用户名: 密码: 验证码:
BAG-1基因与乳腺癌TAM治疗敏感性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     他莫昔芬作为乳腺癌内分泌治疗的代表药物被广泛用于治疗早期及晚期雌激素受体和\或孕激素受体阳性的乳腺癌患者。它能显著提高乳腺癌患者无复发生存率及总存活率,并能降低对侧乳腺癌的发病率。然而有数据显示,约有30-50%雌激素受体阳性的乳腺癌患者对他莫昔芬并不敏感。有学者提出,在乳腺癌的内分泌治疗中,除了目前已经明确的靶点外,可能尚存在其他的重要分子与雌激素、孕激素相互作用,共同影响他莫昔芬治疗的效果。BAG-1是一种具有促进细胞存活作用的抗凋亡基因,其蛋白参与细胞凋亡,信号转导、细胞增殖及基因转录等多条调节通路。有多项研究报道BAG-1高表达可抑制乳腺癌细胞凋亡,增强肿瘤细胞对缺氧、辐射、化疗药物等刺激的耐受性,与肿瘤细胞耐药有关。更有研究显示,乳腺癌组织中BAG-1蛋白的表达与接受他莫昔芬治疗的乳腺癌患者预后显著相关。本课题拟通过多种实验方法探讨BAG-1与乳腺癌细胞对他莫昔芬药物敏感性的关系,探讨BAG-1在乳腺癌他莫昔芬治疗中的作用,为乳腺癌内分泌治疗敏感人群的筛选及疗效的预测提供新的分子指标。
     方法
     1、为了检测他莫昔芬耐药乳腺癌细胞及敏感乳腺癌细胞中BAG-1的表达水平差异,我们通过将人乳腺癌他莫昔芬敏感细胞MCF-7持续培养在含有低浓度4-OH TAM的培养液中,建立人乳腺癌他莫昔芬耐药细胞TAMR/MCF-7。并在不同浓度4-OH TAM作用下,通过MTT测细胞存活率、Annexin V-FITC/PI双染色法检测细胞凋亡、流式细胞术测细胞周期等方法检验TAMR/MCF-7细胞的耐药特性;
     2、采用real-time PCR和western blot方法对耐药细胞及敏感细胞中BAG-1基因在mRNA和蛋白水平的表达进行检测,初步分析其表达水平与乳腺癌细胞对TAM敏感性的关系,检测两株细胞中ER表达水平的差异,分析耐药细胞中的耐药特性的产生是否与ER表达的丢失相关;
     3、设计合成3对BAG-1基因的siRNA,采用脂质体试剂转染乳腺癌细胞MCF-7,利用real-time PCR和western blot检测siRAN干扰后BAG-1基因的沉默效果,并筛选干扰效果较好的siRNA以及适宜的转染浓度,用于下一步实验;
     4、使用siRNA干扰乳腺癌细胞中BAG-1的表达水平。通过MTT测细胞存活率、Annexin V-FITC/PI双染色法检测细胞凋亡、流式细胞术测细胞周期等方法检测BAG-1基因表达下调后乳腺癌细胞对他莫昔芬的敏感性变化;
     5、使用重组载体pCR3.1/BAG-1p50, pCR3.1/BAG-1p46, pCR3.1/BAG-1p33分别转染乳腺癌细胞株,使其BAG-1各亚型的表达水平分别上调,转染48小时后,real-time PCR和western blot检测重组质粒转染细胞后BAG-1基因各亚型的表达情况。并通过MTT测细胞生长抑制率、Annexin V-FITC/PI双染色法检测细胞凋亡、流式细胞术测细胞周期等方法检测BAG-1基因各亚型表达上调后乳腺癌细胞对他莫昔芬的敏感性变化。
     结果
     1、经过6个月低浓度的他莫昔芬持续诱导,初步建立人乳腺癌他莫昔芬耐药细胞(TAMR/MCF-7)。倒置显微镜下可观察他莫昔芬耐药细胞(TAMR/MCF-7)和敏感细胞(MCF-7)形态学上差异明显;在相同浓度4-OH TAM作用下,TAMR/MCF-7细胞的存活率显著高于MCF-7细胞,提示相同浓度的4-OH TAM对耐药细胞的增值抑制作用明显弱于其对敏感细胞的作用。药物作用下MCF-7细胞的存活率较低、凋亡比率显著高于TAMR/MCF-7细胞,且MCF-7细胞中被阻滞于G0/G1期的细胞比例显著高于TAMR/MCF-7细胞。
     2、BAG-1在他莫昔芬耐药细胞TAMR/MCF-7和敏感细胞MCF-7中均有表达,在耐药细胞中的表达水平显著高于其在敏感细胞中的表达。而两株细胞中ERa的表达水平未见显著变化。
     3、与空质粒对照组相比,3对不同的siRNA转染组BAG-1表达在mRNA及蛋白水平均有明显下降,筛选其中干扰效率最高的siRNA序列转染TAMR/MCF-7细胞。比较siRNA转染组与空质粒对照组对4-OH TAM的敏感性发现,在4-OHTAM作用下,两株细胞的存活率差异明显,且差异随着药物浓度的增大而增加,在10nM、100nM时,两株细胞的细胞存活率差异最为显著。100nM4-OH TAM处理48小时后,BAG-1降表达组与空白对照组细胞凋亡率差异显著。
     4、脂质体法分别转染含有各BAG-1亚型的三个重组质粒至乳腺癌细胞MCF-7中,转染组细胞的BAG-1各亚型在mRNA及蛋白水平的表达均明显高于对照组。MTT及Annexin V-FITC/PI双染色法测凋亡结果显示,只有转染了BAG-1p50的MCF-7细胞对4-OH TAM的敏感性降低,4-OH TAM作用下细胞存活率较空质粒对照组多,而凋亡比率较空质粒对照组少,流式细胞术测细胞周期结果显示亦只有转染了BAG-1p50的MCF-7细胞被阻滞于G0/G1期的细胞比率较对照组减少。而转染了BAG-1其他亚型基因的细胞对4-OH TAM的敏感性未见明显改变。
     结论
     该研究发现TAM耐药乳腺癌细胞中BAG-1表达水平显著高于其在敏感细胞的表达。增高乳腺癌细胞中BAG-1p50亚型的表达,可抑制由TAM诱导的细胞凋亡,增强细胞对TAM的耐药性。然而其他亚型的扩增表达并不能减弱TAM诱导的乳腺癌细胞凋亡。提示BAG-1不同亚型对TAM耐药性的影响不同,可能与BAG-1p50特异的N末端及细胞核定位有关。对BAG-1影响乳腺癌内分泌治疗疗效的具体机制及不同亚型在此过程中发挥作用的研究,或许可为乳腺癌靶向治疗及内分泌治疗敏感人群的筛选及疗效的预测提供新的分子指标。
Objective
     Tamoxifen, one of the most commonly used endocrine therapies, is widely considered as a standard treatment for both early and advanced estrogen-and/or progesterone-receptor positive breast cancer. It has been shown to improve relapse-free and overall survival and to reduce the incidence of cotralateral breast cancers. However, data shows that about30-50%of women with ER-positive breast cancer didn't response to tamoxifen. One hypothytic explaination was raised that certain critical molecules may affect the efficacy of TAM by involving in the ER signaling pathways and interact with ER%PR. BAG-1is a multifunctional protein that interacts with a number of molecules to regulate the diverse biological processes. Studies found that in breast cancer cell lines, BAG-1prevented cells from undergoing apoptosis induced by radiation, chemotherapy and stress. What's more, some studies reported a strong relationship between the increased BAG-1expression and improved outcome in breast cancer patients treated with TAM. In this study, we tried to assess the association between the expression of BAG-1and the sensitivity to4-OH TAM in the human breast cancer cells, and further investigated the effect of BAG-1on the TAM-induced apoptosis. We hope our finding can prove that BAG-1may serve as a favorable predictive biomarker for the responsiveness to TAM.
