用户名: 密码: 验证码:
磷石膏基胶凝材料的制备理论及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏是湿法生产磷酸过程中排出的硫酸钙固体废弃物,通常以二水硫酸钙的形式存在,生产1吨P2O5约排放4.5-5.5吨磷石膏。与天然石膏相比,磷石膏中通常含有磷、氟、有机物等成分影响其使用性能,并增加其利用成本,目前主要采用堆存处理。随着我国磷化工行业的迅速发展,2011年,我国磷石膏的新增年产量接近7千万吨,利用率不到20%,累计堆积量已经超过3亿吨,不仅占用大量的土地、浪费资源,而且其中的有害组分还对周围土壤、植被、水系和空气造成严重的污染。2006年国家环保总局将磷石膏列为危险固体废弃物,磷石膏问题已经成为严重制约磷化工行业可持续发展和环境保护的世界难题。
     国内外利用磷石膏代替天然石膏制备胶凝材料方面存在的主要问题有:(1)磷石膏基胶凝材料的生产成本较高,尽管磷石膏中的Ca2SO4·2H2O含量很高,但其中的有害杂质对其应用性能影响很大,一般都需要预处理后才能使用,经预处理后的磷石膏与天然石膏相比不但价格方面没有任何优势,而且产品性能也存在一定的差异;(2)使用性能优异、附加值高的高强α半水石膏类胶凝材料要在高温高压的蒸压气氛中制备,存在工艺复杂、能耗高、操作控制不便、性能不稳定、生产成本高的问题,从而限制了其广泛应用;(3)常压水热电解质溶液中制备α半水石膏具有反应条件温和、便于操作的特点,但目前的研究主要还集中在实验室和理论研究阶段,且限于天然石膏、脱硫石膏等杂质含量较少的原料。
     本研究依托“十二五”国家科技支撑计划项目“低成本、低能耗建筑节能技术集成研究与示范”(2011BAJ03B03)、湖北省重大科技专项计划项目“磷化工副产物高效资源化利用与产业化”(DZS0005)以及湖北省研究与开发计划项目“磷石膏的综合利用”(2009BCB030),针对磷石膏制备高强度石膏胶凝材料的理论及工艺技术难题,探讨了磷石膏基石膏胶凝材料(Phosphogypsum Based Gypsum Plaster,简称PBGP)的制备体系设计与选择、原料预处理对PBGP形成及晶体形态调控的影响、杂质对PBGP水化硬化性能的影响以及PBGP制备工艺优化及应用技术,揭示了PBGP组成一结构一性能之间的相关规律,并形成了PBGP的制备工艺、晶形调控、性能优化及工业化应用的关键理论与技术。主要工作及成果如下:
     1、PBGP的体系设计与选择
     在85~100℃水热环境中,分别以NaCU CaCl2及其混合物为活度剂,研究了活度剂种类和浓度、固液比以及反应温度和时间对产品性质的影响,结果表明:磷石膏在NaCl溶液中水热反应一定时间可以发生相变反应,但固相产物α半水石膏中含有其同质异构的杂质相omangwaite(Na2Ca5(SO4)6·3H2O),因而NaCl不适合作为磷石膏相变制备PBGP的活度剂;而磷石膏在CaCl2溶液中水热反应一定时间后的固相产物为α半水石膏;在24%Ca-Na-Cl溶液中,随着NaCl含量从0增加到4%,磷石膏的相变为半水石膏的时间从240min缩短为50min,且固相产物均为a-半水石膏,但随着水热反应介质中NaCl含量的增加,产物中Na2O含量也呈增加的趋势,从半水石膏晶体各晶面发育的完整和规则性降低;NaCl增大磷石膏的溶解度并促进α半水石膏晶体的成核生长,CaCl2则是由于同离子效应降低了磷石膏的溶解度,但Ca2+的活度仍比较高,表面扩散和吸附能够极大地促进α-半水石膏晶体长大。
     2、原料预处理对PBGP的形成及晶形调控的影响
     研究了酸性杂质、可溶盐、不溶性杂质对磷石膏相变过程、产物形态和强度的影响,并选用常用媒晶剂对PBGP的晶体形态进行调控,结果表明:原料磷石膏中可溶磷、氟为磷石膏的相变反应提供了必需的酸性环境,同时使PBGP晶体的长径比变大、晶体直径减小;自制媒晶剂NS和EN对PBGP晶习有明显的调控作用,可以得到长径比接近1的短柱状晶体,产物抗压强度在35MPa以上,其合适掺量分别为0.15%和0.4%;可溶性酸性杂质使媒晶剂的合适掺量增加,产品强度降低;可溶性钠盐使高强石膏晶体中出现细小的颗粒,强度降低;可溶性盐类杂质和有机物使PBGP晶体变得细碎,产品强度降低;不溶性杂质则使产物α半水石膏晶体向短棒状发展,晶体发育不均齐,强度增大;原状磷石膏不适合直接作为PBGP的原料使用,经水洗处理后可以大幅降低媒晶剂的使用量,优化晶体形态,提高产品强度;当PBGP晶体直径大于8μm、长径比1-3且发育相对均齐时,产品的绝干抗压强度与晶体体积呈线性相关关系.。
     3、杂质对PBGP水化硬化性能的影响
     研究了不同pH值的H2SO4、HCl、H3PO4以及中性环境下不同CaCl2含量对高强石膏的凝结时间、强度变化的影响与相应机理,并对影响PBGP'性能的主要因素进行了归纳,结果表明:三种酸均对高强石膏的初凝、终凝均起促进作用,且对初凝时间、终凝时间的影响规律大致相同,在不同pH值的同种酸和相同pH值的不同酸对高强石膏的凝结性能影响不同;当pH小于3.0时,H2SO4、 HCl和H3P04均会显著降低2h强度和绝干强度,当pH值为3到7之间时,抗压强度性能因酸根离子的种类与含量不同而出现不同的变化;活度剂CaCl2也会使高强石膏早凝,其对高强石膏强度尤其是绝干强度的损失随含量的增加而增强;这几类杂质均延长了加速期的反应时间,增大结晶相变热;水化产物中二水石膏相的含量只是影响产物强度的一个因素,而杂质离子H2PO4、H+、Cl-改变了结晶接触点的性质对产物绝干强度起重要的影响;CaCl2抑制了高强石膏的水化,CaCl2含量越高,高强石膏未水化的比例越高,绝干强度下降越明显。
     4、PBGP的制备工艺优化及应用
     在实验室范围内扩大了试验规模,测试了PBGP粉的凝结时间、强度性能,并对PBGP制备工艺进行优化,结果表明:原料水洗预处理时产生的部分废水经处理后可以循环利用;PBGP浆体经洗涤、干燥后,产物的晶体边界清晰程度有所下降,但抗压强度仍能超过40MPa; PBGP浆体滤液经沉淀剂处理后循环利用4次制备出PBGP的抗压强度在35Mpa以上,循环利用5次制备出PBGP的抗压强度在25Mpa以上;水热反应过程中,磷石膏中部分硅、铝、铁等不溶性杂质从原料中析出,从而提高了PBGP的纯度;PBGP制备工艺经优化后可以分为原料的预处理工艺、常压水热反应工艺、浆体制备工艺、PBGP粉及石膏制品的生产工艺四个过程。
