癌细胞A549发生类MET变化,说明mTORC2是维持间质细胞表型所必须的。机理方面的研究发现mTORC2/Rictor介导TGFP诱导肺癌细胞EMT发生主要通过交叉激活Wnt通路中的GSK3β/β-catenin信号通路,从而调节EMT发生相关基因的转录而实现。我们的研究结果提示Rictor/mTORC2调节癌细胞的EMT和趋化运动两者之间是相互促进和相互协作的,Rictor一方面通过促进肿瘤细胞EMT的发生使得肿瘤细胞脱离原发灶,获得了类似于间质细胞的迁移侵袭能力;另一方面Rictor还可以增强癌细胞的趋化运动能力,而且这种癌细胞沿着趋化因子浓度梯度而发生的定向迁移能力则是导致肿瘤细胞发生器官或者组织特异性转移的关键因素。
Objectives
     The incidence of lung cancer has increased as the most frequently diagnosed cancer and the leading cause of cancer death in China. Metastasis is one of main causes of treatment failure and death in cancer patients, most evidences have demonstrated that chemotaxis and Epithelial-Mesenchymal Transition (EMT) play critical roles in promoting cancer cell metastasis. However, the detailed mechanism remains largely unknown. Our previous studies have found that Rictor, a key component of mTORC2, was up-regulated in several cancer tissues, and its elevated expression correlated with metastasis of cancer patients. However, how Rictor regulates cancer cell metastasis is unclear. In the present study, we aim to investigate the role of Rictor in EGF induced chemotaxis of non small cell lung cancer cells, and to explore the potential function of Rictor/mTORC2in the mediation of TGFβ induced EMT of NSCLC cells. We also examine the effect of Rictor deletion on metastasis of lung cancer cells in an in vivo SCID mouse model.
     Methods
     1) Lentivirus mediated shRNA delivery system was used to knockdown the expression of Rictor in lung cancer cells, then chemotaxis assay, cell polarization and directed cell migration assay, cell adhesion assay and F-actin polymerization assay was used to examine the effect of Rictor deletion on EGF induced chemotaxis and cell migration of NSCLC cells.
     2) Immunofluresence staining and western blotting methods were used to investigate the effect of Rictor or β-catenin deletion on TGFP induced EMT and activation of canonical Smads and non-canonical pathways in lung cancer cells.
     3) Immunofluresence staining and western blotting methods were used to exmine the effect of GSK3β inhibition by LiCl on TGFβ induced EMT in Rictor knockdown cells.
     4) Immunohistochemistry method was used to detect the expression status of Rictor in lung cancer tissues; A SCID mouse model was used to evaluate the effect of Rictor knockdown on the metastatic ability of lung cancer cells.
     Results
     1) Rictor knockdown impaired EGF induced phoshorylation of Akt, and inhibited EGF induced chemotaxis of lung cancer cells along with defects in cell polarization, directed cell migration, cell adherion and F-actin polymerization.
     2) Loss of Rictor expression in A549cells results in an up-regulation of epithelial maker E-cadherin and a decrease of mesenchymal protein vimentin, which indicating a mesenchymal to epithelial transtion, meanwhile, Rictor knockdown also impaired TGFβ induced EMT of lung cancer cells.
     3) Knockdown of Rictor in A549cells has no significant effect on TGFβ induced activation of canonical Smad2/3and Erkl/2, but phosphorylation of Akt at473sites and GSK3β at ser9sites were decreased, along with a reduction of nuclear translocation of β-catenin.
     4) Inhibition of GSK3β activity by LiCl in Rictor depletion cells rescued TGFβ induced EMT; knockdown of β-catenin impaired TGFβ induced EMT of lung cancer cells without affecting canonical Smads and non-canonical pathways;
     5) Elevated expression of Rictor was observed in lung cancer tissues compared with tumor-adjacent normal tissues, and high expression of Rictor correlated with distant metatasis of cancer patients.
     6) Rictor depletion inhibited lung cancer cell metastsis in an in vivo mouse model.
     Conclusions
     Our results support Rictor as a key regulator for lung cancer cell migration and metastasis. Rictor mediates cancer cell metastasis by regulating chemotaxis and Epithelial-Mesenchymal Transition of cancer cells. Rictor knockdown impaired EGF induced chemotaxis and phosphorylation of Akt, pivitol melecules in chemotaxis signaling, in parallel, cell polarization and directed cell migration was also decreased. Further, Rictor/mTORC2is required for TGFβinduced EMT of NSCLC cells through cross activation of GSK3β/β catenin pathway.
引文
[1]Jemal A, Bray F, Center M M, et al. Global cancer statistics [J]. CA Cancer J Clin, 2011,61(2):69-90.
    [2]Bray F I, Weiderpass E. Lung cancer mortality trends in 36 European countries: secular trends and birth cohort patterns by sex and region 1970-2007 [J]. Int J Cancer,2010,126(6):1454-66.
    [3]Jemal A, Thun M J, Ries L A, et al. Annual report to the nation on the status of cancer,1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control [J]. J Natl Cancer Inst,2008,100(23):1672-94.