     Methods
     BAG-1expression was examined in the MCF-7cells and breast cancer cells that became resistant to4-OH TAM. The4-OH TAM-resistant MCF-7cells were then transfected with the BAG-1siRNA and the4-OH TAM-sensitive MCF-7cells with the plasmids carrying the human BAG-1isoform-specific expression constructs respectively to investigate the effect of BAG-1on the TAM-induced apoptosis.
     Results
     1、We established tamoxifen-resistant breast cancer cell line TAMR/MCF-7by continuously exposing to culture medium containing4-OH TAM (10-7M in ethanol) for6months. The acquisition of resistance to TAM in the TAMR/MCF-7cells was confirmed by comparing the morphology、the growth curves、apoptosis rate、cell cycle of the TAMR/MCF-7and MCF-7cells cultured in the presence of4-OH TAM.
     2、The expression levels of BAG-1in TAMR/MCF-7and MCF-7cells were determined by real-time PCR、RT-PCR and western blot. The result of real-time PCR indicated an almost two-fold increase in BAG-1expression in the TAMR/MCF-7cells compared to that of the MCF-7cells.
     3、BAG-1expression was dramatically decreased in the TAMR/MCF-7cells transfected with the BAG-1siRNA. We observed significantly increased apoptosis induced by the4-OH TAM in the cells transfected with the BAG-1siRNA compared to that in the control cells. Additionally, the proportion of cells blocked in G0/G1phase in siRNA group was higher than that in control group.
     4、The expressions of the specific BAG-1isoforms were dramatically enhanced in the MCF-7cells after transfection with each of the isoform-specific constructs. Cells overexpressing BAG-1p50showed significantly less proliferation inhibition、 apoptosis rate than the control group, and the proportion of cells blocked in G0/G1phase in p50group was also significantly fewer then that in control group. However, the cells transfected with the BAG-1p46and p33showed no significant change in response to4-OH TAM treatment.
     Conclusion
     Our study indicated that regulations of the BAG-1expression were associated with the altered sensitivity to4-OH TAM in breast cancer cell MCF-7. Distinct isoforms of BAG-1had different anti-apoptotic ability in breast cancer cells treated with the4-OH TAM, and BAG-1p50was the only isoform that inhibited the MCF-7cells from apoptosis induced by TAM. Our finding has significant prognostic, predictive and therapeutic implications in developing future targeted therapy against BAG-1, especially the BAG-1p50.
引文
[1]Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival:an overview of the randomised trials[J]. Lancet,2005,365(9472):1687-1717.
    [2]Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen:patient-level meta-analysis of randomised trials[J]. Lancet,2011,378(9793):771-784.
    [3]Carroll JS, Prall OW, Musgrove EA and Sutherland RL. A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence[J]. J Biol Chem,2000,275(49):38221-38229.
    [4]Lewis JS and Jordan VC. Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance[J]. Mutat Res,2005, 591(1-2):247-263.
    [5]Riggins RB, Bouton AH, Liu MC and Clarke R. Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer[J]. Vitam Horm,2005,71:,201-237.
    [6]Brimmell M, Burns JS, Munson P, McDonald L, O'Hare MJ, Lakhani SR, et al. High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers [J]. Br J Cancer,1999, 81(6):1042-1051.
    [7]Hohfeld J. Regulation of the heat shock conjugate Hsc70 in the mammalian cell:the characterization of the anti-apoptotic protein BAG-1 provides novel insights[J]. Biol Chem,1998,379(3):269-274.
    [8]Takayama S and Reed JC. Molecular chaperone targeting and regulation by BAG family proteins[J]. Nat Cell Biol,2001,3(10):E237-241.
    [9]Chen J, Xiong J, Liu H, Chernenko G and Tang SC. Distinct BAG-1 isoforms have different anti-apoptotic functions in BAG-1-transfected C33A human cervical carcinoma cell line[J]. Oncogene,2002,21(46):7050-7059.
