用户名: 密码: 验证码:
大鼠延髓中缝核群与前庭复合体之间纤维联系及其在运动病中作用的形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究意义
     运动病(motion sickness,MS)是前庭器官受刺激而引起的中枢及植物神经系统功能紊乱的反应,其症状包括面色苍白、出汗、流涎、淡漠、嗜睡、眩晕、恶心或呕吐等前庭-植物神经系统功能紊乱症状。它发生于人们乘坐车、船、飞机、游乐设施或航海、航空、航天模拟和实际作业时,因所处的运动环境不同,MS又有不同的名称,如空晕病、晕船(航海MS)、航天病、模拟器病等。MS发病率较高,对人们生活的影响较大,同时,该病严重影响着部队的作战能力。然而迄今为止,由于本病的发病机制尚未完全阐明,目前所使用药物的防治效果还不十分令人满意,而且多具嗜睡、工作效率低等副作用。因此,深入研究本病的发病机制,对于提高人们生活质量,增强部队战斗力具有重要意义。
     目前,关于MS发病机制存在多种假说,使人们对其发病机制有了深入了解。目前被人们广泛接受的是神经不匹配学说,该学说认为当人们进入到一个新的运动环境之后,来自视觉、耳石器、半规管和本体感觉器将信息传入到前庭神经核,由前庭复合体(vetibular nuclei complex,VNC)发出的神经纤维进一步向中枢其它核团投射,大脑将会对所获得的运动信息与原有的信息进行对照,一旦新的信息与过去的经验不符,或者和所“期望”的信号不一致,即可发生神经不匹配而引起MS。因此,可以说MS是由VNC始发,多个中枢核团参与的中枢神经系统功能紊乱疾病。中缝核群(raphe nuclei complex,RNC)是脑干五-羟色胺(5-hydroxytryptamine,5-HT)能神经元集中存在的部位,由于5-HT不能通过血脑屏障,因此中枢神经系统内源性的5-HT大部分来源于RNC。是否存在VNC向RNC的纤维投射还不十分明确,研究显示5-HT可以通过作用于VNC内5-HT1A受体抑制VN的活性,并且已经证实RNC存在向VNC投射的纤维联系。
     在借鉴先前工作的基础上,本课题利用复杂旋转加速度刺激器刺激大鼠的前庭器官,建立MS动物模型,同时观察动物在旋转刺激下VNC、RNC中Fos、P物质受体(subsnance P receptor,SPR)的表达变化,同时,利用逆行追踪技术研究VNC与RNC之间的纤维联系,提供形态学依据,为进一步临床研究打下基础。
     二、材料与方法
     本研究主要以二级SD大鼠为研究对象,利用复杂旋转刺激器装置,采用免疫组化方法、免疫荧光技术、激光共聚焦技术以及荧光素追踪技术探讨MS可能的发生机理。
     1、采用复杂旋转刺激器刺激大鼠的前庭器官,利用大鼠发生MS后异食高岭土等非营养性物质这一特征,验证建立的MS动物模型是否成功。
     2、观察复杂旋转刺激后大鼠VNC内Fos蛋白表达情况及阳性细胞计数,分析Fos对MS模型中大鼠VNC作用。
     3、计算复杂旋转刺激后大鼠RNC内Fos蛋白表达阳性细胞数目,分析Fos在MS模型中大鼠RNC的表达变化。
     4、利用四甲基罗达明(tatramethyl thodamine,TMR)逆行标记追踪技术,研究VNC向延髓RNC的纤维投射联系,为进一步研究MS的发生机制提供形态学依据。
     5、采用荧光金(fluorogold,FG)追踪、免疫荧光及激光共聚焦方法研究刺激后大鼠MVN内Fos、SP受体(NK-1R)在MVN内FG逆标神经元细胞的共表达情况,分析Fos、SPR在MS模型中的表达变化及意义。
     三、结果
     1、本试验采用复杂的双轴旋转刺激动物,引起显著的异食高岭土行为,而对照组动物行为学无改变。
     2、双轴旋转刺激动物,观察VNC内Fos阳性标记细胞表达情况,结果显示MVN标记细胞最多,占VNC内阳性细胞的60 %左右,其余核团均有不同数目的阳性神经元,所占比率不同。
     3、双轴旋转刺激动物,RNC同时出现较多Fos阳性标记细胞,主要相关核团内阳性细胞数目在150~300之间。
     4、在延髓RNC区域微注射TMR,在荧光显微镜下观察到VNC中出现标记细胞,各个亚核中标记细胞数目存在明显差异,在同一亚核的不同部分标记细胞的分布也不一样。标记细胞主要存在于MVN吻端及LVN区域,SuVN区域数量较少。
     5、在延髓RNC区域微注射FG 6 d后,旋转刺激动物1 h,观察到在MVN中存在FG、Fos与SPR共同标记神经元。
     四、结论
     1、利用复杂双轴旋转刺激装置成功建立MS动物模型,为MS的机理研究提供可靠方法。
     2、双轴旋转刺激后,大鼠VNC及RNC内各亚核均出现数量不等的Fos阳性标记细胞,提示VNC、RNC共同参与了MS的发生过程。
     3、VNC不但接受来自RNC发出的神经纤维支配,同时也发出纤维投射到RMg以及RPa等延髓RNC,提示两者之间存在双向纤维联系。
     4、延髓RNC区域微注射FG后,MVN可见到FG、Fos、SPR共同标记阳性细胞。提示在复杂双轴旋转刺激引起的MS发生时,RNC内的部分神经元通过某种机制参与了MS的发生或者起到一定的调节作用。
