用户名: 密码: 验证码:
CO_2激光—电弧复合焊接工艺、机理及质量控制规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光-电弧复合焊接技术是一种将激光束与电弧集成于一体的新型焊接技术,能够弥补单热源焊接的不足,具有焊接熔深大、工艺稳定性好、焊接速度快、变形小、间隙桥接能力强等优点。近年来,该技术在发达国家受到了广泛关注并得到了积极的研究,在汽车、石油、船舶、压力容器等领域极富发展前景。但是,由于种种原因,可获取的关键技术信息比较匮乏,有关激光-电弧两种热源之间相互作用机理的研究也非常有限,缺乏系统深入的研究。因此,迫切需要从基础的科学问题入手,推动激光-电弧复合焊接技术的发展。
     本文采用低碳钢和不锈钢材料从基础工艺、保护气体、热源相互作用机理、接头微观组织和力学性能等方面入手,对CO2激光-TIG (tungsten inert gas)和MIG (metal inert gas)电弧复合焊接技术的工艺和机理进行了系统深入的研究。主要研究成果如下:构建了一个由CO2激光器、TIG和MIG焊机、数控工作台组成的激光-电弧复合焊接系统,能够方便的调节各焊接参数,并实现激光与电弧的协同效应。在该平台上分别进行了激光-TIG和MIG电弧复合焊接的基础工艺研究,并得到了优化的工艺参数范围。试验发现:激光和电弧能够通过形成于激光光致等离子体和电弧之间的导电通道发生强烈的相互作用。同激光焊接相比,激光-MIG电弧复合焊接熔深提高60%,焊接速度提高170%;激光-TIG电弧复合焊接熔深提高44%。
     系统研究了激光-电弧复合焊接中气体保护方式及成分组成的影响规律。研究证明电弧焊炬加同轴喷嘴的气体保护方式是激光-电弧复合焊接的最佳气体保护方式;He-Ar混合气体更适用于激光-电弧复合焊接。保护气体通过激光与电弧等离子体相互作用、气流方向与速度变化来改变等离子体形态(等离子体有效作用高度)是改变复合焊接熔深和工艺稳定性的关键作用机制。
     首次提出了更全面的激光-电弧复合焊接热源相互作用定量分析方法。引入了无量纲参数——复合焊接熔化能增量ψ来表征热源相互作用:ψ值越大,热源相互作用越强烈。定量分析结果和试验现象能够很好的吻合,表明该方法能够快速准确的全面反映激光、电弧之间的热源相互作用。采用该方法进行热源相互作用定量分析发现:对应不同类型的电弧,激光-电弧复合焊接的热源相互作用程度存在差异。该差异来自于电弧电极极性对激光光致等离子体的影响及其自身特性的不同。
     发现激光-MIG电弧复合焊接接头内电弧区焊缝组织为垂直于熔池壁向中心生长的粗大的带状树枝晶;激光区焊缝组织为靠近熔池壁垂直于熔池壁生长的柱状树枝晶和中心区域均匀形核的细小等轴树枝晶,且激光区具有更高的焊缝显微硬度和更窄的热影响区,国内外未见有类似报道。得到了激光-电弧能量配比、坡口形式、保护气体等焊接参数对接头力学性能和微观组织的影响规律,对工艺参数的选取有一定的理论指导意义。
     开展了超细晶粒钢的激光-TIG复合焊接研究。试验证明超细晶粒钢的激光-TIG复合焊接接头强度高于母材,焊缝区显微硬度低于激光焊接,能够避免因显微硬度过高造成的韧性下降,有效抑制热影响区晶粒长大倾向并避免软化区的出现,并提高焊接速度。结果表明该技术在超细晶粒钢的焊接中具有很大的应用前景。
     系统研究了激光-MIG电弧复合焊接的焊缝缺陷、焊接适应性及临界焊接速度。通过试验得到了临界咬边速度经验公式、焊缝缺陷抑制方法、接头间隙桥接极限及可焊错边量极限,并得到了激光-MIG电弧复合焊接的临界速度变化规律。在此基础上,总结出一套可得到稳定工艺过程和良好焊缝质量的复合焊接质量控制方案,有利于发展具备自主知识产权的复合焊接工艺和成套设备。
Laser-arc hybrid welding which couples laser beam and arc into one process avoids the disadvantages of individual process and has its own particular advantages, such as deeper welding penetration, more stable welding arc, higher welding speed, less deformability and stronger ability to bridge large gaps, etc. For these advantages, the laser-arc hybrid welding technologies have become more and more attractive in recent years and have strong industrial application prospect in many fields, such as aerospace, automotive, off-road vehicle, shipbuilding, oil and pressure vessel industries, etc. However the researches on this process are very scattered and the useful information is relatively scarce. The studies on laser-arc interaction mechanism are also very few, and further systemic investigations are needed.
