用户名: 密码: 验证码:
小麦与叶锈菌互作体系中TaHIR2基因克隆及其特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过敏性反应(Hypersensitive Response,HR)是植物抗病机制中最常见的一种抗病表现形式。过敏性诱导反应蛋白是参与植物HR过程的一类蛋白。目前在小麦上尚未见TaHIR2的报道。为明确TaHIR2及其所编码蛋白在小麦中的存在状况及其与小麦抗叶锈病性的关系,本研究以受叶锈菌侵染的小麦抗叶锈病近等基因系TcLr15为材料,利用PCR技术克隆获得小麦过敏性诱导反应蛋白2(TaHIR2)的cDNA及基因组DNA序列;利用实时定量PCR(qRT-PCR)技术对小麦与叶锈菌亲和及非亲和互作过程中TaHIR2的表达模式进行了分析;通过构建原核表达载体对该基因进行原核表达,产生的蛋白用于制备抗体,利用Western杂交技术对小麦中该基因所编码蛋白的表达情况进行检测;构建了含有TaHIR2基因的重组质粒,通过基因枪介导法分别对小麦品种TcLr15和Thatcher的成熟胚性愈伤组织进行了转化。主要内容包括以下几个方面:
     1.小麦TaHIR2基因克隆及序列分析。以小麦抗叶锈病近等基因系TcLr15和非亲和叶锈菌株05-19-43②为材料,以接菌24 h、48 h和72 h小麦叶片总RNA的等量混合物为模板,通过RT-PCR技术获得小麦TaHIR2的cDNA序列。同时以TcLr15的基因组DNA为模板,通过PCR技术获得TaHIR2的DNA序列。
     2.小麦TaHIR2时空表达模式分析。以接种非亲和叶锈菌05-19-43②和亲和叶锈菌05-5-137③的小麦TcLr15叶片为材料,应用qRT-PCR技术检测接种不同毒力叶锈菌后小麦叶片中TaHIR2的时间表达模式。结果表明TaHIR2受叶锈菌诱导18 h时表达量均上升,在接种36 h时达到最大,然后下降。但在非亲和组合中,24 h和36 h的表达量要明显高于亲和组合。以小麦TcLr15的幼根、幼茎、幼叶和种子为材料,应用qRT-PCR技术检测TaHIR2在这几种组织中的表达量差异。结果表明TaHIR2在小麦幼叶中的表达量最大。
     3. TaHIR2蛋白在叶锈菌侵染不同时间点的小麦叶片中表达模式分析。将TaHIR2基因的编码区插入到表达载体pET-30(+)中,获得原核表达载体TaHIR2-pET-30a,重组质粒转化大肠杆菌表达菌株BL21(DE3)。对阳性菌株的蛋白表达条件进行优化,确定IPTG的最佳诱导浓度为0.3 mM,最佳诱导时间为7 h。表达的融合蛋白分子量为37 kDa左右,该蛋白存在于包涵体中。用Ni~(2+)-His亲和层析柱对蛋白进行纯化后,经SDS-PAGE电泳检测呈现单一条带。纯化的蛋白用于免疫兔子,制备抗体,当效价达到1:76800时,利用Western杂交检测抗体质量,并对小麦中TaHIR2蛋白的表达情况进行检测。杂交结果表明,在小麦中确实存在TaHIR2蛋白。对叶锈菌侵染不同时间点的小麦叶片中TaHIR2蛋白的表达模式进行分析。结果表明在非亲和组合中,TaHIR2蛋白的表达量在检测的时间进程中平稳增长,60 h时达到最大,而在亲和组合中,蛋白的表达量在96 h时达到最大。
     4. TaHIR2基因植物高效表达载体构建及再生小麦幼苗获得。将TaHIR2基因的编码区定向插入到载体pAHC-25中,获得重组质粒TaHIR2-pAHC-25,利用基因枪介导法将该重组载体转化小麦品种TcLr15和Thatcher的成熟胚性愈伤组织,经分化筛选后获得再生的小麦幼苗。
     本研究在克隆获得小麦TaHIR2 cDNA及基因组DNA序列基础上,利用实时定量、Western杂交及转基因等技术对TaHIR2基因进行系统研究,研究结果一方面丰富了小麦的基因资源,另一方面对于揭示该基因在小麦中的功能,同时为阐明HR的发生机制提供新的实验支持。
Hypersensitive response (HR) is one of the most common resistant styles in plant. Hypersensitive induced response protein is a protein superfamily involved in plant HR. TaHIR2 had not been reported in wheat till now. In order to understand the existence of TaHIR2 in wheat and the relationship between TaHIR2 with wheat resistant to leaf rust pathogen, wheat near isogenic line TcLr15 inoculated with different virulent leaf rust pathogen was used as the initial materials, TaHIR2 full length cDNA and genomic DNA sequences were amplified by PCR. Quantitative real-time PCR (qRT-PCR) was used to detect the expression profiles of TaHIR2 in the compatible and incompatible interactions between wheat and leaf rust pathogen. Prokaryotic expression vector with TaHIR2 gene was successfully constructed, and transformed to E. coli competent cells. The fusion protein produced by E. coli expression system was used to immune rabbit and produce antibody. The expression profiles of TaHIR protein in wheat leaves inoculated with different virulent leaf rust strains were detected by Western blotting. The recombinant plasmids TaHIR2-pAHC-25 were constructed and transformed into embryogenic callus of wheat cv. TcLr15 and Thatcher by particle bombardment respectively. Main contents were as followed:
     1. Cloning and sequence analysis of wheat TaHIR2. Wheat near isogenic line TcLr15 and avirulent strain 05-19-43②were used as the initial material. Total RNA of wheat leaves at 24, 48 and 72 hours post inoculation (hpi) were mixed and used to synthesize first strand cDNA, and TaHIR2 cDNA and DNA were cloned by PCR using the cDNA and genomic DNA of TcLr15 as templates, respectively.