    [10]Liu HY, Wang ZM, Bai Y, Wang M, Li Y, Wei S, et al. Different BAG-1 isoforms have distinct functions in modulating chemotherapeutic-induced apoptosis in breast cancer cells[J]. Acta Pharmacol Sin,2009,30(2):235-241.
    [11]Millar EK, Anderson LR, McNeil CM, O'Toole SA, Pinese M, Crea P, et al. BAG-1 predicts patient outcome and tamoxifen responsiveness in ER-positive invasive ductal carcinoma of the breast[J]. Br J Cancer,2009,100(1):123-133.
    [12]Cutress RI, Townsend PA, Sharp A, Maison A, Wood L, Lee R, et al. The nuclear BAG-1 isoform, BAG-1L, enhances oestrogen-dependent transcription[J]. Oncogene,2003,22(32):4973-4982.
    [13]Burstein HJ, Griggs JJ, Prestrud AA and Temin S. American society of clinical oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer [J]. J Oncol Pract,2010, 6(5):243-246.
    [14]Nicholson RI, McClelland RA, Gee JM, Manning DL, Cannon P, Robertson JF, et al. Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy [J]. Breast Cancer Res Treat,, 1994,29(1):117-125.
    [15]Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling[J]. Oncogene,2003,22(47):7316-7339.
    [16]Osborne CK and Schiff R. Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer[J]. Breast, 2003,12(6):362-367.
    [17]Gottardis MM, Robinson SP, Satyaswaroop PG and Jordan VC. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse[J]. Cancer Res,1988,48(4):812-815.
    [18]Jordan VC, Phelps E and Lindgren JU. Effects of anti-estrogens on bone in castrated and intact female rats[J]. Breast Cancer Res Treat,1987, 10(1):31-35.
    [19]Jordan VC. Selective estrogen receptor modulation:concept and consequences in cancer[J]. Cancer Cell,2004,5(3):,207-213.
    [20]Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells[J]. Endocrinology,2003,144(3):1032-1044.
    [21]Knowlden JM, Hutcheson IR, Barrow D, Gee JM and Nicholson RI. Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer:a supporting role to the epidermal growth factor receptor[J]. Endocrinology,2005,146(11):4609-4618.
    [22]Tu SH, Chang CC, Chen CS, Tam KW, Wang YJ, Lee CH, et al. Increased expression of enolase alpha in human breast cancer confers tamoxifen resistance in human breast cancer cells[J]. Breast Cancer Res Treat,2010, 121(3):539-553.
    [23]Kim MR, Choi HK, Cho KB, Kim HS and Kang KW. Involvement of Pinl induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells[J]. Cancer Sci,2009,100(10):1834-1841.
    [24]Thomas NB, Hutcheson IR, Campbell L, Gee J, Taylor KM, Nicholson RI, et al. Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance[J]. Breast Cancer Res Treat,2010,1,19(3):575-591.
    [25]Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K, et al. Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines[J]. Cancer Res,, 1998,58(14):3116-3131.
    [26]Rorke S, Murphy S, Khalifa M, Chernenko G and Tang SC. Prognostic significance of BAG-1 expression in nonsmall cell lung cancer [J]. Int J Cancer,2001,95(5):317-322.
    [27]Yamauchi H, Adachi M, Sakata K, Hareyama M, Satoh M, Himi T, et al. Nuclear BAG-1 localization and the risk of recurrence after radiation therapy in laryngeal carcinomas [J].Cancer Lett,2001,165(1):103-110.
    [28]Page V, Cote M, Rancourt C, Sullivan M and Piche A. BAG-1 p29 protein prevents drug-induced cell death in the presence of EGF and enhances resistance to anoikis in SKOV3 human ovarian cancer cells[J]. Biochem Biophys Res Commun,2005,328(4):874-884.
    [29]Tang SC, Beck J, Murphy S, Chernenko G, Robb D, Watson P, et al. BAG-1 expression correlates with Bcl-2, p53, differentiation, estrogen and progesterone receptors in invasive breast carcinoma[J]. Breast Cancer Res Treat,2004,84(3):,203-213.
    [30]Turner BC, Krajewski S, Krajewska M, Takayama S, Gumbs AA, Carter D, et al. BAG-1:a novel biomarker predicting long-term survival in early-stage breast cancer[J]. J Clin Oncol,2001,19(4):992-1000.
    [31]Tang SC, Shehata N, Chernenko G, Khalifa M and Wang X. Expression of BAG-1 in invasive breast carcinomas [J]. J Clin Oncol,1999,17(6):1710-17, 19.
    [32]Jordan VC. Is tamoxifen the Rosetta stone for breast cancer?[J]. J Natl Cancer Inst,2003,95(5):338-340.
    [33]Wong ZW and Ellis MJ. First-line endocrine treatment of breast cancer: aromatase inhibitor or antioestrogen?[J]. Br J Cancer,2004,90(1):,20-25.
    [34]McDonnell DP. The molecular determinants of estrogen receptor pharmacology[J]. Maturitas,2004,48 Suppl 1:S7-12.
    [35]Ascenzi P, Bocedi A and Marino M. Structure-function relationship of estrogen receptor alpha and beta:impact on human health[J]. Mol Aspects Med,2006,27(4):299-402.
    [36]Anderson E and Clarke RB. Steroid receptors and cell cycle in normal mammary epithelium[J]. J Mammary Gland Biol Neoplasia,2004,9(1):3-13.
    [37]Speirs V, Skliris GP, Burdall SE and Carder PJ. Distinct expression patterns of ER alpha and ER beta in normal human mammary gland[J]. J Clin Pathol, 2002,55(5):371-374.
    [38]Saji S, Hirose M and Toi M. Clinical significance of estrogen receptor beta in breast cancer[J]. Cancer Chemother Pharmacol,2005,56 Suppl 1:21-26.