    [4]Jemal A, Center M M, Desantis C, et al. Global patterns of cancer incidence and mortality rates and trends [J]. Cancer Epidemiol Biomarkers Prev,2010,19(8): 1893-907.
    [5]Youlden D R, Cramb S M, Baade P D. The International Epidemiology of Lung Cancer:geographical distribution and secular trends [J]. J Thorac Oncol,2008, 3(8):819-31.
    [6]Lam W K, White N W, Chan-Yeung M M. Lung cancer epidemiology and risk factors in Asia and Africa [J]. The international journal of tuberculosis and lung disease:the official journal of the International Union against Tuberculosis and Lung Disease,2004,8(9):1045-57.
    [7]Giaccone G, Zucali P A. Src as a potential therapeutic target in non-small-cell lung cancer [J]. Ann Oncol,2008,19(7):1219-23.
    [8]Felip E, Santarpia M, Rosell R. Emerging drugs for non-small-cell lung cancer [J]. Expert Opin Emerg Drugs,2007,12(3):449-60.
    [9]Rami-Porta R, Crowley J J, Goldstraw P. The revised TNM staging system for lung cancer [J]. Annals of thoracic and cardiovascular surgery:official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia,2009,15(1): 4-9.
    [10]Lima J P, Dos Santos L V, Sasse E C, et al. Optimal duration of first-line chemotherapy for advanced non-small cell lung cancer:a systematic review with meta-analysis [J]. Eur J Cancer,2009,45(4):601-7.
    [11]Gridelli C, Bareschino M A, Schettino C, et al. Erlotinib in non-small cell lung cancer treatment:current status and future development [J]. Oncologist,2007, 12(7):840-9.
    [12]Giaccone G Epidermal growth factor receptor inhibitors in the treatment of non-small-cell lung cancer [J]. J Clin Oncol,2005,23(14):3235-42.
    [13]Pao W, Miller V A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer:current knowledge and future directions [J]. J Clin Oncol,2005,23(11):2556-68.
    [14]Silvestri G A, Rivera M P. Targeted therapy for the treatment of advanced non-small cell lung cancer:a review of the epidermal growth factor receptor antagonists [J]. Chest,2005,128(6):3975-84.
    [15]Steeg P S. Tumor metastasis:mechanistic insights and clinical challenges [J]. Nat Med,2006,12(8):895-904.
    [16]Chaffer C L, Weinberg R A. A perspective on cancer cell metastasis [J]. Science, 2011,331(6024):1559-64.
    [17]Valastyan S, Weinberg R A. Tumor metastasis:molecular insights and evolving paradigms [J]. Cell,2011,147(2):275-92.
    [18]Friedl P, Alexander S. Cancer invasion and the microenvironment:plasticity and reciprocity [J]. Cell,2011,147(5):992-1009.
    [19]Qian B Z, Pollard J W. Macrophage diversity enhances tumor progression and metastasis [J]. Cell,2010,141(1):39-51.
    [20]Chen J, Yao Y, Gong C, et al. CCL18 from Tumor-Associated Macrophages Promotes Breast Cancer Metastasis via PITPNM3 [J]. Cancer Cell,2011,19(4): 541-55.
    [21]Gupta G P, Massague J. Cancer metastasis:building a framework [J]. Cell,2006, 127(4):679-95.
    [22]Balkwill F. Cancer and the chemokine network [J]. Nat Rev Cancer,2004,4(7): 540-50.
    [23]Bierie B, Moses H L. Tumour microenvironment:TGFbeta:the molecular Jekyll and Hyde of cancer [J]. Nat Rev Cancer,2006,6(7):506-20.
    [24]Joyce J A, Pollard J W. Microenvironmental regulation of metastasis [J]. Nat Rev Cancer,2009,9(4):239-52.
    [25]Nguyen D X, Bos P D, Massague J. Metastasis:from dissemination to organ-specific colonization [J]. Nat Rev Cancer,2009,9(4):274-84.
    [26]Liotta L A, Kohn E C. The microenvironment of the tumour-host interface [J]. Nature,2001,411(6835):375-9.
    [27]Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature,2001,410(6824):50-6.
    [28]Parent C A, Blacklock B J, Froehlich W M, et al. G protein signaling events are activated at the leading edge of chemotactic cells [J]. Cell,1998,95(1):81-91.
    [29]Parent C A, Devreotes P N. A cell's sense of direction [J]. Science,1999, 284(5415):765-70.
    [30]Jones G E. Cellular signaling in macrophage migration and chemotaxis [J]. J Leukoc Biol,2000,68(5):593-602.
    [31]Iijima M, Huang Y E, Devreotes P. Temporal and spatial regulation of chemotaxis [J]. Dev Cell,2002,3(4):469-78.
    [32]Ben-Ya'acov A, Ravid S. Epidermal growth factor-mediated transient phosphorylation and membrane localization of myosin II-B are required for efficient chemotaxis [J]. J Biol Chem,2003,278(41):40032-40.
    [33]Menu E, Kooijman R, Van Valckenborgh E, et al. Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells:study in the 5T33MM model [J]. Br J Cancer,2004,90(5):1076-83.
    [34]Price J T, Tiganis T, Agarwal A, et al. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3'-kinase and phospholipase C-dependent mechanism [J]. Cancer Res,1999, 59(21):5475-8.