     2. Temporal and spatial expression profile of wheat TaHIR2. Wheat cv. TcLr15 inoculated with avirulent strain 05-19-43②and virulent strain 05-5-137③were used as the initial materials, temporal expression profile of TaHIR2 in wheat leaves at 0, 6, 12, 18, 24, 36, 48, 60, 72, 96, 120 hpi were detected by qRT-PCR. The results showed that TaHIR2 transcripts were up-regulated when wheat was attacked by leaf rust pathogen at 18 hpi, and reached the peak at 36 hpi both in the compatible and incompatible combination, then declined. But more transcripts were accumulated in incompatible interaction than compatible interaction at 24 and 36 hpi. Furthermore, four different tissues, including young roots, young stems, young leaves and mature seeds, from wheat cv. TcLr15 were used as the initial materials. The accumulation of TaHIR2 transcripts in the 4 tissues was detected by qRT-PCR, respectively. The results showed more TaHIR2 transcripts existed in young leaves.
     3. Expression profile of TaHIR2 protein in the wheat leaves inoculated with leaf rust at different time points. The prokaryotic expression vectors TaHIR2-pET-30a were successfully constructed after inserting open reading frame of TaHIR2 into pGEM-T easy vector, and then transformed into E.coli BL21 (DE3). After optimization for the producing conditions of target protein, the optimal IPTG concentration was 0.3 mM, the optimal inducing time was 7 h. The molecular weight of the fusion protein was about 37 kDa. The fusion protein expressed in inclusion body. A single band was detected by SDS-PAGE after the fusion protein was purified by Ni~(2+)-His affinity columns. The purified protein was used to immune rabbit to produce polylclonal antibody. When potence of the antibody reached to 1:76800, the antibody was isolated and used to detect the specificity by Western blotting. The result showed that the protein corresponding to TaHIR2 was existed in wheat. The expression profiles of TaHIR2 protein were detected by Western blotting, and the results showed the accumulation of TaHIR2 increased steadily from 0 to 96 hpi in the incompatible combination, the peak occurred at 60 hpi, while the accumulation of TaHIR2 reached the peak at 96 hpi in the compatible combination.
     4. Construction of the plant expression vectors with TaHIR2 and obtaining of the regenerate wheat seedlings. The transgene vector TaHIR2-pAHC-25 was successfully constructed after inserting TaHIR2 open reading frame into plant expression vector pAHC-25, then transformed into the embryogenic callus of the wheat cv. TcLr15 and Thatcher by particle bombardment, the regenerate wheat seedlings were obtained after series of selective cultivation.
     Based on cloning of TaHIR2 cDNA and DNA sequences, series of analyses including qRT-PCR, western blotting and particle bombardment were carried out in this research. The results not only increase the understanding of wheat gene resources, but also make clear the functions of TaHIR2 in wheat, and supply new experimental supports for HR mechanism.
引文
[1] Garcia A, Conzalez M C. Morphological markers for the early selection of drought tolerant rice varieties[J]. Cultivate Tropical, 1997, 18(2): 47-50.