Phosphogypsum (PG) is solid waste of calcium sulfate discharged from wet process phosphoric acid production.Generally,4.5-5.5tons PG are generated when per ton of P2O5are produced and most of the calcium sulfate is in the form of dihydrate (DH, CaSO4·2H2O). Currently the mainly way of disposal PG is stockpilling for the phosphorus, fluorine, organic compounds and other ingredients containing in PG affect its performance and increae its using cost compared to natural gypsum. In2011, with the growing demand of phosphoric fertilizer the production of PG was up to70million tons in China and less than20.0%is used at present.It is estimated that the accumulative total of PG is over300million tons throughout China, which not only occupies plenty of lands, waste of resources, and harmful constituents also cause serious pollution to the surrounding soil, vegetation, water and air. In2006, PG was classified as "hazardous solid waste"by SEPA (state environmental protection administration),the problem of PG disposal has been a worldwide problem that seriously hampered the sustainable development of the phosphorus chemical industry and environmental protection.
     The main problems of cementitious materials preparation from PG instead of natural gypsum at home and abroad are:(1) PG based cementitious materials have higher preparation costs for the harmful impurities influencing the performace despite the high Ca2SO4·2H2O content, while PG pretreament has no superiority compared to natural gypsum not only in the price but in products performance;(2)widely useage of a-hemihydrate sulphsate calcium (a-HH) with high performance and high value-added prepared under autoclave atmosphere is restricted by the complex process, high energy consumption, inconvenience to the control, unstable performance and high price;(3) preparation of a-HH in hydrothermal electrolytic solutions with characteristic of mild reaction conditions and easy to conrol under atmospheric pressure is still at the laboratory or theoretical stage, meanwhile the raw materls are limited to natural gypsum, desulfurized gypsum or gypsum with little impurities.
     Funded by Chinese National Technology Support Project "Low-cost and Energy-saving Technology Research and Demonstration of Energy-efficient Building" (Project No.2011BAJ03B03), Major Science and Technology Plan of Hubei Province" Utilization Efficiently and Industrialization of Phosphorus Chemical Byproducts"(Project No. DZS0005), and Research and Plan Project of Hubei Province"Comprehensive Utilization of Phosphogypsum"(Project No.2009BCB030), based on theoretical and technical problems of high-strength gypsum cementitious materials preparation, design and selection of Phosphogypsum Based Gypsum Plaster (PBGP) preparation system are presented in the paper. Influences of raw material pretreatment to the formation and crystal morphology control of PBGP is studied, then effects of impurities on the performance of PBGP hydration and hardening are discussed, next optimization of PBGP preparation process and industrialization technology are considered, meanwhile the relation of PBGP composition-structure-performance is diccovered, and the critical theory and technology of PBGP preparation process, crystal morphology control, performance optimization and industrialization are established. The main research work and compliments are listed are as follows:
     1. Design and selection of PBGP preparation system.
     At hydrothermal temperature of85℃~100℃, NaCl, CaCl2and its mixtures are selected as activity agent, respectively.Influences of activity agent type and concentration, solid-liquid ratio and the reaction temperature and time to the products are researched. The experiment results show that phase transition of PG from DH to HH can conduct in strong NaCl solution, but NaCl is not favourable for preparation of a-HH from PG phase transition, for the phase transition product of PG is a mixture of a-HH and omongwaite (Na2Ca5(SO4)6·3H2O)-a structural isomer of HH; α-HH can be obtained as the product of PG phase transiton in strong CaCl2solution; the reaction time of PG transiton to a-HH shortens from240min to50min with increasing NaCl content from0to4%in24%Ca-Na-Cl solution, but it is accompanied with increasing of Na2O content and irregular uncompleted crystal shapes in the reaction product; NaCl increases the solubility of PG and promote the nucleation and growth of HH crystal, while CaCl2reduces the solubility of PG for the common ion effect, a-HH crystal growth can be greatly accerlated by surface diffusion and adsorption of relatively high activity of Ca2+
     2. Influences of raw material pretreatment to the formation and crystal morphology of PBGP
     Influences of the acidic impurities, soluble salts, insoluble impurities contained in PG to phase transiton process, product shapes and compressive strength are studied, crystal modifier commonly used are choosed to modify PGGP crystal morphology. It turns out that soluble phosphate and fluoride impurities elongate a-HH crystal aspect ration, decrease a-HH crystal diameter while provide the necessary acidic conditions for PG phase transition; homemade crystal modifier NS and EN have obvious effects on a-HH cryatal habit, short columnar PBGP crystal of aspect ratio nearly1with compressive strength beyond35MPa can be obtained when the dosages of NS and EN are0.15%and0.4%respectively;solube acidic impurities increase appropriate dosage of crystal modifier and decrease the product compressive strength;soluble salts and organic matters fine a-HH crystal partles, and reduce the product strength as well; insoluble impurities shorten a-HH crystal to rode-like shape, uneven length and distribution,improve product strength;unpretreated PG is not appropriate for PBGP preparation,water-washing of raw material is beneficial for subsequent crystal modifier usage, crystal morphology control and strength of the product; linear correlation of the product dry compressive strength and crystal volume is showed when PBGP has a uniform crystal shapes of diameter≥8μm and1-3aspect ratio.
     3. Effect of impurities on PBGP hydration and hardening performance
     Seting time, strength variation and corresponding mechanism of high-strength gypsum in dilute solution of H2SO4、H3PO4and HC1of different pH values and in different contents of CaCl2are studied, the factors influencing PBGP performance are analyzed.The results reveal that acid solutions accelerate initial and final setting of high-strength gypsum at roughly the same rule, high-strength gypsum show different setting performance in the same acidic solutions of the different pH values or in the different acidic solutions of the same pH values;2h and dry strength values of gypsum plaster are lowered markly by H2S04,H3PO4and HC1solutions of pH values less than3.0, and the strength values vary with the kind and content of acid radical ions when the pH value is between3to7; high-strength gypsum setting may also be accerlerated by activity agent CaCl2, its strength especially dry strength loss increasing with the addition of CaCl2content; acceleration periods are all prolonged and phase change heats are all enhanced by these impurities; product strength is effected by DH phase content, while impurities ions, such as E2PO4,H+,Cl" play important impacts through changing the nature of contact points; hydration reaction of high-strength gypsum is inhibited by CaCl2addition, the higher the CaCl2content, the higher the proportion of high-strength gypsum unhydration, more obviously the dry strength decreased.
     4. Optimization of PBGP preparation process and application
     PBGP preparation-scal is expanded in the laboratory, setting and strength properties of PBGP are tested, and the PBGP preparation process is optimized, the results indicate that waste water from raw material pretreatment can be recycled after disposal; the product compressive strength is still more than40MPa, though crystal boundary become unsharp after PBGP slurry was washed and dried; filtrate from PBGP slurry treated by precipitator can be recycled, the compressive strength of the product is greater than35MPa and25MPa when the diltrate cycle times are4and5respectively; silicon, aluminum, iron and other insoluble impurities containing in PG can leach out during hydrothermal reaction process, thereby the purity of PBGP is improved; the optimized preparation process of PBGP can be devied into four stages,that is, raw material pretreatment, hydrothermal reaction under atmospheric pressure,slurry preparation, PBGP power and gypsum products preparation.
引文
[1]M. Jamialahmadi. Crystallization of calcium sulfate dihydrate from phosphoric acid[J]. Asia-Pacific Journal of Chemical Engineering,2000,8:587-604.
    [2]K. Murakami. Proceedings of the fifth international symposium on the chemistry of cement, Part Ⅳ (4), Toyko,1968[C]:457-503.
    [3]E.E. Barry, R.A. Kuntze. Calcium sulphate transition temperature in the DTA of lattice substituted gypsum [J]. Chemistry and Industry,1972,38:1073-1076.
    [4]D.K. Kitchen, W.J. Skinner.Chemistry of by-product gypsum and plaster [J]. Journal of Applied Chemistry Biotechnology,21,1971:53-60.
    [5]S.Manjit. Physico-chemico studies on phosphogypsum for use in building materials [D]. University of Roorkee, Roorkee, India,1980.
    [6]P. M. Rutherford, M.J. Dudas, J.M.Arocena. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product [J]. Science of the Total Environment,1996,180(3):201-209.
    [7]中国石油和化学工业联合会,中国磷肥工业协会.磷石膏安全处置及综合利用“十二五”实施方案[J].磷肥与复肥,2012,27(5):1-5.
    [8]L.Reijnders. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials, A review [J]. Building and Environment,2007,42 (2):1036-1042.
    [9]陈永松,毛健全.磷石膏中污染物可溶磷的溶出特性实验研究[J].贵州工业大学学报,2007,36(1):99-102.
    [10]M.S. Al-Masri, Y. Amin, S. Ibrahim, et al. Distribution of some trace metals in Syrian phosphogypsum[J]. Applied Geochemistry,2004,19:747-753.
    [11]彭家惠,万体智,汤玲,等.磷石膏中杂质组成、形态、分布及其对性能的影响[J].中国建材科技,2000,6:31-35
    [12]S.Manjit. Role of phosphogypsum impurities on strength and microstructure of selenite plaster[J]. Construction and building materials,2005,19:480-486.
    [13]S.Manjit. Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster[J]. Cement and Concrete Research,2003,33:1363-1369.