    [35]Bailly M, Wyckoff J, Bouzahzah B, et al. Epidermal growth factor receptor distribution during chemotactic responses [J]. Mol Biol Cell,2000,11(11): 3873-83.
    [36]Roussos E T, Condeelis J S, Patsialou A. Chemotaxis in cancer [J]. Nat Rev Cancer,2011,11(8):573-87.
    [37]Fernandis A Z, Prasad A, Band H, et al. Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells [J]. Oncogene,2004,23(1): 157-67.
    [38]Liu Y, Wang B, Wang J, et al. Down-regulation of PKCzeta expression inhibits chemotaxis signal transduction in human lung cancer cells [J]. Lung Cancer, 2009,63(2):210-8.
    [39]Wang J, Wan W, Sun R, et al. Reduction of Akt2 expression inhibits chemotaxis signal transduction in human breast cancer cells [J]. Cell Signal,2008,20(6): 1025-34.
    [40]Sun R, Gao P, Chen L, et al. Protein kinase C zeta is required for epidermal growth factor-induced chemotaxis of human breast cancer cells [J]. Cancer Res, 2005,65(4):1433-41.
    [41]Labelle M, Begum S, Hynes R O. Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis [J]. Cancer Cell,2011,20(5):576-90.
    [42]Massague J. TGFbeta in Cancer [J]. Cell,2008,134(2):215-30.
    [43]Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition [J]. Cell Res,2009,19(2):156-72.
    [44]Zavadil J, Bottinger E P. TGF-beta and epithelial-to-mesenchymal transitions [J]. Oncogene,2005,24(37):5764-74.
    [45]Thiery J P, Acloque H, Huang R Y, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell,2009,139(5):871-90.
    [46]Thiery J P. Epithelial-mesenchymal transitions in tumour progression [J]. Nat Rev Cancer,2002,2(6):442-54.
    [47]Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion [J]. Cancer Metastasis Rev,2009,28(1-2):15-33.
    [48]Yang J, Mani S A, Donaher J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis [J]. Cell,2004, 117(7):927-39.
    [49]Vincent T, Neve E P, Johnson J R, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition [J]. Nat Cell Biol,2009,11(8):943-50.
    [50]Gregory P A, Bert A G, Paterson E L, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol,2008,10(5):593-601.
    [51]Wu Y, Deng J, Rychahou P G, et al. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion [J]. Cancer Cell, 2009,15(5):416-28.
    [52]Scheel C, Eaton E N, Li S H, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast [J]. Cell,2011,145(6): 926-40.
    [53]Lee M K, Pardoux C, Hall M C, et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA[J]. EMBO J,2007,26(17): 3957-67.
    [54]Shirakihara T, Horiguchi K, Miyazawa K, et al. TGF-beta regulates isoform switching of FGF receptors and epithelial-mesenchymal transition [J]. EMBO J, 2011,30(4):783-95.
    [55]Yu L, Hebert M C, Zhang Y E. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses [J]. EMBO J,2002,21(14): 3749-59.
    [56]Horiguchi K, Shirakihara T, Nakano A, et al. Role of Ras signaling in the induction of snail by transforming growth factor-beta [J]. J Biol Chem,2009, 284(1):245-53.
    [57]Janda E, Lehmann K, Killisch I, et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis:dissection of Ras signaling pathways [J]. J Cell Biol,2002,156(2):299-313.
    [58]Bakin A V, Rinehart C, Tomlinson A K, et al. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration [J]. J Cell Sci,2002,115(Pt 15):3193-206.
    [59]Bhowmick N A, Ghiassi M, Bakin A, et al. Transforming growth factor-betal mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism [J]. Mol Biol Cell,2001,12(1):27-36.
    [60]Zuo W, Chen Y G. Specific activation of mitogen-activated protein kinase by transforming growth factor-beta receptors in lipid rafts is required for epithelial cell plasticity [J]. Mol Biol Cell,2009,20(3):1020-9.
    [61]Wendt M K, Smith J A, Schiemann W P. Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression [J]. Oncogene,2010,29(49): 6485-98.
    [62]Das F, Ghosh-Choudhury N, Mahimainathan L, et al. Raptor-rictor axis in TGFbeta-induced protein synthesis [J]. Cell Signal,2008,20(2):409-23.
    [63]Song K, Wang H, Krebs T L, et al. Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation [J]. EMBO J,2006,25(1):58-69.
    [64]Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway [J]. J Cell Biol,2007,178(3):437-51.
    [65]Gadir N, Jackson D N, Lee E, et al. Defective TGF-beta signaling sensitizes human cancer cells to rapamycin [J]. Oncogene,2008,27(8):1055-62.
    [66]Wu L, Derynck R. Essential role of TGF-beta signaling in glucose-induced cell hypertrophy [J]. Dev Cell,2009,17(1):35-48.
    [67]Goraksha-Hicks P, Rathmell J C. TGF-beta:a new role for an old AktTOR [J]. Dev Cell,2009,17(1):6-8.
    [68]Rahimi R A, Andrianifahanana M, Wilkes M C, et al. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-beta [J]. Cancer Res,2009,69(1):84-93.