     In this dissertation, the basic processing which considers different processing parameters such as shielding gas, laser-arc interaction, weld microstructure and mechanical performance with the CO2 laser-TIG (tungsten inert gas) and MIG (metal inert gas) hybrid welding are studied in detail by the use of the mild steel and stainless steel,. The following are the main results:
     A system of laser-arc hybrid welding was developed, which include a CO2 laser, a TIG and a MIG arc welder and CNC controller, etc. Some parts were also optimized to fit the process. Using this system, the welding parameters can be adjusted conveniently and the laser-arc synergetic effects can be obtained. Both the laser-TIG and laser-MIG hybrid welding were investigated in detail and the optimal parameter range was obtained. The experimental results demonstrate that there exists strong laser-arc interaction through the electrical channel between laser induced plasma and arc column observed in the experiment. Compared to the individual laser welding, the weld penetration depth and the welding speed of laser-MIG hybrid welding increase by 1.6 and 2.7 times respectively, and the weld penetration depth of laser-TIG hybrid welding also increases by 1.44 times.
     The shielding gas parameters of laser-arc hybrid welding were studied systemically, which demonstrate the evident effects of shielding gas parameters on the weld penetration depth. It was found that the optimal gas shielding method is the hybrid protecting method coupling the torch and coaxial nozzle, which can achieve efficient synergetic effects and produce the full penetration weld under the considerably wide parameter range. It is also testified that the mixed gas of helium and argon is more suitable for laser-arc hybrid welding. The shielding gas parameters affect the weld penetration and the process stability by influencing the plasma shape (efficient plasma height interacting with laser), which is achieved by two ways: laser-arc plasma interaction and gas flowing direction and velocity.
     A more comprehensive quantitative analysis method was originally developed firstly to study the heat sources interaction extent between the laser and arc during the hybrid welding process. A dimensionless parameter,ψ, was introduced to indicate the changes of heat sources interaction: the biggerψdenotes the stronger heat sources interaction. The agreement of the computed results by this method with the phenomenon observed in hybrid welding indicates this method can comprehensively reflect the laser-arc interaction of hybrid welding fast and accurately. By this method, it can be observed that, for different arc type, a significant difference of the heat sources of laser-arc hybrid welding from the analytical results. This difference is mainly caused by the effect of electrode polarity on the characteristic of laser induced plasma and the difference of arc characteristic.
     It was found by the microscopic observations that in the weld region of laser-MIG hybrid welded mild steel, the microstructure of the arc zone is coarse columnar dendrite perpendicularly growing from the melting pool wall to the center; that of laser zone is relatively fine columnar dendrites perpendicularly growing from the melting pool wall to the center and fine equiaxed dendrite homogeneously nucleating in the center zone, which was not reported eslswhere. The aser zone has higher microhardness of the weld region and narrower heat affected zone. Moreover, the effects of laser-arc energy ratio, groove type and shielding gas on the microstructure and mechanical performance of the weld produced by hybrid welding are obtained by experiments, which is instructive for the choose of welding parameters.