    [14]纪罗军,陈强.我国磷石膏资源化利用的现状与发展综述[J].硫磷设计与粉体工程,2006,(5):5-10.
    [15]段付岗,王少婷.提高磷石膏洗涤率的措施[J].磷肥与复肥,1996,3:34-38.
    [16]段庆奎,王立明.闪烧法—磷石膏的无害化处理新工艺[J].宁夏石油化工,2004,3:13-16
    [17]文书明.磷石膏浮选脱硅试验研究[J].有色金属,2000,(4):157-158.
    [18]S. Manjit, G. Mridul, S. S. Rehsi. Purifying phosphogypsum for cement manufacture [J]. Construction and Building Materials,1993,7 (1):3-7.
    [19]S.Manjit, G. Mridul, C.L.Verma, et al. An improved process for the purification of phosphogypsum[J]. Construction and Building Materials,1996,10(8):597-600.
    [20]S.Manjit. Treating waste phosphogypsum for cement and plaster manufacture [J]. Cement and Concrete Research,2002,32 (7):1033-1038.
    [21]周可友,潘钢华等.免煅烧磷石膏—矿渣复合胶凝材研究[J].混凝土与水泥制品,2009,(6):55-58.
    [22]Huang Yun, Lin Zongshou. Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement [J]. Construction and building materials,2010,24: 1296-1301.
    [23]S.Manjit, G. Mridul. Making of anhydrite cement from waste gypsum [J]. Cement and Concrete Research,2000,30 (4):571-577.
    [24]K.Sunil. A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development[J]. Construction and Building Materials,2002,16 (8):519-525.
    [25]席美云.磷石膏的综合利用[J].环境科学与技术.2001,95(3):10-13.
    [26]高惠民,荆正强.磷石膏制备p-半水石膏粉试验研究[J].化工矿物与加工,2007,(3):9-11.
    [27]彭家惠,李清,等.磷石膏建筑腻子的配制与性能研究[J].重庆建筑大学学报,2003,(4):25-27
    [28]G. Mridul, S. Manjit, K. Rakesh. Some aspects of the durability of a phosphogypsum-lime-fly ash binder[J]. Construction and Building Materials,1996,10 (4):273-279.
    [29]S.Manjit, G. Mridul. Relationship between mechanical properties and porosity of water-resistant gypsum binder [J]. Cement and Concrete Research,1996.26(3):449-456.
    [30]陈燕,岳文海,董若兰.石膏建筑材料[M].北京:中国建材工业出版社,2003.
    [31]罗殿元编译.国外磷石膏的生产和利用[M].建筑工程材料译丛,1984,(5):1-14
    [32]余红发,裴锐,王维华.高强石膏的生产工艺及其改性研究[J].沈阳建筑工程学院学报,1999,(4):337-341.
    [33]徐大璋,董金道,王瑞麟.利用磷石膏制取α-型半水石膏的探索试验小结[J].化肥工业,1978,(5):29-35.
    [34]唐修仁,包文星.用磷石膏生产α—半水石膏的研究[J].新型建筑材料,1994(4): 11-14.
    [35]G. Mridul, J. Neerai, S. Manjit. Development of alpha plaster from phosphogypsum for cementitious binders [J]. Construction and Building Materisls,2009,23:3138-3143.
    [36]S.Manjit. Treating waste phosphogypsum for cement and plaster manufacture [J].Cement and Concrete Research,2002,32 (7):1033-1038.
    [37]Yang Jiakuan, Liu Wanchao, Zhang Lili, et al. Preparation of load-bearing building materials from autoclaved phosphogypsum [J]. Construction and building materials,2009, 23:687-693.
    [38]R. E. Hall, J. A. Robb, C.E. Coleman. The solublity of calcium sulfate at bolier-water temperatrues [J]. Journal of the American Chemical Society,1926,48:927-938.
    [39]E.P. Schoch. Wall Plaster. United States, Patient. No.1989712[P].1932.
    [40]B. Krueger. Process for conversion of residuum from flue gas desulfurization to alpha hemihydrate gypsum crystals. Germany, Patient. No.3331838A1[P],1983.
    [41]E. P. Schoch, W. A. Cunningham. Production of gypsum plaster by wet methods [J]. Transactions of the American Institute of Chemical Engineers,1941,37:1-18.
    [42]E. Eipeltauer. Preparation of crude gipseous rock and its conversion into its various hemihydrate plaster forms [J]. Zem.— Kalk—Gips,1958,11:264-304.
    [43]T. Yamada, C. Mizutani, S. Nagai. Gypsum byproduced on phosphoric acid process(V!I), Dehydration And Hydration in mineral acids[J]. Gypsum Lime,1966,85:198
    [44]Alfred Zurz, Ivan Odler, Felicia Thiemann, Katarina Berghofer. Autoclave-Free Formation of a-Hemihydrate Gypsum[J]. Journal of the American Ceramic Society,1991,74, (5): 1117-1124.
    [45]郑万荣,张巨松,杨洪永,等.转晶剂、晶种和分散剂对α半水石膏晶体粒度、形貌的影响[J].非金属矿,2006,(4):1-4.
    [46]张巨松,郑万荣,范兆荣,等.α半水石膏晶体生长习性的探讨[J].沈阳建筑大学学报(自然科学版),2008,(2):261-264
    [47]Yang Liuchun, Guan Baohong, Wu Zhongbiao, et al. Solubility and phase transition of Calcium Sulfate in KCl solutions between 85 and 100 ℃ [J]. Industrial and Engineering Chemistry Research,2009,48:7773-7779.