    [69]Brown E J, Albers M W, Shin T B, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex [J]. Nature,1994,369(6483):756-8.
    [70]Sabers C J, Martin M M, Brunn G J, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells [J]. J Biol Chem,1995, 270(2):815-22.
    [71]Kim D H, Sarbassov D D, Ali S M, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery [J]. Cell, 2002,110(2):163-75.
    [72]Kim D H, Sarbassov D D, Ali S M, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR [J]. Mol Cell,2003,11(4):895-904.
    [73]Sancak Y, Thoreen C C, Peterson T R, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase [J]. Mol Cell,2007,25(6):903-15.
    [74]Vander Haar E, Lee S I, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 [J]. Nat Cell Biol,2007,9(3): 316-23.
    [75]Hay N, Sonenberg N. Upstream and downstream of mTOR [J]. Genes Dev, 2004,18(16):1926-45.
    [76]Laplante M, Sabatini D M. mTOR signaling in growth control and disease [J]. Cell,2012,149(2):274-93.
    [77]Sengupta S, Peterson T R, Sabatini D M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress [J]. Mol Cell,2010,40(2): 310-22.
    [78]Laplante M, Sabatini D M. mTOR signaling at a glance [J]. J Cell Sci,2009, 122(Pt 20):3589-94.
    [79]Guertin D A, Sabatini D M. Defining the role of mTOR in cancer [J]. Cancer Cell,2007,12(1):9-22.
    [80]Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive [J]. Nat Cell Biol,2004, 6(11):1122-8.
    [81]Sarbassov D D, Ali S M, Kim D H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton [J]. Curr Biol,2004,14(14):1296-302.
    [82]Frias M A, Thoreen C C, Jaffe J D, et al. mSinl is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s [J]. Curr Biol, 2006,16(18):1865-70.
    [83]Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity [J]. Cell,2006,127(1):125-37.
    [84]Yang Q, Inoki K, Ikenoue T, et al. Identification of Sinl as an essential TORC2 component required for complex formation and kinase activity [J]. Genes Dev, 2006,20(20):2820-32.
    [85]Sarbassov D D, Guertin D A, Ali S M, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex [J]. Science,2005,307(5712): 1098-101.
    [86]Guertin D A, Stevens D M, Thoreen C C, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1 [J]. Dev Cell,2006,11(6): 859-71.
    [87]Facchinetti V, Ouyang W, Wei H, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C [J]. EMBO J,2008,27(14):1932-43.
    [88]Garcia-Martinez J M, Alessi D R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1) [J]. Biochem J,2008,416(3): 375-85.
    [89]Hietakangas V, Cohen S M. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells [J]. BMC Cancer,2008,8(10):1-8.
    [90]Das G, Shiras A, Shanmuganandam K, et al. Rictor regulates MMP-9 activity and invasion through Raf-1-MEK-ERK signaling pathway in glioma cells [J]. Mol Carcinog,2011,50(6):412-23.
    [91]Roulin D, Cerantola Y, Dormond-Meuwly A, et al. Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo [J]. Mol Cancer,2010,9(1):57-60.
    [92]Goncharova E A, Goncharov D A, Li H, et al. mTORC2 is required for proliferation and survival of TSC2-null cells [J]. Mol Cell Biol,2011,31(12): 2484-98.
    [93]Oh W J, Jacinto E. mTOR complex 2 signaling and functions [J]. Cell Cycle, 2011,10(14):2305-16.
    [94]Li H, Lin J, Wang X, et al. Targeting of mTORC2 prevents cell migration and promotes apoptosis in breast cancer [J]. Breast cancer research and treatment, 2012,134(3):1057-66.
    [95]Dai N, Christiansen J, Nielsen F C, et al. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts [J]. Genes Dev,2013,27(3):301-12.
    [96]Wander S A, Zhao D, Besser A H, et al. PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro:implications for targeted therapy [J]. Breast Cancer Res Treat,2013, 138(2):369-81.
    [97]Zhang F, Zhang X, Li M, et al. mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis [J]. Cancer Res,2010,70(22): 9360-70.
    [98]Masri J, Bernath A, Martin J, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor [J]. Cancer Res, 2007,67(24):11712-20.
    [99]Lamouille S, Connolly E, Smyth J W, et al. TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion [J]. J Cell Sci,2012,125(Pt 5):1259-73.
    [100]Gulhati P, Bowen K A, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Racl signaling pathways [J]. Cancer Res,2011,71(9):3246-56.
    [101]Guertin D A, Stevens D M, Saitoh M, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice [J]. Cancer Cell,2009,15(2):148-59.
    [102]Zhang B, Ma Y, Guo H, et al. Akt2 is required for macrophage chemotaxis [J]. Eur J Immunol,2009,39(3):894-901.
    [103]Zhang B, Gu F, She C, et al. Reduction of Akt2 inhibits migration and invasion of glioma cells [J]. Int J Cancer,2009,125(3):585-95.
    [104]Tilghman R W, Slack-Davis J K, Sergina N, et al. Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells [J]. J Cell Sci,2005,118(Pt 12):2613-23.