Objective At present, it is believed that motion sickness happens in riding, navigation or aviation and is mostly induced by the abnormal activity of vestibular system. Signs and symptoms of motion sickness include headache, dizziness, and nausea, vomiting which influence remarkably the ability for navy or air members. Although there are many hypothesis for the pathogenesis, none of' them can thoroughly explain the occurrence, development and all kinds of symptoms in MS. The pathogenesis of MS is not clarificated. This study aims to observe the change of neurotrasmitter in the brain stem during motion sickness so as to render the foundation of the disease and investigate the relationship. The illumination of the mechanism has important academic and practical significance which to prevent and treat motion sickness.
     Materials and methods
     1. Establish and testify the MS model in rats. SD male rats were randomly divided into MS group and control group. We set up rat MS model using complex rotation stimulator made by our laboratory and gave rats one-hour stimulation everyday. The establishment of MS was measured by their kaolin consumption.
     2. After one-hour simulation, the changes of Fos protein expression in VNC and RNC of rats were observed by immunohistochemitry.
     3. TMR retrograde tracing technique was used to observe the position of stained positive cells in VNC.
     4. After injecting FG to the RNC, we used antibodies against SPR and Fos to testify the co-expression by immunofluorescence histochemistry in MVN. The stained sections were observed using a confocal laser-scanning microscope.
     Results
     1. Compared with the control group, the kaolin consumption of MS group increased markedly. The results indicated the establishment of MS in rats is successful.
     2. In the control group, we found the expression of Fos protein in cells of VNC and RNC were hardly observed. Compared with the control group, the number of Fos-positive cells increased markedly after the stimulation by complex rotation. The Fos protein were distributed in the different subnuclei of VNC and RNC. The results indicate that this stimulation can activate the vestibular neurons, some neurons in RNC were activated through direct or indirect connections with VNC.
     3. After injected TMR to the RMg、RPa,a number of TMR retrogradely labeled neurons were mainly distributed in the MVN、LVN and IVN.
     4. The rats were stimulated after 6-day injection of FG, triple-labeled neurons of FG/Fos/SPR were found in MVN.
     Conclusion
     1. The motion sickness model in rats was established successfully.
     2. Fos protein were increased markedly in VNC and RNC by motion sickness model .This suggested that RNC play a role in MS.
     3. There are reciprocal connection between VNC and RNC in medulla oblongata.
     4. In the MVN, some neurons with Fos immunoreactivity transmitting the move information and projecting directly to the RNC might receive SPergic afferents.