    [39]Murphy LC and Watson PH. Is oestrogen receptor-beta a predictor of endocrine therapy responsiveness in human breast cancer?[J]. Endocr Relat Cancer,2006,13(2):327-334.
    [40]Helguero LA, Faulds MH, Gustafsson JA and Haldosen LA. Estrogen receptors alfa (ERalpha) and beta (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11[J]. Oncogene,2005,24(44):6605-6616.
    [41]Massarweh S SR. Unraveling the mechanisms of endocrine resistance in breast cancer:new therapeutic opportunities[J]. Clin Cancer Res,2007,13(7):, 1950-,1954.
    [42]Frasor J, Chang EC, Komm B, Lin CY, Vega VB, Liu ET, et al. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome[J]. Cancer Res,2006,66(14):7334-7340.
    [43]Bouker KB, Skaar TC, Fernandez DR, O'Brien KA, Riggins RB, Cao D, et al. interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (faslodex, fulvestrant)[J]. Cancer Res,2004,64(11):4030-4039.
    [44]Doisneau-Sixou SF, Cestac P, Faye JC, Favre G and Sutherland RL. Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell-cycle progression[J]. Int J Cancer, 2003,106(5):789-798.
    [45]Thiantanawat A, Long BJ and Brodie AM. Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens[J]. Cancer Res,2003, 63(22):8037-8050.
    [46]Arpino G, Green SJ, Allred DC, Lew D, Martino S, Osborne CK, et al. HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen receptor-positive metastatic breast cancer:a southwest oncology group study [J]. Clin Cancer Res,2004,10(17):5670-5676.
    [47]Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M, et al. Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer [J]. Endocr Relat Cancer,2005,12 Suppl 1:S99-S111.
    [48]Dowsett M, Johnston S, Martin LA, Salter J, Hills M, Detre S, et al. Growth factor signalling and response to endocrine therapy:the Royal Marsden Experience[J]. Endocr Relat Cancer,2005,12 Suppl 1:S113-117.
    [49]Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, et al. Molecular changes in tamoxifen-resistant breast cancer:relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase[J]. J Clin Oncol,2005,23(11):2469-2476.
    [50]Kirkegaard T, Witton CJ, McGlynn LM, Tovey SM, Dunne B, Lyon A, et al. AKT activation predicts outcome in breast cancer patients treated with tamoxifen[J]. J Pathol,2005,207(2):139-146.
    [51]Holm C, Rayala S, Jirstrom K, Stal O, Kumar R and Landberg G. Association between Pakl expression and subcellular localization and tamoxifen resistance in breast cancer patients[J]. J Natl Cancer Inst,2006, 98(10):671-680.
    [52]van der Flier S, Brinkman A, Look MP, Kok EM, Meijer-van Gelder ME, Klijn JG, et al. Bcarl/p130Cas protein and primary breast cancer:prognosis and response to tamoxifen treatment[J]. J Natl Cancer Inst,2000,92(2):1, 20-127.
    [53]Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer[J]. J Natl Cancer Inst,2003, 95(5):353-361.
    [54]Sarwar N, Kim JS, Jiang J, Peston D, Sinnett HD, Madden P, et al. Phosphorylation of ERalpha at serine 118 in primary breast cancer and in tamoxifen-resistant tumours is indicative of a complex role for ERalpha phosphorylation in breast cancer progression[J]. Endocr Relat Cancer,2006, 13(3):851-861.
    [55]Cannings E, Kirkegaard T, Tovey SM, Dunne B, Cooke TG and Bartlett JM. Bad expression predicts outcome in patients treated with tamoxifen[J]. Breast Cancer Res Treat,2007,102(2):173-179.
    [56]Linke SP, Bremer TM, Herold CD, Sauter G and Diamond C. A multimarker model to predict outcome in tamoxifen-treated breast cancer patients[J]. Clin Cancer Res,2006,12(4):1175-1183.
    [57]Planas-Silva MD, Bruggeman RD, Grenko RT and Smith JS. Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer[J]. Exp Mol Pathol,2007,82(l):85-90.
    [58]Rahko E, Blanco G, Bloigu R, Soini Y, Talvensaari-Mattila A and Jukkola A. Adverse outcome and resistance to adjuvant antiestrogen therapy in node-positive postmenopausal breast cancer patients-The role of p53[J]. Breast,2006,15(1):69-75.
    [59]Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S and Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary[J]. Proc Natl Acad Sci U S A,1996,93(12):5925-5930.
    [60]Smith CL and O'Malley BW. Coregulator function:a key to understanding tissue specificity of selective receptor modulators [J]. Endocr Rev,2004, 25(1):45-71.
    [61]Hall JM and McDonnell DP. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting [J]. Mol Interv,2005; 5(6):343-357.
    [62]Kumar R, Gururaj AE, Vadlamudi RK and Rayala SK. The clinical relevance of steroid hormone receptor corepressors[J]. Clin Cancer Res,2005, 11(8):2822-2831.
    [63]Girault I, Bieche I and Lidereau R. Role of estrogen receptor alpha transcriptional coregulators in tamoxifen resistance in breast cancer [J]. Maturitas,2006,54(4):342-351.
    [64]Salvatori L, Pallante P, Ravenna L, Chinzari P, Frati L, Russo MA, et al. Oestrogens and selective oestrogen receptor (ER) modulators regulate EGF receptor gene expression through human ER alpha and beta subtypes via an Sp1 site[J]. Oncogene,2003,22(31):4875-4881.
    [65]Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB and Davidson NE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells[J]. Cancer Res,1994, 54(10):2552-2555.
    [66]Roodi N, Bailey LR, Kao WY, Verrier CS, Yee CJ, Dupont WD, et al. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer[J]. J Natl Cancer Inst,1995, 87(6):446-451.