    [105]Wodarz A, Nathke I. Cell polarity in development and cancer [J]. Nat Cell Biol,2007,9(9):1016-24.
    [106]Hall A. The cytoskeleton and cancer [J]. Cancer Metastasis Rev,2009,28(1-2): 5-14.
    [107]Vasioukhin V, Bauer C, Yin M, et al. Directed actin polymerization is the driving force for epithelial cell-cell adhesion [J]. Cell,2000,100(2):209-19.
    [108]Kodama A, Lechler T, Fuchs E. Coordinating cytoskeletal tracks to polarize cellular movements [J]. J Cell Biol,2004,167(2):203-7.
    [109]Liu L, Das S, Losert W, et al. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion [J]. Dev Cell,2010,19(6):845-57.
    [110]Barquilla A, Crespo J L, Navarro M. Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation [J]. Proc Natl Acad Sci U S A,2008,105(38):14579-84.
    [111]Hader C, Marlier A, Cantley L. Mesenchymal-epithelial transition in epithelial response to injury:the role of Foxc2 [J]. Oncogene,2010,29(7):1031-40.
    [112]Gunasinghe N P, Wells A, Thompson E W, et al. Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer [J]. Cancer Metastasis Rev,2012,31(3-4):469-78.
    [113]Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation [J]. Mol Cancer Res, 2011,9(12):1608-20.
    [114]Nakaya Y, Kuroda S, Katagiri Y T, et al. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1 [J]. Dev Cell,2004,7(3):425-38.
    [115]Maru S, Ishigaki Y, Shinohara N, et al. Inhibition of mTORC2 but not mTORC1 Up-Regulates E-Cadherin Expression and Inhibits Cell Motility by Blocking HIF-2alpha Expression in Human Renal Cell Carcinoma [J]. J Urol, 2013,189(5):1921-9.
    [116]Bashir T, Cloninger C, Artinian N, et al. Conditional astroglial rictor overexpression induces malignant glioma in mice [J]. PLoS ONE,2012,7(10): e47741.
    [117]Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines:mechanisms for epithelial mesenchymal transitions [J]. J Biol Chem,2003,278(23):21113-23.
    [118]Akhurst R J. TGF-beta antagonists:why suppress a tumor suppressor? [J]. J Clin Invest,2002,109(12):1533-6.
    [119]Akhurst R J, Derynck R. TGF-beta signaling in cancer--a double-edged sword [J]. Trends Cell Biol,2001,11(11):S44-51.
    [120]Niehrs C, Acebron S P. Mitotic and mitogenic Wnt signalling [J]. EMBO J, 2012,31(12):2705-13.
    [121]Niehrs C. The complex world of WNT receptor signalling [J]. Nat Rev Mol Cell Biol,2012,13(12):767-79.
    [122]Clevers H, Nusse R. Wnt/beta-Catenin Signaling and Disease [J]. Cell,2012, 149(6):1192-205.
    [123]Anastas J N, Moon R T. WNT signalling pathways as therapeutic targets in cancer [J]. Nat Rev Cancer,2012,13(1):11-26.
    [124]Dickinson D J, Nelson W J, Weis W I. A polarized epithelium organized by beta-and alpha-catenin predates cadherin and metazoan origins [J]. Science, 2011,331(6022):1336-9.
    [125]Weis W I, Nelson W J. Re-solving the cadherin-catenin-actin conundrum [J]. J Biol Chem,2006,281(47):35593-7.
    [126]Ha N C, Tonozuka T, Stamos J L, et al. Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation [J]. Mol Cell,2004,15(4):511-21.
    [127]Baarsma H A, Menzen M H, Halayko A J, et al. beta-Catenin signaling is required for TGF-betal-induced extracellular matrix production by airway smooth muscle cells [J]. American journal of physiology Lung cellular and molecular physiology,2011,301(6):L956-65.
    [128]Amini Nik S, Ebrahim R P, Van Dam K, et al. TGF-beta modulates beta-Catenin stability and signaling in mesenchymal proliferations [J]. Exp Cell Res,2007,313(13):2887-95.
    [129]Baarsma H A, Spanjer A I, Haitsma G, et al. Activation of WNT/beta-catenin signaling in pulmonary fibroblasts by TGF-beta(1) is increased in chronic obstructive pulmonary disease [J]. PLoS One,2011,6(9):e25450.
    [130]Wang H, Rajan S, Liu G, et al. Transforming growth factor beta suppresses beta-catenin/Wnt signaling and stimulates an adhesion response in human colon carcinoma cells in a Smad4/DPC4 independent manner [J]. Cancer Lett, 2008,264(2):281-7.
    [131]Lawlor M A, Alessi D R. PKB/Akt:a key mediator of cell proliferation, survival and insulin responses? [J]. J Cell Sci,2001,114(Pt 16):2903-10.
    [132]Eger A, Stockinger A, Park J, et al. beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition [J]. Oncogene,2004,23(15):2672-80.
    [133]Thiery J P, Sleeman J P. Complex networks orchestrate epithelial-mesenchymal transitions [J]. Nat Rev Mol Cell Biol,2006,7(2): 131-42.
    [134]Fu L, Zhang C, Zhang L Y, et al. Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/beta-catenin signalling pathway [J]. Gut,2011,60(12):1635-43.