引文
1.王林杰,张丹,董卫军.航天前\中\后空间运动病研究.航天医学与医学工程.2003;1 6(5):382-386
    2. L R Young, P Sinha. Space flight influences on ocular counterrolling and other neurovestibular reactions. Otolaryngol. Head Neck Surg.l998;118: 31-34
    3. Martina Heer, William H. Paloski. Space motion sickness: Incidence, etiology, and countermeasures. Autonomic Neuroscience .2006; (30 ): 77-79
    4. Takeda N, Morita M, Horii A, et al .Neural mechanisms of motion sickness. J Med Invest. 2001; 48(1-2): 44-59.
    5. Takeda N, Horii A, Uno A, et al. A ground-based animal model of space adaptation syndrome. J Ves Res.l996;6(6): 403-409.
    6. Richard IH. Anxiety disorders in Parkinson's disease. Adv Neurol. 2005; 96: 42-55.
    7. Kohl RL, Homick JL. Motion sickness: a modulatory role for the central cholinergic nervous system. Neurosci Biobehav Rev.l983;7(l): 73-85.
    8.沈勤,吴扬,李炳源.旋转刺激对大鼠中枢单胺类神经递质的影响.航天医学与医学工程.1994;7(2):100-104.
    9. Farideh A, Javid, Robert J. The effect of serotonin and serotonin receptor antagonists on motion sickness. Pharmacology Biochemistry and Behavior.2002;73(4): 979-989
    10. Okada F, Saito H, Matsuki N. Blockade of motion-and cisplatin-induced emesis by a 5-HT2 receptor agonist in Suncus murinus. Br JPharmacol.l995;114(5): 931-934.
    11. Matsuoka I, Ito J, Takahashi H, Sasa M, Takaori S. Experimental vestibular pharmacyology: A minireview with special reference to neuroactive substance and antivertigo drugs. Acta Otolaryngol. 1985; 419: 62-70..
    12. Lin HC, Benson GJ, Thurmon JC, et al. Influence of anesthetic regimens on the perioperative catecholamine response associated with onychectomy in cats. Am J Vet Res. 1993;54(10): 1721-1724.
    13. Flock A. Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature 1974; 249(453): 142-144.
    14. Guth SL, Norris CH. Pharmacology of the isolated semicircular canal effect of GABA and picrotorin. Exp Brain Res.l984;56: 72-78.
    15.张素珍.眩晕症的诊断与治疗[M].北京;人民军医出版社.2001:202-215.
    16. Hara H. Changes in the utricular otoconia of the chick embryo developed under 2G gravity. Nippon Jibiinkoka kaiho.l993;96: 969-976.
    17. Kohl RL. Endocrine correlates of susceptibility to motion sickenss. Aviat Space Environ Med. 1985;56(12): 1158-1165.
    18. Otto B, Riepl RL, Otto C, et al. mu-Opiate receptor agonists- a new pharmacological approach to prevent motion sickness. Br J Clin Pharmacol.2006;61(l): 27-30.
    19. S Chrubasik,M H Pittler,B D Roufogalis. Zingiberis rhizoma: A comprehensive review on the ginger effect and efficacy profiles. Phytomedicine. 2005;12(9): 684-701
    20.刘志强,裴静琛.偏心旋转刺激下大鼠前庭核c-fos表达的观察.2000;13(2):132-135.
    21.王琰,金淑仪.实验性运动病大鼠脑细胞c-fos基因表达.中国病理生理杂志.1998;14(6):755-757.
    22.王琰,徐根兴.模拟运动病Ca~2+内流机制探讨.中华航海医学杂志.2000;7(4):197-200.
    23. Kaufman GD,Anderson JH,Bdita AJ. Brainstem expression following acute unilateral labyrinthectomy in the rat.Neuro.l992;3: 829-832.
    24. Kaufman GD, Perachio AA, Translabyrinth electrical stimulation for the induction of immediate-early genes in the gerbil brainstem. Brain Res.l994;646: 345-350.
    25. Kaufman GD, Anderson JH, Beitz AJ. Fos-defined activity in rat brainstem following cenripetal acceleration. Neurons. 1992; 11: 4489-4500.