    [67]Sharma D, Saxena NK, Davidson NE and Vertino PM. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes [J]. Cancer Res,2006,66(12):6370-6378.
    [68]van den Berg HW, Lynch M, Martin J, Nelson J, Dickson GR and Crockard AD. Characterisation of a tamoxifen-resistant variant of the ZR-75-1 human breast cancer cell line (ZR-75-9a1) and ability of the resistant phenotype[J]. Br J Cancer,1989,59(4):522-526.
    [69]Graham ML,2nd, Krett NL, Miller LA, Leslie KK, Gordon DF, Wood WM, et al. T47DCO cells, genetically unstable and containing estrogen receptor mutations, are a model for the progression of breast cancers to hormone resistance[J]. Cancer Res,1990,50(,19):6,208-6217.
    [70]Pink JJ, Wu SQ, Wolf DM, Bilimoria MM and Jordan VC. A novel 80 kDa human estrogen receptor containing a duplication of exons 6 and 7[J]. Nucleic Acids Res,1996,24(5):962-969.
    [71]Levenson AS, MacGregor Schafer JI, Bentrem DJ, Pease KM and Jordan VC. Control of the estrogen-like actions of the tamoxifen-estrogen receptor complex by the surface amino acid at position 351 [J]. J Steroid Biochem Mol Biol,2001,76(l-5):61-70.
    [72]Zhang QX, Borg A, Wolf DM, Oesterreich S and Fuqua SA. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer[J]. Cancer Res,1997,57(7):1244-1249.
    [73]Joel PB, Traish AM and Lannigan DA. Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase[J]. J Biol Chem,1998,273(21):13317-13323.
    [74]Rogatsky I, Trowbridge JM and Garabedian MJ. Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex[J]. J Biol Chem,1999, 274(32):22296-22302.
    [75]Kuske B, Naughton C, Moore K, Macleod KG, Miller WR, Clarke R, et al. Endocrine therapy resistance can be associated with high estrogen receptor alpha (ERalpha) expression and reduced ERalpha phosphorylation in breast cancer models[J]. Endocr Relat Cancer,2006,13(4):1121-1133.
    [76]Prenzel N, Fischer OM, Streit S, Hart S and Ullrich A. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification[J]. Endocr Relat Cancer,2001,8(1):11-31.
    [77]Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, et al. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function[J]. Cancer Res,2008,68(3):826-833.
    [78]Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells[J]. Cancer Res,2000,60(, 20):5887-5894.
    [79]Kurokawa H and Arteaga CL. Inhibition of erbB receptor (HER) tyrosine kinases as a strategy to abrogate antiestrogen resistance in human breast cancer[J]. Clin Cancer Res,2001,7(12 Suppl):4436s-4442s; discussion 4411s-4412s.
    [80]Kurokawa H and Arteaga CL. ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms[J]. Clin Cancer Res,2003,9(1 Pt 2):511S-515S.
    [81]Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, et al. MCF7/LCC9:an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen [J]. Cancer Res,, 1997,57(16):3486-3493.
    [82]McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, et al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex)[J]. Endocrinology,2001, 142(7):2776-2788.
    [83]Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE, et al. Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells[J]. Breast Cancer Res Treat,2003, 81(1):81-93.
    [84]Yarden RI, Wilson MA and Chrysogelos SA. Estrogen suppression of EGFR expression in breast cancer cells:a possible mechanism to modulate growth[J]. J Cell Biochem Suppl,2001, Suppl 36:232-246.
    [85]Kumar R, Mandal M, Lipton A, Harvey H and Thompson CB. Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells[J]. Clin Cancer Res,1996,2(7):1215-12,19.
    [86]Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance:increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer[J]. J Natl Cancer Inst,2004, 96(12):926-935.
    [87]Holloway JN, Murthy S and El-Ashry D. A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-alpha down-regulation in breast cancer cells:the role of nuclear factor-kappaB[J]. Mol Endocrinol,2004,18(6):1396-1410.
    [88]Schiff R, Massarweh SA, Shou J, Bharwani L, Arpino G, Rimawi M, et al. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance:implicated role of growth factor signaling and estrogen receptor coregulators[J]. Cancer Chemother Pharmacol,2005,56 Suppl 1:10-,20.
    [89]Fan P, Wang J, Santen RJ and Yue W. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells[J]. Cancer Res,2007,67(3):1352-1360.
    [90]Massarweh S and Schiff R. Unraveling the mechanisms of endocrine resistance in breast cancer:new therapeutic opportunities[J]. Clin Cancer Res, 2007,13(7):1950-,1954.
    [91]Zhao W, Zhang Q, Kang X, Jin S and Lou C. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells[J]. Biochem Biophys Res Commun,2009, 380(3):699-704.
    [92]Gee JM, Shaw VE, Hiscox SE, McClelland RA, Rushmere NK and Nicholson RI. Deciphering antihormone-induced compensatory mechanisms in breast cancer and their therapeutic implications[J]. Endocr Relat Cancer,2006,13 Suppl 1:S77-88.
    [93]Clarke R, Leonessa F, Welch JN and Skaar TC. Cellular and molecular pharmacology of antiestrogen action and resistance[J]. Pharmacol Rev,2001, 53(1):25-71.
    [94]Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance [J]. J Natl Cancer Inst,2005,97(17):1254-1261.
    [95]Nawata H, Bronzert D and Lippman ME. Isolation and characterization of a tamoxifen-resistant cell line derived from MCF-7 human breast cancer cells[J]. J Biol Chem,1981,256(10):5016-5021.
    [96]Brunner N, Frandsen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, et al. MCF7/LCC2:a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780[J]. Cancer Res,1993,53(14):3229-3232.
    [97]Lykkesfeldt AE, Madsen MW and Briand P. Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAMR-1[J]. Cancer Res,1994,54(6):1587-1595.