    [135]Yook J I, Li X Y, Ota I, et al. A Wnt-Axin2-GSK3beta cascade regulates Snaill activity in breast cancer cells [J]. Nat Cell Biol,2006,8(12):1398-406.
    [136]Conacci-Sorrell M, Simcha I, Ben-Yedidia T, et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions:the roles of beta-catenin signaling, Slug, and MAPK [J]. J Cell Biol,2003,163(4): 847-57.
    [137]Zhou B P, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition [J]. Nat Cell Biol,2004,6(10):931-40.
    [138]Kim K K, Wei Y, Szekeres C, et al. Epithelial cell alpha3betal integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis [J]. J Clin Invest,2009,119(1):213-24.
    [139]Tian X, Zhang J, Tan T K, et al. Association of beta-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF-betal [J]. J Cell Sci,2013,126(Pt 1):67-76.
    [140]Li T F, Chen D, Wu Q, et al. Transforming growth factor-beta stimulates cyclin Dl expression through activation of beta-catenin signaling in chondrocytes [J]. J Biol Chem,2006,281(30):21296-304.
    [141]Zhang M, Wang M, Tan X, et al. Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes [J]. J Biol Chem, 2010,285(12):8703-10.
    [142]Hirota M, Watanabe K, Hamada S, et al. Smad2 functions as a co-activator of canonical Wnt/beta-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300 [J]. Cell Signal,2008,20(9): 1632-41.
    [143]Jian H, Shen X, Liu I, et al. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells [J]. Genes Dev,2006, 20(6):666-74.
    [144]Zaytseva Y Y, Valentino J D, Gulhati P, et al. mTOR inhibitors in cancer therapy [J]. Cancer Lett,2012,319(1):1-7.
    [145]Pool S E, Bison S, Koelewijn S J, et al. mTOR inhibitor RAD001 promotes metastasis in a rat model of pancreatic neuroendocrine cancer [J]. Cancer Res, 2013,73(1):12-8.
    [1]Xu J, Wang F, Van Keymeulen A, et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils [J]. Cell,2003, 114(2):201-14.
    [2]Huttenlocher A. Cell polarization mechanisms during directed cell migration [J]. Nat Cell Biol,2005,7(4):336-7.
    [3]Bernards R. Cancer:cues for migration [J]. Nature,2003,425(6955):247-8.
    [4]Ridley A J, Schwartz M A, Burridge K, et al. Cell migration:integrating signals from front to back [J]. Science,2003,302(5651):1704-9.
    [5]Raftopoulou M, Hall A. Cell migration:Rho GTPases lead the way [J]. Dev Biol,2004,265(1):23-32.
    [6]Laplante M, Sabatini D M. mTOR signaling in growth control and disease [J]. Cell,2012,149(2):274-93.
    [7]Liu L, Parent C A. Review series:TOR kinase complexes and cell migration [J]. J Cell Biol,2011,194(6):815-24.
    [8]Heitman J, Movva N R, Hall M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast [J]. Science,1991,253(5022):905-9.
    [9]Kunz J, Henriquez R, Schneider U, et al. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression [J]. Cell,1993,73(3):585-96.
    [10]Brown E J, Albers M W, Shin T B, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex [J]. Nature,1994,369(6483):756-8.
    [11]Sabers C J, Martin M M, Brunn G J, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells [J]. J Biol Chem,1995, 270(2):815-22.
    [12]Bhaskar P T, Hay N. The two TORCs and Akt [J]. Dev Cell,2007,12(4): 487-502.
    [13]Wullschleger S, Loewith R, Hall M N. TOR signaling in growth and metabolism [J]. Cell,2006,124(3):471-84.
    [14]Shaw R J, Cantley L C. Ras, PI(3)K and mTOR signalling controls tumour cell growth [J]. Nature,2006,441(7092):424-30.
    [15]Abraham R T. Identification of TOR signaling complexes:more TORC for the cell growth engine [J]. Cell,2002,111(1):9-12.
    [16]Kim D H, Sarbassov D D, Ali S M, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery [J]. Cell, 2002,110(2):163-75.
    [17]Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control [J]. Mol Cell,2002,10(3):457-68.
    [18]Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive [J]. Nat Cell Biol,2004, 6(11):1122-8.
    [19]Sarbassov D D, Ali S M, Kim D H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton [J]. Curr Biol,2004,14(14):1296-302.
    [20]Kim D H, Sarbassov D D, Ali S M, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR [J]. Mol Cell,2003,11(4):895-904.
    [21]Sancak Y, Thoreen C C, Peterson T R, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase [J]. Mol Cell,2007,25(6):903-15.
    [22]Vander Haar E, Lee S I, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 [J]. Nat Cell Biol, 2007,9(3): 316-23.
    [23]Hay N, Sonenberg N. Upstream and downstream of mTOR [J]. Genes Dev, 2004,18(16):1926-45.
    [24]Beauchamp E M, Platanias L C. The evolution of the TOR pathway and its role in cancer [J]. Oncogene,2012,
    [25]Sengupta S, Peterson T R, Sabatini D M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress [J]. Mol Cell,2010,40(2): 310-22.