    26. Carst E, Saxe I. Brainstem neurons expressing c-fos immunoreactivity following irritant chemical stimulation of the rat.Nrosci.l995;69: 939-953.
    27. Finley JC Jr, O'Leary M, Wester D, et al. A genetic polymorphism of the alpha2-adrenergic receptor increases autonomic responses to stress. J Appl Physiol. 2004;96(6): 2231-2239.
    28. Verhagen WI, Bom SJ, Fransen E, Van Camp G, Huygen PL, Theunissen EJ. Hereditary cochleovestibular dysfunction due to a COCH gene mutation (DFNA9): a follow-up study of a family. Clin Otolaryngol AlliedSci.2001;26(6): 477-83.
    29. Doble TG, May JG. Cognitive behavioral management of Motion sickness. Aviat Space Environ Med.l994;65(10): 1-20.
    30. Bosser G, Gauchard GC, Brembilla-Perrot B, Marcon F, Perrin PP. Experimental evaluation of a common susceptibility to motion sickness andvasovagal syncope in children. Brain Res Bull. 2007 Mar 15;71(5): 485-492.
    31. Spinks AB, Wasiak J, VII lanueva EV, et al. Scopolamine for preventing and treating motion sickness. Cochrane Database Syst Re.2004;(3):2851.
    32. Lucot JB. Pharmacology of motion sickness. Journal of Vestibular Res.l998;8(l): 61-66.
    33. Lacker JR, Graybiel A. Use of promethazine to hastin adaptation to provocative motion. J Clin Pharmacol. 1994;34(6): 644-648.
    34. Wood CD, Stewart J, et al. Effectiveness and duration of intramuscular antimotion sickness medication.J Clin Pharmacol. 1992;32(11): 1008-1012.
    35. Dornhofier J Chelonis JJ, Blake D. Stimulation of the semicircular canals via the rotary chair as a means to test pharmacologic countermeasures for space motion sickness. Otol Neurotol. 2004;25(5): 740-745.
    36. Buckey JC, Alvarenga D, Cole B, et al. Chlorphenil-amine for motion sickness. Journal of vestibular res. 2004;14: 53-61.
    37. Cheung S, Heskin R, Hofer D.Failure of cetirizine and fexofenadine to prevent motion sickness. Annals of pharmacotherapy. 2003;37: 173-177.
    38.王静,钱锦康,王宝珍,等.两种抗运动病药物的效果比较.航天医学与医学工程.1999;12(2):138-140.
    39. Pingree BJ. INM investigations into drugs for seasickness prophylaxis. J R Nav Med Serv.l994;80(2): 76-80.
    40. Marcus DA,Furrnan JM.Prevention of motion sickness with rizatriptan:A double-blind placebo-controlled pilot study. Med Sci Monit.2006;12(l): 1-7.
    41. Scurr JH, Gulati OP. Zinopin~the rationale for its use as a food supplement in Traveller's thrombosis and motion sickness. Phytother Res.2004;18(9):687-695.
    42. Lien HC, Sun WM, Chen YH, et al. Effects of ginger on motion sickness and gastric slow wave dysrhythmias induced by circular vection. Am J Physiol Gastrointest Liver Physiol.2003;284(3): 481-489.
    43. Mowrey DB,Clayson DE. Motion sickness,ginger, and psychophysics. Lancet. 1982; 1(8273): 655-657.
    44. Kim MS,Chey WD,Owyang C,et al.Role of plasma vasopressin as a mediator of nausea and gastric slow wave dysrhythmias in motion sickness. Am J Physiol. 1997;272: 578-584.
    45. Levine ME, Muth ER, Williamson MJ, et al. Protein-predominant meals inhibit the development of gastric taehyarrhythmia, nausea and the symptoms of motion sickness. Aliment Pharmacol Ther. 2004; 19: 583-590.
    46. Chan G, Moochhala SM, Zhao B, Wl Y, Wong J. A comparison of motion sickness prevalence between seafarers and non-seafarers onboard naval platforms. Int Marit Health. 2006;57(l-4): 56-65.