    [48]马宪法,官宝红.常压KCl溶液中a-半水石膏的脱水过程[J].硅酸盐学报,2009,(10):1654-1659
    [49]Guan Baohong, Ma Xianfa, Wu Zhongbiao, et al. Crystallization Routes and Metastability of α-Calcium Sulfate Hemihydrate in Potassium Chloride Solutions under Atmospheric Pressure. Journal of Chemical & Engineering Data,2009,54(3):719-725.
    [50]Guan Baohong, Yang Liuchun, Wu Zhongbiao, et al. Effect of Mg2+ Ions on the Nucleation Kinetics of Calcium Sulfate in Concentrated Calcium Chloride Solutions [J]. Industrial and Engineering Chemistry Research,2010,49:5569-5574.
    [51]Yang Liuchun, Wu Zhongbiao, Guan Baohong. Growth rate of alpha-calcium sulfate hemihydrate in K-Ca-Mg-Cl-H2O systems at elevated temperatrue [J]. Journal of Crystal Growth,2009,311:4518-4524.
    [52]Guan Baohong, Yang Liuchun, Wu Zhongbiao. Preparation of alpha-calcium sulfate hemihydrate form FGD gypsum in K Mg containing concentrated CaCfe solution under mild conditions[J]. Fuel,2009,88:1286-1293
    [53]Shen Zhuoxian, Guan Baohong, Fu Hailu, et al. Effect of potassium sodium tartrate and sodium citrate on the preparation of alpha-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution [J]. Journal of the American Ceramic Society,2009,92(12):2894-2899.
    [54]Guan Baohong, Fu Hailu, Yu Jie. Direct transformation of calcium sulfate to a-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure[J]. Fuel,2011,9:36-41.
    [55]WuGuan Baohong,Guangming Jiang, Zhongbiao, et al. Preparation of a-calcium sulfate hemihydrate from calcium sulfate dihydrate in methanol-water solution under mild conditions [J]. Journal of the American Ceramic Society,2011,94:3261-3266.
    [56]Guan Baohong, Yang Liuchun, Fu Hailu, et al. a-Calcium Sulfate hemihydrate preparation from FGD gypsum in recycling mixed salt solutions [J]. Chemical Engineering Journal, 2011,174:296-303.
    [57]B.Jorg. Alpha hemihydrate in conjunction with the flue gas desul-furization of a power plant, In:Proceedings of the 2nd International Conference on FGD and Chemical Gypsum, Toronto, Canada,1991[C].
    [58]刘芳,何伟,吴晓琴.硫酸钙在Ca-Me-K-CI-H20体系转化过程中溶解度研究[J].环境科学与技术,2010,33(5):35-38.
    [59]李林,李琳,孙元喜.常压盐溶液法制备α-半水石膏的工艺参数研究[J].湖南文理学院学报(自然科学版),2005(1):31-33
    [60]胥桂萍,张婷,田君.FGD石膏制α半水石膏改性研究[J].能源与环境,2007(4):10-12.
    [61]胥桂萍.媒晶剂对制备α-半水石膏的影响[J].能源与环境,2008(1):23-24.
    [62]Y. Ling, G. P. Demopoulos. Preparation of a-calcium sulfate hemihydrate by reaction of sulfuric acid with lime[J]. Industrial and Engineering Chemistry Research,2005,44(4): 715-724.
    [63]Krishnam U. G. Raju, Gordon Atkinson. The thermodynamics of "scale" mineral solubilities.3. calcium sulfate in aqueous NaCl [J]. Journal of Chemical and Engineering Data,1990,35:361-367.
    [64]S.Dahlgren, M. Fertilizer. Calcium Sulfate Transitions in Superphosphate [J]. Journal of Agricultural and Food Chemistry,1960,8(5):411-412.
    [65]Jack M. Sullivan, John J. Kohler, John H. Grinstead. Solubility of a-calcium sulfate hemihydrate in 40,50 and 55% P2O5 phosphoric acid solution at 80,90,100 and 110℃ [J]. Journal of Chemical and Engineering Data,1988,33:367-370
    [66]M. El Moussaouiti, R. Boistelle, A. Bouhaouss, et al. Crystallization of calcium sulphate hemihydrate in concentrated phosphoric acid solutions [J]. Chemical Engineering Journal, 1997,68:123-130.
    [67]J. M.Sullivan, J. J. Kohler, J.H. Grinstead. Effect of aluminum, iron, and magnesium upon the solubility of.alpha.-calcium sulfate hemihydrate in 40%,45%,50%, and 55% P2O5 phosphoric acid solutions at 80,90,100, and 110 ℃ correlations with water concentration[J]. Journal of Chemical and Engineering Data,1991,36:77-80.
    [68]Barbara Grzmil, Bogumi Kic, Olga urek, et al. Studies on the transformation of calcium sulphate dihydrate to hemihydrate in the wet process phosphoric acid production [J]. Polish Journal of Chemical Technology,2012,14(2):80-87.
    [69]鲍智江,李建隆.硫酸钙在调和液中的溶解度[J].化学工程,1995.23(5):21-25.
    [70]M. El Moussaouiti, R. Boistelle, A. Bouhaouss, et al. Crystallization of calcium sulphate hemihydrate in concentrated phosphoric acid solutions [J]. Chemical Engineering Journal, 1997,68(2-3):123-130.
    [71]Y. B. Ling, G. P. Demopoulos. Solubility of calcium sulfate hydrates in (0 to3.5) mol-kg-1sulfuric acid solutions at 100 ℃ [J]. Journal of Chemical and Engineering Data,2004,49: 1263-1268.