    [26]Laplante M, Sabatini D M. mTOR signaling at a glance [J]. J Cell Sci,2009, 122(Pt 20):3589-94.
    [27]Guertin D A, Sabatini D M. Defining the role of mTOR in cancer [J]. Cancer Cell,2007,12(1):9-22.
    [28]Frias M A, Thoreen C C, Jaffe J D, et al. mSinl is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s [J]. Curr Biol, 2006,16(18):1865-70.
    [29]Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity [J]. Cell,2006,127(1):125-37.
    [30]Yang Q, Inoki K, Ikenoue T, et al. Identification of Sinl as an essential TORC2 component required for complex formation and kinase activity [J]. Genes Dev, 2006,20(20):2820-32.
    [31]Pearce L R, Huang X, Boudeau J, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2 [J]. Biochem J,2007,405(3): 513-22.
    [32]Sarbassov D D, Guertin D A, Ali S M, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex [J]. Science,2005,307(5712): 1098-101.
    [33]Guertin D A, Stevens D M, Thoreen C C, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1 [J]. Dev Cell,2006,11(6): 859-71.
    [34]Facchinetti V, Ouyang W, Wei H, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C [J]. EMBO J,2008,27(14):1932-43.
    [35]Garcia-Martinez J M, Alessi D R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1) [J]. Biochem J,2008,416(3): 375-85.
    [36]Hietakangas V, Cohen S M. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells [J]. BMC Cancer,2008,8(282.
    [37]Das G, Shiras A, Shanmuganandam K, et al. Rictor regulates MMP-9 activity and invasion through Raf-1-MEK-ERK signaling pathway in glioma cells [J]. Mol Carcinog,2011,50(6):412-23.
    [38]Roulin D, Cerantola Y, Dormond-Meuwly A, et al. Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo [J]. Mol Cancer,2010,9(57.
    [39]Goncharova E A, Goncharov D A, Li H, et al. mTORC2 is required for proliferation and survival of TSC2-null cells [J]. Mol Cell Biol,2011,31(12): 2484-98.
    [40]Oh W J, Jacinto E. mTOR complex 2 signaling and functions [J]. Cell Cycle, 2011,10(14):2305-16.
    [41]Li H, Lin J, Wang X, et al. Targeting of mTORC2 prevents cell migration and promotes apoptosis in breast cancer [J]. Breast cancer research and treatment, 2012,134(3):1057-66.
    [42]Dai N, Christiansen J, Nielsen F C, et al. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts [J]. Genes Dev,2013,27(3):301-12.
    [43]Gao D, Wan L, Inuzuka H, et al. Rictor Forms a Complex with Cullin-1 to Promote SGK1 Ubiquitination and Destruction [J]. Mol Cell,2010,39(5): 797-808.
    [44]Mcdonald P C, Oloumi A, Mills J, et al. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival [J]. Cancer Res,2008,68(6):1618-24.
    [45]Hagan G N, Lin Y, Magnuson M A, et al. A Rictor-Myolc complex participates in dynamic cortical actin events in 3T3-L1 adipocytes [J]. Molecular and cellular biology,2008,28(13):4215-26.
    [46]Zhang F, Zhang X, Li M, et al. mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis [J]. Cancer Res,2010,70(22): 9360-70.
    [47]Liu L, Li F, Cardelli J A, et al. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways [J]. Oncogene,2006,25(53): 7029-40.
    [48]Hall A. The cytoskeleton and cancer [J]. Cancer Metastasis Rev,2009,28(1-2): 5-14.
    [49]Berven L A, Willard F S, Crouch M F. Role of the p70(S6K) pathway in regulating the actin cytoskeleton and cell migration [J]. Exp Cell Res,2004, 296(2):183-95.
    [50]Liu L, Chen L, Chung J, et al. Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins [J]. Oncogene,2008,27(37): 4998-5010.
    [51]Etienne-Manneville S, Hall A. Rho GTPases in cell biology [J]. Nature,2002, 420(6916):629-35.
    [52]Liu L, Luo Y, Chen L, et al. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity [J]. J Biol Chem, 2010,285(49):38362-73.
    [53]Gan B, Yoo Y, Guan J L. Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth [J]. J Biol Chem,2006,281(49):37321-9.
    [54]Gu S, Kounenidakis M, Schmidt E M, et al. Rapid activation of FAK/mTOR/p70S6K/PAK1-signaling controls the early testosterone-induced actin reorganization in colon cancer cells [J]. Cell Signal,2013,25(1):66-73.
    [55]Suer S, Ampasala D, Walsh M F, et al. Role of ERK/mTOR signaling in TGFbeta-modulated focal adhesion kinase mRNA stability and protein synthesis in cultured rat IEC-6 intestinal epithelial cells [J]. Cell and tissue research,2009, 336(2):213-23.
    [56]Zhou H Y, Wong A S. Activation of p70S6K induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells [J]. Endocrinology,2006,147(5):2557-66.
    [57]Murooka T T, Rahbar R, Platanias L C, et al. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1[J]. Blood, 2008,111(10):4892-901.