    [98]Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, et al. HER-2 gene amplification can be acquired as breast cancer progresses[J]. Proc Natl Acad Sci U S A,2004,101(25):9393-9398.
    [99]Lipton A, Leitzel K, Ali SM, Demers L, Harvey HA, Chaudri-Ross HA, et al. Serum HER-2/neu conversion to positive at the time of disease progression in patients with breast carcinoma on hormone therapy[J]. Cancer,2005, 104(2):257-263.
    [100]Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S and Nakshatri H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha:a new model for anti-estrogen resistance [J]. J Biol Chem,2001,276(13):9817-9824.
    [101]Chung YL, Sheu ML, Yang SC, Lin CH and Yen SH. Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer[J]. Int J Cancer,2002,97(3):306-312.
    [102]Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu[J]. Breast Cancer Res Treat,1992,24(2):85-95.
    [103]Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells[J]. Oncogene, 1995,10(12):2435-2446.
    [104]Le Goff P, Montano MM, Schodin DJ and Katzenellenbogen BS. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity[J]. J Biol Chem,1994,269(6):4458-4466.
    [105]Arnold SF, Vorojeikina DP and Notides AC. Phosphorylation of tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element[J]. J Biol Chem,1995,270(50):30,205-30212.
    [106]Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase[J]. Science,1995,270(5241):1491-1494.
    [107]Szapary D, Huang Y and Simons SS, Jr. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression[J]. Mol Endocrinol,1999,13(12):2108-2121.
    [108]Yang X, Hao Y, Ding Z, Pater A and Tang SC. Differential expression of antiapoptotic gene BAG-1 in human breast normal and cancer cell lines and tissues[J]. Clin Cancer Res,1999,5(7):1816-1822.
    [109]Cutress RI, Townsend PA, Brimmell M, Bateman AC, Hague A and Packham G. BAG-1 expression and function in human cancer[J]. Br J Cancer,2002, 87(8):834-839.
    [110]Sharp A, Crabb SJ, Townsend PA, Cutress RI, Brimmell M, Wang XH, et al. BAG-1 in carcinogenesis[J]. Expert Rev Mol Med,2004,6(7):1-15.
    [111]Townsend PA, Dublin E, Hart IR, Kao RH, Hanby AM, Cutress RI, et al. BAG-i expression in human breast cancer:interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data[J]. J Pathol, 2002,197(1):51-59.
    [112]Townsend PA, Stephanou A, Packham G and Latchman DS. BAG-1:a multi-functional pro-survival molecule[J]. Int J Biochem Cell Biol,2005, 37(2):251-259.
    [113]Takayama S, Sato T, Krajewski S, Kochel K,Irie S, Millan JA, et al. Cloning and functional analysis of BAG-1:a novel Bcl-2-binding protein with anti-cell death activity[J]. Cell,1995,80(2):279-284.
    [114]Tang SC. BAG-1, an anti-apoptotic tumour marker[J]. IUBMB Life,2002, 53(2):99-105.
    [115]Packham G, Brimmell M and Cleveland JL. Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation[J]. Biochem J,1997,328 (Pt 3):807-813.
    [116]Antoku K, Maser RS, Scully WJ, Jr., Delach SM and Johnson DE. Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains protein[J]. Biochem Biophys Res Commun,2001, 286(5):1003-1010.
    [117]Yang X, Chernenko G, Hao Y, Ding Z, Pater MM, Pater A, et al. Human BAG-1/RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cells[J]. Oncogene,1998, 17(8):981-989.
    [118]Townsend PA, Cutress RI, Sharp A, Brimmell M and Packham G BAG-1 prevents stress-induced long-term growth inhibition in breast cancer cells via a chaperone-dependent pathway[J]. Cancer Res,2003,63(14):4150-4157.
    [119]Zeiner M, Niyaz Y and Gehring U. The hsp70-associating protein Hap46 binds to DNA and stimulates transcription[J]. Proc Natl Acad Sci U S A,1999, 96(18):10,194-10,199.
    [120]Hague A, Packham G, Huntley S, Shefford K and Eveson JW. Deregulated Bag-1 protein expression in human oral squamous cell carcinomas and lymph node metastases[J]. J Pathol,2002,197(1):60-71.
    [121]Schneikert J, Hubner S, Martin E and Cato AC. A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity[J]. J Cell Biol,1999,146(5):929-940.
    [122]Schmidt U, Wochnik GM, Rosenhagen MC, Young JC, Hartl FU, Holsboer F, et al. Essential role of the unusual DNA-binding motif of BAG-1 for inhibition of the glucocorticoid receptor[J]. J Biol Chem,2003, 278(7):4926-4931.
    [123]Sondermann H SC, Schneider C, et al. Structure of a Bag/Hsc70 comp lex: convergent functional evolution of Hsp70 nucleotide exchange factors.[J]. Science,2001,291(5508):1553-1557.
    [124]Niyaz Y, Frenz I, Petersen G and Gehring U. Transcriptional stimulation by the DNA binding protein Hap46/BAG-1M involves hsp70/hsc70 molecular chaperones[J]. Nucleic Acids Res,2003,31(8):2,209-2216.
    [1]Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival:an overview of the randomised trials[J]. Lancet,2005,365(9472):1687-1717.
    [2]Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen:patient-level meta-analysis of randomised trials[J]. Lancet,2011,378(9793):771-784.
    [3]Carroll JS, Prall OW, Musgrove EA and Sutherland RL. A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence [J]. J Biol Chem,2000,275(49):38221-38229.
    [4]Lewis JS and Jordan VC. Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance[J]. Mutat Res,2005, 591(1-2):247-263.
    [5]Riggins RB, Bouton AH, Liu MC and Clarke R. Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer[J]. Vitam Horm,2005,71:, 201-237.
    [6]Brimmell M, Burns JS, Munson P, McDonald L, O'Hare MJ, Lakhani SR, et al. High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers[J]. Br J Cancer,1999, 81(6):1042-1051.