    [72]Zhibao Li, G. P. Demopoulos. Solubility of CaSO4 phase in aqueous HCl+CaCl2 solutions from 283K to 353K [J]. Journal of Chemical and Engineering Data,2005,50:1971-1982.
    [73]Zhibao Li, G. P. Demopoulos. Model-based construction of calcium sulfate phase-transition diagrams in the HCl-CaCl2-H2O system between 0 to 100 ℃ [J]. Industrial and Engineering Chemistry Research,2006,45:4517-4524.
    [74]Zhibao Li, G. P. Demopoulos. Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlC13 on solubility of CaSO4 phases in aqueous HCl or HCl+ CaCl2 solutions at 298 to 353 K [J]. Journal of Chemical and Engineering Data,2006,51:569-576.
    [75]Zhibao Li, G. P. Demopoulos. Speciation-based chemical equilibrium model of CaSO4 solubility in the H+Na+Ca+Mg+Al+Fe(Ⅱ)+Cl+SO4+H2O System [J]. Industrial and Engineering Chemistry Research,2007,46:6385-6392
    [76]Thomas Feldmann, George P. Demopoulos. The crystal growth kinetics of alpha calcium sulfate hemihydrate in concentrated CaCl2-HCl solutions [J]. Journal of Crystal Growth 2012,351:9-18.
    [77]Thomas Feldmann, George P. Demopoulos. Phase transformation kinetics of calcium sulfate phases in strong CaCl2-HCl solutions [J]. Hydrometallurgy,2012, 129-130:126-134.
    [78]袁润章,胶凝材料学(第二版),武汉:武汉理工大学出版社,1996.
    [79]A. J. Lewry, J. Williamson. The setting of gypsum plaster Part I The hydration of calcium sulphate hemihydrate [J], Journal of Materials Science,1994,29:5279-5284.
    [80]J. W. Mullin. Crystallization, fourth ed. Butterworth Heinemann, Oxford,2001.
    [81]A. Fathi, G. Abdellatif. Kinetics and morphology of formed gypsum, Desalination,2004, 166:427-434.
    [82]A. J.Xewry. J. Williamson.The setting of gypsum plaster Part 2 The development of microstructure and strength [J]. Journal of Materials Science,1994,29:5524-5528.
    [83]N. B. Singh, B.Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization [J]. Progress in Crystal Growth and Characterization of Materials,2007,53: 57-77.
    [84]GJ.Witkamp, M. M.Seckler, O. S. L. Buinsma, ea al.Recrystallization of calcium sulfate in phosphoric acid solutions[J]. Journal of Crystal Growth,1990,99:1117-1123.
    [85]E. Badens, S. Veesler, R. Boistelle. Crystallization of gypsum from hemihydrate in presence of additives [J]. Journal of Crystal Growth,1999,198:704-709.
    [86]Samia K. Hamdona, Manal M. Seif, Salem M. Hamzab.Dissolution of magnesium fluoride crystals in the presence of some minerals salts [J], Desalination,2001,133:205-210.
    [87]隋庆海,用于α型半水石膏外加剂的作用与分类[J].辽宁建材,1993,(3):15-17
    [88]Mingliang Tang, Shen Xiaodong, Huang Hong. Influence of alpha-calcium sulfate hemihydrate particle characteristics on the performance of calcium sulfate-based medical materials [J]. Materials Science and Engineering,2010,30:1107-1111.
    [89]Guan Baohong, Ye Qingqing, Wu Zhongbiao, et al. Analysis of the relationship between particle size distribution of alpha-calcium sulfate hemihydrate and compressive strength of set plaster-using grey model [J]. Powder Technology,2010.200(3):136-143.
    [90]Ye Qingqing, Guan Baohong, Lou Wenbin. Effect of particle size distribution on the hydration and compressive strength development of a-calcium sulfate hemihydrate paste [J]. Powder Technology,2011,207:208-214.
    [91]A.B.福尔任斯基,A.B.弗朗斯卡娅著,吕昌高译.石膏胶结料和制品,北京:中国建筑工业出版社,1980,11-17.
    [92]杨敏.杂质对不同相磷石膏性能的影响[D].重庆:重庆大学,2008.
    [93]马保国,侯伟,茹晓红,等.分光光度法快速测定磷石膏的溶解度[J].武汉理工大学学报,2012(34):15-19
    [94]D.Freyer, W.Voigt. Crystallization and phase stability of CaSO4 and CaSO4-based salts [J]. Monatshefte Fr Chemie,2003,134(5):693-719
    [95]William L. Marshall Slusher, Ruth slusher. Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions,0-110 ℃ [J]. The Journal of Physical Chemistry, 1966,70:4015-4027.
    [96]Li Zhibao, G. P. Demopoulos. Model-based construction of calcium sulfate phase-transition diagrams in the HCl-CaCl2-H2O system between 0 to 100 ℃ [J]. Industrial and Engineering Chemistry Research,2006,70:4517-4524.
    [97]J. H. Van't Hoff, E. F. Armstrong, W. Hinrichsen, et al. Just, GGips and Anhydrite (Gypsum and Anhydrite) [J]. Physical Chemistry Periodical,1903,45:257-306.
    [98]F. Golles. Examination and calculation of thermodynamic data from experimental measurements. Ⅰ. the numerical integration of the vapor-pressure curves of the system methanol-water [J]. Monatshefte fur Chemie,1961,92:981-991.
    [99]F. Golles. Examination and calculation of thermodynamic data from experimental measurements. Ⅱ. the numerical integration of the vapor pressure curves of the system methanol-water [J]. Monatshefte fur Chemie,1962,93:191-220.