    [58]Hashimoto I, Koizumi K, Tatematsu M, et al. Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells [J]. Eur J Cancer,2008, 44(7):1022-9.
    [59]Ferrara N. VEGF and the quest for tumour angiogenesis factors [J]. Nat Rev Cancer,2002,2(10):795-803.
    [60]Guba M, Von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis:involvement of vascular endothelial growth factor [J]. Nat Med,2002,8(2):128-35.
    [61]Kobayashi S, Kishimoto T, Kamata S, et al. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis [J]. Cancer Sci,2007,98(5):726-33.
    [62]Boffa D J, Luan F, Thomas D, et al. Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer [J]. Clin Cancer Res,2004, 10(1 Ptl):293-300.
    [63]Luan F L, Ding R, Sharma V K, et al. Rapamycin is an effective inhibitor of human renal cancer metastasis [J]. Kidney Int,2003,63(3):917-26.
    [64]Gulhati P, Bowen K A, Liu J, et al. mTORCl and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Racl signaling pathways [J]. Cancer Res,2011,71(9):3246-56.
    [65]Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway [J]. J Cell Biol,2007,178(3):437-51.
    [66]Rahimi R A, Andrianifahanana M, Wilkes M C, et al. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-beta [J]. Cancer Res,2009,69(1):84-93.
    [67]Masri J, Bernath A, Martin J, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor [J]. Cancer Res, 2007,67(24):11712-20.
    [68]Bashir T, Cloninger C, Artinian N, et al. Conditional astroglial rictor overexpression induces malignant glioma in mice [J]. PLoS ONE,2012,7(10): e47741.
    [69]Wander S A, Zhao D, Besser A H, et al. PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro:implications for targeted therapy [J]. Breast Cancer Res Treat,2013, 138(2):369-81.
    [70]Lamouille S, Connolly E, Smyth J W, et al. TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion [J]. J Cell Sci,2012,.125(Pt 5):1259-73.
    [71]Guertin D A, Stevens D M, Saitoh M, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice [J]. Cancer Cell, 2009,15(2):148-59.
    [72]Hernandez-Negrete I, Carretero-Ortega J, Rosenfeldt H, et al. P-Rexl links mammalian target of rapamycin signaling to Rac activation and cell migration [J]. J Biol Chem,2007,282(32):23708-15.
    [73]Riesterer O, Zingg D, Hummerjohann J, et al. Degradation of PKB/Akt protein by inhibition of the VEGF receptor/mTOR pathway in endothelial cells [J]. Oncogene,2004,23(26):4624-35.
    [74]Liu L, Das S, Losert W, et al. mTORC2 regulates neutrophil chemotaxis in a cAMP-and RhoA-dependent fashion [J]. Dev Cell,2010,19(6):845-57.
    [75]Moss S C, Lightell D J, Jr., Marx S O, et al. Rapamycin regulates endothelial cell migration through regulation of the cyclin-dependent kinase inhibitor p27Kipl [J]. J Biol Chem,2010,285(16):11991-7.
    [76]Falcon B L, Barr S, Gokhale P C, et al. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors [J]. Cancer Res,2011,71(5):1573-83.
    [77]Dada S, Demartines N, Dormond O. mTORC2 regulates PGE2-mediated endothelial cell survival and migration [J]. Biochem Biophys Res Commun, 2008,372(4):875-9.
    [78]Zhuang G, Yu K, Jiang Z, et al. Phosphoproteomic Analysis Implicates the mTORC2-FoxO1 Axis in VEGF Signaling and Feedback Activation of Receptor Tyrosine Kinases [J]. Sci Signal,2013,6(271):ra25.
    [79]Dormond O, Contreras A G, Meijer E, et al. CD40-induced signaling in human endothelial cells results in mTORC2-and Akt-dependent expression of vascular endothelial growth factor in vitro and in vivo [J]. J Immunol,2008,181(11): 8088-95.
    [80]Barquilla A, Crespo J L, Navarro M. Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation [J]. Proc Natl Acad Sci U S A, 2008,105(38):14579-84.
    [81]Kuehn H S, Jung M Y, Beaven M A, et al. Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release [J]. J Biol Chem,2011,286(1):391-402.
    [82]Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion [J]. Cancer Metastasis Rev,2009,28(1-2):15-33.
    [83]Maru S, Ishigaki Y, Shinohara N, et al. Inhibition of mTORC2 but not mTORC1 Up-Regulates E-Cadherin Expression and Inhibits Cell Motility by Blocking HIF-2alpha Expression in Human Renal Cell Carcinoma [J]. J Urol,2013, 189(5):1921-9.
    [84]Zaytseva Y Y, Valentino J D, Gulhati P, et al. mTOR inhibitors in cancer therapy [J]. Cancer Lett,2012,319(1):1-7.
    [85]Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma [J]. N Engl J Med,2007,356(22):2271-81.
    [86]Soria J C, Shepherd F A, Douillard J Y, et al. Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors [J]. Ann Oncol,2009,20(10): 1674-81.
    [87]Pool S E, Bison S, Koelewijn S J, et al. mTOR inhibitor RAD001 promotes metastasis in a rat model of pancreatic neuroendocrine cancer [J]. Cancer Res, 2013,73(1):12-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700