    47. Stroud KJ,Harm DL,Klaus DM.Preflight virtual reality training as a countermeasure for space motion sickness and disorientation. Aviat Space Environ Med.2005,76(4): 352-356.
    48. Cowings PS,Toscano WB.Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. J clin pharmacol.2000; 40: 1154-1165.
    49. Hu S,Stern RM. The retention of adaptation to motion sickness eliciting stimulation. Aviat Space Environ Med.l999;70(8): 766-768.
    50. Saria A.The tachykinin NK receptor in the brain: pharmacology and putativefunction. European Journal of Pharmacology. 1999;375: 51-60
    51. GautreauA Duval P Kerdelhue B. Variations in levels of substance P-encoding beta-, gamma-preprotachykinin and substance P receptor NK-1 transcripts in the rat hypothalamus throughout the estrous cycle: a correlation between amounts of beta-preprotachykinin and NK-1 mRNA. Brain Res Mol Brain Res. 1997;49(l-2): 157-64.
    52. Park CH, Joo YE, Choi SK, Rew JS, Kim SJ, Lee MC. Activated mast cells infiltrate in close proximity to enteric nerves in diarrhea-predominant irritable bowel syndrome. J Korean Med Sci. 2003; 18(2) :204-210
    53. Erin N, Ersoy Y, Ercan F, Akici A, Oktay S. NK-1 antagonist CP99994 inhibits stress-induced mast cell degranulation in rats. Clin Exp Dermatol. 2004; 29(6): 644-648.
    54. Telgkamp P,Yuqing Q. Long-term Deprivation of Substance P in PPF-A Mutant Mice Alters the Anoxic Pesponse of the Isolated Respiratory Network. J Neurophysiol. 2002;88: 206-213.
    55.孙新华,赵姝哲.抵强度激光对大鼠实验性牙齿移动牙髓与牙周组织中P物质表达的影响.中国激光医学杂志.2003;12(3):142-145
    56. Goto T, Nakao K, Gunjigake KK, et al. Substance P stimulates late-stage rat osteoblastic bone formation through neurokinin-1 receptors. Neuropeptides. 2007;41(l): 25-31.
    57. Azuma H, Kido J, Ikedo D, et al. Substance P enhances the inhibition of osteoblastic cell differentiation induced by lipopolysaccharide from Porphyromonas gingivalis. J Periodontol. 2004;75(7): 974-81.
    58. Tachibana T,Nawa T.Immunohistochemical reactions of receptors tomet-enkephalin, VIP, substance P, and CGRP located on Merkel cells in the rat sinus hair follicle. Arch Histol Cytol.2005;68(5): 383-391.
    59. Arck PC,Handjiski B,Kuhlmei A.Mast cell deficient and neurokinin-1 receptor knockout mice are protected from stress-induced hair growth inhibition, J Mol Med. 2005; 83(5): 386- 396.
    60. Lowry WE, Blanpain C, Nowak JA, et al.Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 2005;19(13): 1596-611.
    61.黄晖,赖西南.表皮干细胞分化中感觉神经肽P物质的调控作用机制.中华创伤杂志.2006;22(7):554-556.
    62. Regoli D,Boudon A,Fauchere JL.Receptors and antagonists for substance P and related peptides. Pharmacol Rev, 1994(46): 551-599
    63. Dememes D, Ryzhova I. Ontogenesis of substance P in the rat peripheral vestibular system. Hear Res. 1997 Dec;114(1-2): 252-258.
    64. Felix H, Oestreicher E, Felix D, et al. Role of substance P in the peripheral vestibular and auditory system. Adv Otorhinolaryngol. 2002;59: 26-34.
    65. Usami S, Matsubara A, Shinkawa H, et al. Neuroactive substances in the human vestibular end organs. Acta Otolaryngol Suppl. 1995; 520 (1): 160-163.