    [100]尹忠,赵晓东.硫酸钙在盐酸的氯化钠水溶液中的溶解度.油田化学,1994.11(4):345-347.
    [101]N. S. Yehia, M. M. Ali, K. M. Kandil, et al. Effects of some parameters affecting the crystallization rate of calcium sulfate dihydrate in sodium chloride solution [J]. Journal of American Science,2011,7(6):635-644.
    [102]S.K.Hamdona, U.A. Al Hadad, Crystallization of calcium sulfate dihydrate in the presence of some metal ions [J]. Journal of Crystal Growth,2007,299(1):146-151.
    [103]E.Bock. On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25℃,30℃,40℃, and 50℃ [J]. Canadian Journal of Chemistry,1961,39:1746-1751.
    [104]Wu Xiaoqin, Tong Shitang, Guan Baohong,et al. Transformation of flue-gas-desulfurization gypsum to-hemihydrated gypsum in salt solution at atmospheric pressure [J]. Chinese Journal of Chemical Engineering,2011,19(2):349-355.
    [105]Ru Xiaohong, Ma Baoguo, Huang Jian, et al. Phosphogypsum transition to a-calcium sulfate hemihydrate in the presence of omongwaite in NaCl solutions under atmospheric pressure, Journal of the American Ceramic Society,2012,95 (11):3478-3482.
    [106]D.N. Glew, D.A. Hames. Gypsum, disodium pentacalcium sulfate, and anhydrite solubilities in concentrated sodium chloride solutions [J]. Canadian Journal of Chemistry, 1970,48:3733-3738.
    [107]F. Hatert Mees, R. Rowe. Omongwaite, Na2Ca5 (SO4)6·3H2O, A new mineral from recent salt lake deposits, Namibia [J]. Mineralogical Magazine,2008,72:1307-1318.
    [108]S. Marinkovic, A. Kostic-Pulek, V. Manovic. Differental thermal analysis and gypsum binders, Journal of Mining and Metallurgy,2001,37 (3-4) B:77-87.
    [109]Ma Baoguo, Ru Xiaohong, Lu Siwen, et al. Preparation of a-Calcium Sulfate Hemihydrate from Phosphogypsum in CaCl2 Solution under Atmospheric Pressure. Advanced Materials Research,2012,554-556:570-574.
    [110]杨得山译.石膏[M].北京:中国建筑工业出版社.1987.
    [111]胥桂萍,童仕唐.从FGD残渣中制备α型半水石膏结晶机理的研究[J].吉林化工学院,2002(1):9-12.
    [112]W. L.Marshall, R. Slusher. Thermodynamics of calcium sulfate dihydrate in aqueous sodium chlorides,0-110℃[J]. Journal of Physical Chemistry,1966,70:4015-4027.
    [113]O. Sohnel, J. W. Mullin. Interpretation of crystallization induction period [J]. Journal of Colloid and Interface Science,1998,123:43-50.
    [114]He Shiliang, John E. Oddo, Tomson B. Tomson. The nucleation kinetics of calcium sulfate dihydrate in NaCl solutions up to 6 m and 90 ℃ [J]. Journal of Colloid and Interface Science,1994,162:297-303.
    [115]M. Prisciandaro, A. Lancia, D. Musmarra. Calcium sulfate dihydrate nucleation in the presence of calcium and sodium chloride salts [J]. Industrial and Engineering Chemistry Research,2001,40:2335-2339.
    [116]J.Kushinir. The coprecipitation of strontium, magnesium, sodium, potassium and chloride ions with gypsum. An experimental study [J]-. Geochimica et Cosmochimica Acta, 1980,44:1471-1482.
    [117]A. Zurz, I. Odler, F. Thiemann, et al. Autoclave-Free Formation of a-Hemihydrate Gypsum [J]. Jouranl of the Ameria Ceramic Society,1991,74:1117-1124.
    [118]黄自卿,电解质溶液导论[M],北京:科学出版社,1983:118-235.
    [119]P. Fanos, A. Stella, P. Ioannis. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum[J]. Journal of Environmental Radioactivity,2009,100:854-857.
    [120]Arvind Kumar, V. P. Mohandas, Rahul Sanghavi, et al.Ionic interactions of calcium sulfate dihydrate in aqueous sodium chloride solutions:solubilities, densities, viscosities, electrical conductivities, and surface tensions at 35 ℃ [J]. Journal of Solution Chemistry, 2005,34(3):333-342.
    [121]O.SShnel. Electrolyte crystal-aqueous solution interfacial tensions from crystallization data [J]. Journal of Crystal Growth,1982,57:101-108.
    [122]G. J. Witkamp, van der Eerden J P, Van Rosmalen G M. Growth of gypsum 1. Kinetics [J]. Journal of Crystal Growth,1990,102:281-289.
    [123]M. EI Moussaouiti, R. Boistelle, A. Bouhaouss, et al. Crystallization of calcium sulphate hemihydrate in concentrated phosphoric acid solutions [J]. Chemical Engineering Journal,1997,68(2-3):123-130.
    [124]A. E. Nielsen. Theory of electrolyte crystal growth. The parabolic rate law [J]. Pure and Applied Chemistry,1981,53(11):2025-2039.
    [125]K.I. Parsiegla, J. L. Katz. Calcite growth inhibition by copper(Ⅱ) I. Effect of supersaturation [J]. Journal of Crystal Growth,1999,200:213-226.
    [126]Yang Liuchun, Wu Zhongbiao, Guan Baohong. Growth rate of alpha-calcium sulfate hemihydrate in K-Ca-Mg-Cl-H2O systems at elevated temperatrue [J]. Journal of Crystal Growth,2009,311,4518-4524.