    [2] Liu F L, Andersen M N, Jensen C R. Root signal controls pod growth in drought stressed soybean during the critical, abortion sensitive phase of pod development[J]. Field Crops Research, 2004, 85: 159-166.
    [3] He S Y, Bauer D W, Collmer A, et al. Hypersensitive response elicited by Erwinia amylorora harpin requies active plant metabolism[J]. Mol Plant Microbe Interact, 1994, 7: 289-293.
    [4] Dangl J L, Dietrich R A, Richberg M H. Death don’t have no mercy: cell death programs in plant microbe interactions[J]. Plant Cell, 1996, 8(10): 1793-1807.
    [5] Mittler R, Lam E. Sacrifice in the face of foes: pathogen induced programmed cell death in plants[J]. Trends Mocrobiol, 1996, 4: 105-115.
    [6] Pontier D, Balague C, Roby D. The hypersensitive response: A programmed cell death associated with plant resistance[J]. C R Acad Sci, 1998, 321(9): 721-734.
    [7] Lam E, Pontier D, del Pozo O. Die and let live programmed cell death in plants[J]. Curr Opin Plant Biol, 1999, 2: 502-507.
    [8]方允中,李文杰.自由基与酶—基础理论及其在生物学和医学中的应用[M].北京:科学出版社, 1994.
    [9] John J G, Gary J L. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]. Plant Physiol, 2000, 124(1): 21-29.
    [10] Jabs T, Dietrich R A, Dangl J L. Initiation of runaway cell death in an Arabidopsis mutant by ext racellular superoxide[J]. Science, 1996, 273: 1853-1856.
    [11] Levine A, Tenhaken R, Dixon R, et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell, 1994, 79(4): 583-593.
    [12] VranováE, InzéD, Breusegem F V. Signal transduction during oxidative stress[J]. J Exp Bot, 2002, 53: 1227-1236.
    [13] Chamnongpol S, Willekens H, Moeder W, et al. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco[J]. Proc Natl Acad Sci USA, 1998, 95: 5818-5823.
    [14] De Pinto M C, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signalling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells[J]. Plant Physiol, 2002, 130: 698-708.
    [15] Hammond-Kosack K E, Jones J D G. Resistance gene dependent plant defense response[J]. Plant Cell, 1996, 8: 1773-1791.
    [16] Doke N. Involvement of superoxide anion generation in the hypersensiteve response ofpotato tuber tissues to infection with an incompatible race of phytophtora infestans and to the hyphal wall components[J]. Physiol Plant Pathol, 1983, 23: 345.
    [17] Noritake T, Kawakita K, Doke N. Nitric oxide induces phytoalexin accumulation in potato tuber tisues[J]. Plant Cell Physiol, 1996, 104: 357-364.
    [18] Kumar D, Klessing D F. Differential induction of tobacco MAP kinase by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid[J]. Mol Plant Microbe Interact, 2000, 13: 347-35.
    [19] Beligni M V, Fath A, Bethke P C, et al. Nitric oxide acts as antioxidant and delays programmed cell death in barley aleurone layers[J]. Plant Physiol, 2002, 129: 1642-1650.
    [20] Orozco-Cardenas M L, Ryan C A. Nitric oxide negatively modulates wound signaling in tomato plants[J]. Plant Physiol, 2002, 130: 487-493.
    [21] Levine A, Pennell R I, Alvarez M E, et al. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response[J]. Current Biol, 1996, 4: 427-437.
    [22] Young T E, Gallie D R. Regulation of Programmed Cell Death in Maize Endosperm by Abscisic Acid[J] . Plant Mol Biol, 2000, 42: 397-414.
    [23]潘建伟,陈虹,顾青,等.环境胁迫诱导的植物细胞程序性死亡[J].遗传, 2002, 24(3): 385-388.
    [24] Akutsu K, Dorak K, Yora K. Elementary analysis of papillae and cytoplasmic vesicles formed at the penetration site by Erysiphe graminis f. sp. Hordei in epidermal cells of barley leaves[J]. Ann Phytopathol Soc Jpn, 1980, 46(4): 667-671.
    [25] Hancoock J G, Stanghellini M E. Calcium localization in Hyphomyces2infected squash hypocotyls and effect of calcium on pectatelyase activity and tissue maceration[J]. Can J Bot, 1968, 46(4): 405-409.
    [26] Heath M C. Hypersensitive response-relatived death[J]. Plant Mol Biol, 2000, 44(3): 321-334.