    [7]Hohfeld J. Regulation of the heat shock conjugate Hsc70 in the mammalian cell:the characterization of the anti-apoptotic protein BAG-1 provides novel insights[J]. Biol Chem,1998,379(3):269-274.
    [8]Takayama S and Reed JC. Molecular chaperone targeting and regulation by BAG family proteins[J]. Nat Cell Biol,2001,3(10):E237-241.
    [9]Hung WJ, Roberson RS, Taft J and Wu DY. Human BAG-1 proteins bind to the cellular stress response protein GADD34 and interfere with GADD34 functions[J]. Mol Cell Biol,2003,23(10):3477-3486.
    [10]Chen J, Xiong J, Liu H, Chernenko G and Tang SC. Distinct BAG-1 isoforms have different anti-apoptotic functions in BAG-1-transfected C33A human cervical carcinoma cell line[J]. Oncogene,2002,21(46):7050-7059.
    [11]Liu HY, Wang ZM, Bai Y, Wang M, Li Y, Wei S, et al. Different BAG-1 isoforms have distinct functions in modulating chemotherapeutic-induced apoptosis in breast cancer cells[J]. Acta Pharmacol Sin,2009,30(2):235-241.
    [12]Cutress RI, Townsend PA, Sharp A, Maison A, Wood L, Lee R, et al. The nuclear BAG-1 isoform, BAG-1L, enhances oestrogen-dependent transcription [J]. Oncogene,2003,22(32):4973-4982.
    [13]Millar EK, Anderson LR, McNeil CM, O'Toole SA, Pinese M, Crea P, et al. BAG-1 predicts patient outcome and tamoxifen responsiveness in ER-positive invasive ductal carcinoma of the breast[J]. Br J Cancer,2009, 100(1):123-133.
    [14]Jordan VC. Is tamoxifen the Rosetta stone for breast cancer[J]? J Natl Cancer Inst,2003,95(5):338-340.
    [15]Wong ZW and Ellis MJ. First-line endocrine treatment of breast cancer: aromatase inhibitor or antioestrogen[J]? Br J Cancer,2004,90(1):,20-25.
    [16]Nicholson RI, McClelland RA, Gee JM, Manning DL, Cannon P, Robertson JF, et al. Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy [J]. Breast Cancer Res Treat 1994,29(1):117-125.
    [17]Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling[J]. Oncogene,2003,22(47):7316-7339.
    [18]Osborne CK and Schiff R. Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer[J]. Breast, 2003,12(6):362-367.
    [19]Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB and Davidson NE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells[J]. Cancer Res,1994, 54(10):2552-2555.
    [20]Roodi N, Bailey LR, Kao WY, Verrier CS, Yee CJ, Dupont WD, et al. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer[J]. J Natl Cancer Inst,1995, 87(6):446-451.
    [21]Sharma D, Saxena NK, Davidson NE and Vertino PM. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes[J]. Cancer Res,2006,66(12):6370-6378.
    [22]Graham ML,2nd, Krett NL, Miller LA, Leslie KK, Gordon DF, Wood WM, et al. T47DCO cells, genetically unstable and containing estrogen receptor mutations, are a model for the progression of breast cancers to hormone resistance[J]. Cancer Res,1990,50(,19):6,208-6217.
    [23]Pink JJ, Wu SQ, Wolf DM, Bilimoria MM and Jordan VC. A novel 80 kDa human estrogen receptor containing a duplication of exons 6 and 7. Nucleic Acids Res,1996,24(5):962-969.
    [24]Levenson AS, MacGregor Schafer JI, Bentrem DJ, Pease KM and Jordan VC. Control of the estrogen-like actions of the tamoxifen-estrogen receptor complex by the surface amino acid at position 351 [J]. J Steroid Biochem Mol Biol,2001,76(1-5):61-70.
    [25]Zhang QX, Borg A, Wolf DM, Oesterreich S and Fuqua SA. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer[J]. Cancer Res,1997,57(7):1244-1249.
    [26]Joel PB, Traish AM and Lannigan DA. Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase[J]. J Biol Chem,1998, 273(21):13317-13323.
    [27]Rogatsky I, Trowbridge JM and Garabedian MJ. Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex[J]. J Biol Chem,1999, 274(32):22296-22302.
    [28]Kuske B, Naughton C, Moore K, Macleod KG, Miller WR, Clarke R, et al. Endocrine therapy resistance can be associated with high estrogen receptor alpha (ERalpha) expression and reduced ERalpha phosphorylation in breast cancer models[J]. Endocr Relat Cancer,2006,13(4):1121-1133.
    [29]Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, et al. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function[J]. Cancer Res,2008,68(3):826-833.
    [30]Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells[J]. Cancer Res,2000, 60(20):5887-5894.
    [31]Kurokawa H and Arteaga CL. Inhibition of erbB receptor (HER) tyrosine kinases as a strategy to abrogate antiestrogen resistance in human breast cancer[J]. Clin Cancer Res,2001,7(12 Suppl):4436s-4442s, discussion 4411s-4412s.
    [32]Kurokawa H and Arteaga CL. ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms[J]. Clin Cancer Res,2003,9(1 Pt 2):511S-515S.
    [33]van den Berg HW, Lynch M, Martin J, Nelson J, Dickson GR and Crockard AD. Characterisation of a tamoxifen-resistant variant of the ZR-75-1 human breast cancer cell line (ZR-75-9a1) and ability of the resistant phenotype[J]. Br J Cancer,1989,59(4):522-526.
    [34]Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, et al. MCF7/LCC9:an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen[J]. Cancer Res, 1997,57(16):3486-3493.
    [35]McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, et al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex) [J]. Endocrinology,2001, 142(7):2776-2788.
    [36]Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells[J]. Endocrinology,2003,144(3):1032-1044.