    66. De Biasi S,Rustioni A.Glutamate and substance P coexist in primary afferent terminals in the superficial laminea of spinal. Proc Natl Acad Sci .1998;85: 7820-7824
    67. Skilling SR ,Harkness DH,Larson AA.Experimental peripheral neuropathy decreases the dose of substance P required to increase excitatory amino acid release in the CSF of rat spinal cord.Neurosci Lett. 1992; 139: 92-96
    68. Rusin KI Jiang MC, Cerna R, et al. Interactiona between excitatory amino acids and tachykinins in the rat spinal dorsal horn. Brain Res Bull. 1993,30: 329-338.
    69. Vibert N, Serafin M, Vidal PP, et al. Effects of substance P on medial vestibular nucleus neurons in guinea-pig brainstem slices. Eur J Neurosci. 1996May;8(5): 1030-1036
    70. Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 1991;14: 421-451.
    71. Zhao R, Liu L, Rittenhouse AR. Ca(2+) influx through both L- and N-type Ca(2+) channels increases c-fos expression by electrical stimulation of sympathetic neurons. Eur J Neurosci. 2007;25(4): 1127-1135.
    72. Treisman R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J. 1995;14(20): 4905-4913.
    73. Herrera RE, Nordheim A, Stewart AF. Chromatin structure analysis of the human c-fos promoter reveals a centrally positioned nucleosome. Chromosoma. 1997 ; 106(5): 284-292.
    74. Kaczmarek L, Zangenehpour S, Chaudhuri A. c-fos protooncogene expression and neuronal plasticity. Cereb Cortex. 1999;9(2): 179-187.
    75. Mahlke C, Wallhausser-Franke E. Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hear Res. 2004, 195(1-2): 17-34.
    76. Wu JL, Chiu TW, Poon PW. Differential changes in Fos-immunoreactivity at the auditory brainstem after chronic injections of salicylate in rats. HearRes;176(1-2):80-93.
    77. Handhuri A,Cynader MS. Activity-dependent expression of the transcription factor zif-268 reveals ocular dominance colums in monkey visual cortex. J Brain Res. 1993;605: 349-353.
    78. Koistinaho J, Sagar SM. Light-induced c-fos expression in amacrine cells in the rabbit retina. Brain Res Mol Brain Res. 1995;29(1): 53-63.
    79. Kueng-Hitz N, Grimm C, Lansel N, et al. The retina of c-fos-/- mice: electrophysiologic, morphologic and biochemical aspects. Invest Ophthalmol VisSci. 2000;41(3):909-916.
    80. Pacheco G, Espinosa E, Zamorano HM,et al.Peripheral protein immunization induces rapid activation of the CNS, as measured by c-Fos expression. J Neuroimmunol. 2002;131(1-2): 50-59.
    81. O'hara BF,Fiona LW,Rozi A,et al.Daily verily variation of CNS gene expression in nocturnal vs diurnal rodents and in the develping rat brain.Mol Brain Res. 1997; 48:73-86
    82. Pompeiano M,Cirellie C,Ronca TS, et al. NGFI-A expression in the rat brain after sleep deprivation. Mol Brain Res.l997;46: 143-153
    83. Cirelli C, Pompeiano M,Tononi G.Neuronal gene expression in the waking state: A role for the locus coeruleus.Science.l996;274: 1211-1215
    84. Nikolaev E,Werka T,Kaczmarek L.Protooncogence expression in rat brain after long -term training of two-way active avoidance reaction.Behavioral Brain Res. 1992;(48): 91-94
    85. Brennan PA,Hancock D,Keverne EB.The expression of the immediate-early genes c-fos and c-jun in the accessory olfactory bulb during the formation ofan olfactorymemory in mice.Neuroscience.l992;(49): 277-284
    86. Gilby KL , Arm strong JN , Currie RW, et al. The effects of hypoxia2 ischemia on expression of c-Fos , c-Jun and Hsp70 in the young rat hippocampus. Mol Brain Res.l997;48 (1): 87-96
    87. Onoder H,Kogre K,Ono Y.et al.Protooncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neusci Lett.l989;(98): 101-104
    88. Cirelli C, Pompeiano M, D'Ascanio P, Pompeiano O. Early c-fos expression in the rat vestibular and olivocerebellar systems after unilateral labyrinthectomy. Arch Ital Biol. 1993;131(1): 71-74
    89. Cirelli C,Pompeiano M. C-fos expression in the rats brain after unilateral and it's relation to the un compensated and compensa ted stages. Neurosci.l996;70:515-546.