    [27] Bischoff F, Molendijk A, Rajendrakumar C S, et al. GTP-binding proteins in plants[J]. Cell Mol Life Sci, 1999, 55: 233-256.
    [28] Takai Y, asaki T, Matozaki T. Small GTP-binding proteins[J]. Physiol Reviews, 2001, 81: 153-208.
    [29] Lin Y, Yang Z. Inhibition of pollen tube elongation by microinjected anti-Rop1Ps antibodies suggests a crucial role for Rho-type GTPases in the control of tip growth[J]. Plant Cell, 1997, 9(9): 1647-1659.
    [30] Jung Y H, Agrawal G K, Rakwal R, et al. Functional characterization of OsRacB GTPase-a potentially negative regulator of basal disease resistance in rice[J]. Plant Physiol and Bioch, 2006, 44(1): 68-77.
    [31] Thao N P, Chen L, Nakashima A, et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J]. Plant Cell, 2007, 19(12): 4035-4045.
    [32] Karrer E E, Beachy R N, Holt C A. Cloning of tobacco genes that elicit the hypersensitive response[J]. Plant Mol Biol, 1998, 36: 681-690.
    [33] Nadimpalli R, Yalpani N, Johal G S, et al. Prohibitins, stomatins, and plant-disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death[J]. J Biol Chem, 2000, 275: 29579-29586.
    [34] Rostoks N, Schmierer D, Kudrna D, et al. Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants[J]. Theor Appl Genet, 2003, 107: 1094-1101.
    [35] Jung H W, Lim C W, Lee S C, et al. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses[J]. Planta, 2008, 227: 409-425.
    [36] Vasil V, Castillo A M, Fromm M E, et al. Herbicide resistant fertile transgenic wheat plant obtained by microprojectile bombardment of regenerable embryogenic callus[J]. Bio Thechnology, 1992, 10: 667-674.
    [37]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社, 1998.
    [38] Hess D, Dressler K, Nimmrichter R, et al. Transformation experiments by pipetting agrobacterium into the spikelets of wheat (Triticum aestivum L1)[J]. Plant Sci, 1990, 72: 2332-2441.
    [39] Cheng M, Fry J E, Pang S Z, et al. Genetic transformation of wheat mediated by Agrobacterium tu efaciens[J]. Plant Physiol, 1997, 115(5): 9712-9801.
    [40]李洪清,李美茹.影响农杆菌介导植物基因转化的因素问题[J].植物生理学报, 1999, (35): 145-149.
    [41]张秀君,邢玉祥.根癌农杆菌转化禾谷类作物及影响其转化的因素[J].生命科学, 2001, (13): 19-223.
    [42] Hamilto C M, Frary A, Lewis C, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes[J]. Proc Natl Acad Sci, 1996, 93(18): 9975-9979.
    [43]王从丽,陆柏方,张学成,等.农杆菌-植物间基因转移的分子基础[J].生命科学, 2002, (14): 1-5.
    [44] Byebier B F, Deboeck F, Greve H D, et al. T-DNAorganization in tumor cultures and transgenicplants of the monocotyledon Asparagus officinaolis[J]. Proc Natl Acad Sci USA, 1987, (84): 5349.
    [45]阎新甫,刘文轩,王胜军,等.抗白粉病大麦DNA导入普通小麦的研究[M].北京:中国农业科技出版社, 1993.
    [46]成卓敏,何小派.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植物自然科学进展[J].国家重点实验室通讯, 1993, 3(6): 560-564.
    [47]郭宝太,夏连胜,曲咏梅,等. GUS与天花粉蛋白基因花粉管通道导入小麦的研究[J].莱阳农学院学报, 1996, 13(l): l-4.
    [48]余增亮,邓建国,吴跃进,等.离子辐照大豆子叶细胞显微分析[J].安徽农业科学,1990, (1): 27-30.
    [49] Yu Zengliang, Yang Jianbo, Wu yuejin, et al. Nuclear Instruments and Methods in Physics Research[J]. Journal of Anhui Agricultural Sciences, 1993, 80: 1328-1331.
    [50] Lorz H, BakerB, SehellJ. Gene transfer to cereal cells mediated by protoplast transformation[J]. Mol Gen Genet, 1985, 199: 178-182.
    [51]郭光沁,许智宏,卫志民,等.用PEG法向小麦原生质体导入外源基因获得转基因植株[J].科学通报, 1993, 38(13): 1227-1231.
    [52] Roelf A P. Race specificity and methods of study[M]. NewYork: Academic Press, 1985: 131-164.