    [127]S. Marinkovic, A. Kostic-Pulek, S. Djuric, et al. Products of hydrothermal treatment of selenite in potassium chloride solutions [J]. Journal of Thermal Analysis and Calorimetry, 1999,57:559-567.
    [128]S. Marinkovic, A. Kostic-Pulek, M. Djuricic. The products of selenite hydrothermal treatment in lithium chloride solutions [J]. Journal of the Serbian Chemical Society,2000, 65:265-274.
    [129]姜洪义,曹宇.高强石膏的制备及性能影响因素研究[J].武汉理工大学学报,2006(4):35-37.
    [130]N. B. Singh, B.Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization [J]. Progress in Crystal Growth and Characterization of Materials,2007,53: 57-77.
    [131]M. E. Tadros, I. Mayes. Linear growth calcium sulfate dihydrate crystals in the presence of additives [J]. Journal of Colloid and Interface Science,1979,72(2):245-254.
    [132]H. El-Shall, M. M. Rashad, E. A. Abdel-Aal. Effect of cetyl pyridinium chloride additive on crystallization of gypsum in phosphoric and sulfuric acids medium [J]. Crystal Research and Technology,2005,40(9):860-866.
    [133]P. Marina, O. Emilia, L. Amedeo, et al.Gypsum precipitation from an aqueous solution in the presence of Ntrilotrimethylene phosphonic acid [J]. Industrial and Engineering Chemistry Research,2006,45(6):2070-2076.
    [134]王志,岳文海.α半水石膏晶形转化剂作用机理的探讨[J].武汉工业大学学报,1996,(2):1-4
    [135]王瑞麟,俞力航,叶培虹,等.影响α-半水石膏结晶形态的若干因素[J].新型建筑材料,1991,10:6-10.
    [136]锄本峻司,原尚道,向山广.Formation of a-calcium sulfate hemihydrates in aqueous salt solutions under the atmospheric pressure and their physical properties [J]. Gypsum&Lime, 1986,200:26-31.
    [137]M. H. H. Mahmoud, M. M. Rashad, I.A.Ibrahim, et al. Crystal modification of calcium sulfate dihydrate in the presence of some surface active agents [J]. Journalof Colloid and Interface Science,2004,270(1):99-105.
    [138]刘红霞,彭家惠,瞿金东.常压盐溶液法制备α-半水石膏转晶剂的研究[J].新型建筑材料,2010,(4):5-8
    [139]隋庆海.用于α型半水石膏外加剂的作用与分类[J].辽宁建材,1993,(3):15-17
    [140]J. Bensted, S. Prakash. Investigation of calcium sulphate water system by infrared spectroscopy [J]. Nature,1968,219:60-61.
    [141]A. Putnis, B. Winkler, L. Fernandez-Diaz. In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum [J]. Mineralogical Magazine,1990, 54:123-128.
    [142]M. H. Mahmoud, M. M. Rashad, I. A. Ibrahim, et al. Crystal modification of calcium sulfate dihydrate in the presence of some surface-active agents [J]. Journal of Colloid and Inter-face Science,2004,270(1):99-105.
    [143]李宗石,刘平芹.表面活性剂合成及工艺[M],北京:中国轻工业出版社,1992,195-201.
    [144]邓均辉,周贵云,钟本和.表面活性剂对二水硫酸钙结晶动力学的影响[J].成都科技大学学报,1992(5):7-11+18.
    [145]C. J. Murphy. Materials science:Nanocubes and nanoboxes [J]. Science,2002,298: 2139-2141.
    [146]Xia Tian, Li Qin, Liu Xiaodong, et al. Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide [J]. Journal of Physical Chemistry B,2006,110:2006-2012.
    [147]N. Kubota, H. Otosaka, N. Doki, et al. Effect of lead (Ⅱ) impurity on the growth of sodium chloride crystals [J]. Journal of Crystal Growth,2000,220:135-139.
    [148]N. Kubota, J.W. Mullin. A kinetic model for crystal growth from aqueous solution in the presence of impurity [J]. Journal of Crystal Growth,1995,152:203-208.
    [149]V. A Kuznetsov, T.M Okhrimenko, Mirostawa Rak. Growth promoting effect of organic impurities on growth kinetics of KAP and KDP crystals [J]. Journal of Crystal Growth, 193:164-173.
    [150]刘红霞,彭家惠,瞿金东,等.柠檬酸和pH值对α-半水脱硫石膏晶体形貌的调控及影响[J].硅酸盐通报,2010(3):518-523.
    [151]华东理工大学分析化学教研组,成都科技大学分析化学教研组.分析化学(第四版)[M].北京:高等教育出版社,1995:470.
    [152]刘进超,邹辰阳,彭家惠,等.EDTA对α-半水脱硫石膏晶体形貌的影响及调晶机理研究[J].材料导报,2011.25(10):113-116.
    [153]刘伟华,无机外加剂对a半水石膏性能的影响及其作用机理研究[D],唐山:河北理工大学,2005.
    [154]彭家惠.建筑石膏减水剂与缓凝剂作用机理研究[D],重庆:重庆大学,2004.
    [155]N. B. Singh, B.Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization [J]. Progress in Crystal Growth and Characterization of Materials,2007, 53:57-77.
    [156]大连理工大学无机化学教研室,无机化学(上册)(第三版)[M].北京:高等教育出版社,1998,180-182.
    [157]茹晓红,马保国,黄赞.磷石膏制高强α半水石膏的研究进展[J].新型建筑材料,2011,38(11):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700