    90. Barmack NH.Central vestibular systenrvestibular nuclei and posterior cerebellum.Brain Res Bull. 2003;60: 511-541.
    91. Rose PK,Ely S,Norkum V. Projections from the lateral vestibular nucleus to the upper cervical spinal cord of the cat: A correlacative light and electron micro scopic study of axon terminals stained with PHA-L. J Comp Neurol.l999;410: 571-585
    92.李莉,高秀来.大鼠前庭神经核群向腰髓投射特征-BDA法逆行研究.解剖学研究.2003;25(1):10-14.
    93. Schuerger RJ,Balaban CD. Organization of the coeruleo-vestibular pathway in rat,rabbits,and monkeys. Brain Res Rev. 1999;30: 189-217.
    94. Jack K,Robert F,Larry M.Handbook of clinical audiology.5thEd.LippincottWilliams & Wilkins.2002; 608-609.
    95. Ujihara M,Yoshimoto T,Cho R, et al. Ectopic adrenocorticotropin syndrome exhibiting paradoxical adrenocorticotropin responsiveness to gonadotropin-releasing hormone. Endocr J. 2001;48(l): 19-23.
    96. Sun Y,Waller HJ,GodfreyDA,et al.Spontaneousactivityin rat vestibular nuclei in brain slices and efects of acetylcholine agonists and antagonists. Brain Res.2002; 934-958.
    97. Baurle J, Bruning G, Schemann M, et al. Co-localization of glutamate, choline acetyltransferase and glycine in the mammalian vestibular ganglion and periphery. Neuroreport. 1999;10(17): 3517-3521.
    98. Yates BJ, Miller AD. Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res. 1998;8(1): 17-25.
    99. Kim MS, Choi MA, Choi DO, et al. Asymmetric activation of extracellular signal-regulated kinase 1/2 in rat vestibular nuclei by unilateral labyrinthectomy. Brain Res. 2004;1011(2): 238-42.
    100. Radtke A,Popov K,Bronstein AM,et al.Vestibulo-autonomic control in man: short-and long-latency vestibular effects on cardiovascular function. J Vestib Res ,2003;13(l): 25-37
    101. Pan PS,Zhang YS,Chen YZ. Role of nucleus vestibular is medialis in vestibulo-sympthetic response in rat .Acta Physiol. 1991;43: 184-188
    102. Endo K, Thomson DB, Wilson VJ, et al. Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol. 1995; 74(1): 428-36.
    103. Park BR, Kim MS, Kim JH, et al. Effects of acute hypotension on neuronal activity in the medial vestibular nuclei of rats. Neuroreport. 2001;12(17): 3821-3824.
    104. Jian BJ, Acernese AW, Lorenzo J, Card JP, Yates BJ. Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control.Brain Res. 2005;1044(2): 241-50.
    105. Clement G, Reschke M, Wood S .Neurovestibular and sensorimotor studies in space and Earth benefits.Curr Pharm Biotechnol. 2005;6(4): 267-83.
    106. Lovick T A. The medullary raphe nuclei: a system for integration and gain control in autonomic and somatomotor responsiveness?Exp Physiol.1997; 82: 31-41.
    107. Hoffman BJ,Hansson SR, Mezey E,et al. Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol. 1998; 19(3): 187-231.
    108. Koprowska M, Romaniuk A.Behavioral and biochemical alterations in median and dorsal raphe nuclei lesioned cats, Pharmacol Biochem Behav. 1997;56: 529-40.
    109. Chaouloff F. Serotonin, stress and corticoids. J Psychopharmacol.2000; 14(2): 139-51
    110. Lovick T A. The medullary raphe nuclei: a system for integration and gain control in autonomic and somatomotor responsiveness? Exp Physiol. 1997;82:31-41
    111. Ye Y,Kim DO.Connections between the dorsal raphe nucleus and a hindbrain region consisting of the cochlear nucleus and neighboring structures. ActaOtolaryngol.2001;121: 284-288.