    [37]Hollo way JN, Murthy S and El-Ashry D. A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-alpha down-regulation in breast cancer cells:the role of nuclear factor-kappaB[J]. Mol Endocrinol,2004,18(6):1396-1410.
    [38]Schiff R, Massarweh SA, Shou J, Bharwani L, Arpino G, Rimawi M, et al. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance:implicated role of growth factor signaling and estrogen receptor coregulators[J]. Cancer Chemother Pharmacol,2005,56 Suppl 1:10-,20.
    [39]Zhao W, Zhang Q, Kang X, Jin S and Lou C. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells[J]. Biochem Biophys Res Commun,2009, 380(3):699-704.
    [40]Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer[J]. J Natl Cancer Inst,2003, 95(5):353-361.
    [41]Gee JM, Shaw VE, Hiscox SE, McClelland RA, Rushmere NK and Nicholson RI. Deciphering antihormone-induced compensatory mechanisms in breast cancer and their therapeutic implications [J]. Endocr Relat Cancer,2006,13 Suppl 1:S77-88.
    [42]Clarke R, Leonessa F, Welch JN and Skaar TC. Cellular and molecular pharmacology of antiestrogen action and resistance [J]. Pharmacol Rev,2001, 53(1):25-71.
    [43]Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance [J]. J Natl Cancer Inst,2005,97(17):1254-1261.
    [44]Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, et al. Cloning and functional analysis of BAG-1:a novel Bcl-2-binding protein with anti-cell death activity [J]. Cell,1995,80(2):279-284.
    [45]Tang SC. BAG-1, an anti-apoptotic tumour marker[J]. IUBMB Life,2002, 53(2):99-105.
    [46]Packham G, Brimmell M and Cleveland JL. Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation[J]. Biochem J,1997,328 (Pt 3):807-813.
    [47]Antoku K, Maser RS, Scully WJ, Jr., Delach SM and Johnson DE. Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains protein[J]. Biochem Biophys Res Commun,2001, 286(5):1003-1010.
    [48]Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K, et al. Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines[J]. Cancer Res, 1998,58(14):3116-3131.
    [49]Yang X, Chernenko G, Hao Y, Ding Z, Pater MM, Pater A, et al. Human BAG-1/RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cells[J]. Oncogene,1998, 17(8):981-989.
    [50]Townsend PA, Cutress RI, Sharp A, Brimmell M and Packham G. BAG-1 prevents stress-induced long-term growth inhibition in breast cancer cells via a chaperone-dependent pathway [J]. Cancer Res,2003,63(14):4150-4157.
    [51]Zeiner M, Niyaz Y and Gehring U. The hsp70-associating protein Hap46 binds to DNA and stimulates transcription [J]. Proc Natl Acad Sci U S A,1999, 96(18):10,194-10,199.
    [52]Hague A, Packham G, Huntley S, Shefford K and Eveson JW. Deregulated Bag-1 protein expression in human oral squamous cell carcinomas and lymph node metastases[J]. J Pathol,2002,,197(1):60-71.
    [53]Schneikert J, Hubner S, Martin E and Cato AC. A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity[J]. J Cell Biol,1999,146(5):929-940.
    [54]Schmidt U, Wochnik GM, Rosenhagen MC, Young JC, Hartl FU, Holsboer F, et al. Essential role of the unusual DNA-binding motif of BAG-1 for inhibition of the glucocorticoid receptor [J]. J Biol Chem,2003, 278(7):4926-4931.
    [55]Sondermann H SC, Schneider C, et al. Structure of a Bag/Hsc70 comp lex: convergent functional evolution of Hsp70 nucleotide exchange factors [J]. Science,2001,291(5508):1553-1557.
    [56]Massarweh S and Schiff R. Unraveling the mechanisms of endocrine resistance in breast cancer:new therapeutic opportunities[J]. Clin Cancer Res, 2007,13(7):,1950-,1954.
    [57]Niyaz Y, Frenz I, Petersen G and Gehring U. Transcriptional stimulation by the DNA binding protein Hap46/BAG-1M involves hsp70/hsc70 molecular chaperones[J]. Nucleic Acids Res,2003,31(8):2209-2216.
    [58]Kudoh M, Knee DA, Takayama S and Reed JC. Bagl proteins regulate growth and survival of ZR-75-1 human breast cancer cells[J]. Cancer Res,2002, 62(6):,1904-,1909.
    [59]Cutress RI, Townsend PA, Brimmell M, Bateman AC, Hague A and Packham G. BAG-1 expression and function in human cancer[J]. Br J Cancer,2002, 87(8):834-839.
    [60]Frasor J, Chang EC, Komm B, Lin CY, Vega VB, Liu ET, et al. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome[J]. Cancer Res,2006,66(14):7334-7340.
    [61]Takahashi N, Yanagihara M, Ogawa Y, Yamanoha B and Andoh T. Down-regulation of Bcl-2-interacting protein BAG-1 confers resistance to anti-cancer drugs[J]. Biochem Biophys Res Commun,2003,301(3):798-803.
    [62]Xiong J, Chen J, Chernenko G, Beck J, Liu H, Pater A, et al. Antisense BAG-1 sensitizes HeLa cells to apoptosis by multiple pathways[J]. Biochem Biophys Res Commun,2003,312(3):585-591.
    [63]Townsend PA, Dublin E, Hart IR, Kao RH, Hanby AM, Cutress RI, et al. BAG-i expression in human breast cancer:interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data[J]. J Pathol, 2002,,197(1):51-59.
    [64]Tang SC, Shehata N, Chernenko G, Khalifa M and Wang X. Expression of BAG-1 in invasive breast carcinomas [J]. J Clin Oncol,1999,17(6):1710-17, 19.
    [65]Turner BC, Krajewski S, Krajewska M, Takayama S, Gumbs AA, Carter D, et al. BAG-1:a novel biomarker predicting long-term survival in early-stage breast cancer[J]. J Clin Oncol,2001,19(4):992-1000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700