    [53] Gill K S, Lubbers E L, Raupp W J, et al. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD)[J]. Genome, 1991, 34: 362-374.
    [54] Tavernarakis N, Driscoll M, Kyrpides N C. The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins[J]. Trends Biochem Sci, 1999, 24(11): 425-427.
    [55] Mishra S, Murphy L C, Murphy L J. The prohibitins: emerging roles in diverse functions[J]. J Cell Mol Med, 2006, 10(2): 353-363.
    [56] McClung J K, Jupe E R, Liu X T, et al. Prohibitin: potential role in senescence, development, and tumor suppression[J]. Exp Gerontol, 1995, 30: 99-124.
    [57] Stewart G W. Stomatin[J]. Int J Biochem Cell B, 1997, 29(2): 211-214.
    [58] Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction[J]. Anal Biochem, 1987, 162: 156-159.
    [59] Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues [J]. Anal Biochem, 1987, 163: 16-20.
    [60] Schneiderbauer A, Sandermann H J, Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds[J]. Anal Biochem, 1991, 197: 91-95.
    [61] Chang S, Puryear J, Cairney J. A simple and efficient method for isolation RNA from pine trees[J]. Plant Mol Biol Report, 1993, 11: 113-116.
    [62]顾红雅,瞿礼嘉,明小天,等.植物基因与分子操作[M].北京:北京大学出版社, 1995, 77- 83.
    [63]卢圣栋.现代分子生物学实验技术[M].北京:高等教育出版社, 1993.
    [64]刘芬,于秀梅,刘大群.一种植物总RNA的快速提取方法[J].华北农学报, 2010, 25(2): 140-144.
    [65]商鸿生,张慧,李振歧.条锈菌侵染早期小麦叶片RNA和rRNA的合成[J].植物病理学报, 1995, 25(3): 215-220.
    [66]朱水芳.实时荧光聚合酶链式反应检测技术[M].北京:中国计量出版社, 2003.
    [67] Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems[J]. J Mol Endocrinol, 2002, 29(1): 23-39.
    [68] Arya M, Shergill I S, Williamson M, et al. Basic principles of real-time quantitative PCR[J]. Expert Rev Mol Diagn, 2005, 5(2): 209.
    [69] Nuc P, Nuc K. Recombinant protein production in Escherichia coli[J]. Postepy Biochem, 2006, 52(4): 448-456.
    [70] Dong X, Tang B, Li J, et al. Expression and purification of intact and functional soybean (glycine max) seed ferritin complex in escherichia coli[J]. J Microbiol Biotechnol, 2008, 18(2): 299-307.
    [71] Hoffman S K, Susani M, Ferreira F, et al. High level expression and purification of the major birch pollen allergen , BetV[J]. Protein Expr Purif, 1997, 9(1): 33-39.
    [72] Kang Y, Son M S, Hoang T T. One step engineering of T7-expression strains for protein production: increasing the host-range of the T7-expression system[J]. Protein Expr Purif, 2007, 55(2): 325-333.
    [73]程星,王燕雯,包爱科,等.超表达AVP1基因提高转基因百脉根的耐盐性和抗旱性[J].植物生理学通讯, 2010, 46(8): 808-816.
    [74] Du J, Zhu Z, Li W C. Over-expression of exotic superoxide dismutase gene MnSOD and increase in stress resistance in maize[J]. Plant Physiol and Mol Biol, 2006, 32(1): 57-63.
    [75] Vasil V, Brown S M, Re D, et al. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat[J]. Bio/Technology, 1991, 9: 743-747.
    [76] Vasil V, Castillo A M, Fromm M E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus[J]. Biol Technol, 1992, 10: 667-674.
    [77]郝建国,李晶,黄萱,等.用基因枪介导法将水稻几丁质酶基因导入小麦[J].应用与环境生物学报, 2004, 10(4): 421-424.
    [78]姜晓东.基因枪法获得Phs-r转基因小麦植株的研究[J].山西农业科学, 2007, 35(12): 10-11.
    [79]徐惠君,庞俊兰,叶兴国,等.基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究[J].作物学报, 2001, 27(6): 688-694.
    [80]王海波,张艳贞,晏月明.基因枪法转化小麦谷蛋白基因研究进展[J].生物技术通报2007, 3: 101-104.
    [81]梁辉,赵铁汉,李良材,等.影响基因枪法转化小麦幼胚的几个因素的研究[J].遗传学报, 1998, 25(5): 443-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700