    112. Fuller DD, Bach KB, Baker TL, Kinkead R,Mitchell GS. Long term facilitation of phrenic motor output.Respir Physiol.2000;121: 135-46
    113. Fuller D D, Zabka AG, Baker TL,Mitchell QS. Phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxiaJ Appl Physiol. 2001;90 (5): 2001-2006
    114. McGuire M, Zhang Y, White DP,Ling L Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats.Am J Physiol Regul Integr Comp Physiol. 2004; 286:8334-8341
    115. Zhang Y, McGuire M, White DP,Ling L. Serotonin receptor subtypes involved in vagus nerve stimulation-induced phrenic long-term facilitation in rats. Neurosci Lett. 2004; 363: 108-111
    116. Cao Y, Matsuyama K, Fujito Y, Aoki M. Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats. Neurosci Res 2006;56(3): 322-31.
    117. Lalley P M, Benacka P, Bischoff A, Pichter D W.Nucleus raphe obscurus evokes 5-HT-IA receptor-mediated modulation of repiratory neurons.Brain Res. 1997;747: 156-159.
    118. Li YC, Zhang FY, Xiong YQ, Wang GM, Song G, Li Q. The effects of electrical stimulation of raphe pallidus on the pulmonary dilation reflex, J Shandong Uni (Health sciences). 2003 ;41: 231-234.
    119. Wang, GM., Yu, S.Y, Zhang, F.Y, Li, Y .C. and Cao, Y, Modulaton ofinspiratory inhibition of the Bouml;tzinger complex by raphe pallidus and locus coeruleus in rabbits., Advances in Experimental Medicine and Biology Series, Edited by Jean Champagnant and Chi-Sang Poon, Kluwer Academic/Plenum Publishers, New York. 2004; 551 :127-133.
    120. Fay R,Kubin. Fay and Kubin L, Pontomedullary distribution of 5-HT2A receptor-like protein in the rat.J Comp Neurol.2000; 418: 323-345
    121. Balaban C.D,Thayer J.F. Neurological bases for balance-anxiety links.J Anxiety Disord.2001;15: 53-79.
    122. Li Volsi G. Licata, F. Fretto, G. Di Mauro M. Santangelo F.Influence of serotonin on the glutamate-induced excitations of secondary vestibular neurons in the rat, Exp Neurol.2001;172: 446^59
    123. Furman J M, Balaban CD , Jacob RG, Marcus DA.Migraine-anxiety related dizziness (MARD): a new disorder? J Neurol Neurosurg Psychiatry.2005;76 : 1-8.
    124. Balaban CD. Neural substrates linking balance control and anxiety.Physiol Behav. 2002;77: 469-75.
    125. Halberstadt AL,Balaban CD. Organization of projections from the raphe nuclei to the vestibular nuclei in rats, Neuroscience.2003;120: 573-594
    126. Halberstant AL, Balaban CD. Serotonergic and nonserotonergic neurons in the dorphe nucleus send collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus.Neuroscience.2006; 140: 1067-1077
    127. Marcus DA, Furman JM. Prevention of motion sickness with rizatriptan: a double-blind, placebo-controlled pilot study. Med Sci Monit. 2006; 12:11-17.
    128. Hay-Schmidt A,Vrang N ,Larsen PJ,Mikkelsen JD.projections from raphenuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat.2003;25: 293-310
    129. A M Soza Ried and M Aviles. Asymmetries of vestibular dysfunction in major depression. Neurosci.2007; 144(1): 128-134.
    130.付静宜,于立身,刘丽,等.以食高岭土作为判定大鼠发生运动病指标的有效性.中华航空航天医学杂志.2003;14(1):39-42.
    131.李继硕,李云庆,张万会。神经科学基础.北京.高等教育出版社.2004;172-174
    132. Marcus DA,Furman JM,Balaban CD. Motion sickness in migraine sufferers. Expert Opin Pharmacother.2005;6: 2691-2697

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700