     Laser-TIG hybrid welding was used to weld superfine grain steel in this dissertation. The experiments showed that the joint strength of laser-TIG hybrid welded superfine grain steel is higher than that of base metal, and the microhardness is also lower than that of laser welded one, which can avoids the decrease of the weld toughness resulting from the overhigh microhardness in the weld region. Moreover, laser-TIG hybrid welding can obtain narrower HAZ to restrain the grain coarsening and avoid the appearance of softened one because of the higher speed. These indicate the great prospect of hybrid welding for superfine grain steel.
     Finally the weld defects, welding adaptability and critical welding speed of laser-arc hybrid welding were investigated in detail. Many useful conclusions, such as the experiential formula of critical undercut speed, some methods for restraining weld defects, the limit of gap bridging and weldable misalignment, and the range of critical welding speed were firstly obtained. Based on the experimental results and discussions, a scheme for choosing the best hybrid processing parameters to control the bead quality was developed firstly, which is highly helpful to the equipment developing of laser-arc hybrid welding.
引文
[1]姜焕中.电弧焊及电渣焊[M].第二版.北京:机械工业出版社, 1988: 1-242
    [2]武江,周国萍.焊接手册-焊接方法及设备[M].第二版.北京:机械工业出版社, 2001: 1-192
    [3]闫毓禾,钟敏霖.高功率激光加工及其应用[M].天津:天津科学技术出版社, 1994: 205-218
    [4] Kim K R, Farson D F. CO2 laser-Plume interaction in materials processing [J]. Journal of applied physics, 2001, 89(1): 681-688
    [5] Jin Xiangzhong, Li Lijun, Zhang Yi. A study on fresnel absorption and reflections in the keyhole in deep penetration laser welding [J]. J. Phys. D: Appl. Phys., 2002, 35(18): 2304-2310
    [6] Dixon R D, Lewis G K. Electron emission and plasma formation during laser beam welding [J]. Welding journal, 1985, 64(3): 71s-78s
    [7]李章,徐炜.高能激光焊接技术及其应用[J].现代制造, 2004, 2004(11): 48-50
    [8]丁春永.激光焊接技术及其在汽车工业中的应用[J].现代焊接, 2005, 2005(6): 48-51
    [9] Steen W.M. Arc augmented laser processing of materials [J]. Journal of application physics, 1980, 51(11): 5636-5641
    [10] Tusek J, Suban M. Hybrid welding with arc and laser beam [J]. Science and technology of welding and joining, 1999, 4(5):308-311
    [11] Robert W, Messler J.R. What’s next for hybrid welding? [J]. Welding journal, 2004, 83(3): 30-34
    [12] Bagger C, Olsen F.O. Review of laser hybrid welding [J]. Journal of laser applications, 2005, 17(1): 2-14
    [13] Beyer E, Dilthey U, Imhoff R, et al. New aspects in laser welding with an increased efficiency [C]. Proceeding of ICALEO’94. Orlando FL: LIA, 1994: 183-192
    [14] Hu B, Ouden G. den. Synergetic effects of hybrid laser/arc welding [J]. Science and technology of welding and joining, 2005, 10(4): 427-431
    [15] Ishide T, Tsubota S, Watanabf M et al. Development of TIG-YAG and MIG-YAG hybrid welding [J]. Welding International, 2003, 17(10): 775-780
    [16]吕高尚,史春元,董春林,等.激光-电弧复合热源焊接研究及应用现状[J].航空制造技术, 2005, 2005(5): 86-88
    [17]赵家瑞.激光-电弧焊接新工艺的研究与应用前景[J].石油工程建设, 1993, 1993(6): 11-17
    [18]樊丁,中田一博,牛尾诚夫. YAG激光与脉冲MIG复合焊接[J].焊接学报, 2002, 23(5): 81-83
    [19] Ono Moriaki, Shinbo Yukio, Yoshitake Akihide, et al. Development of laser-arc hybrid welding [J]. NKK Technology Review, 2002, 86(1): 8-12
    [20]陈彦宾,李俐群,吴林.电弧对激光吸收与散焦的定量测量[J].焊接学报, 2003, 24(3): 56-58
    [21] Chen Yanbin, Lei Zhenglong, Li Liqun, et al. Welding characteristics in different laser-TIG hybrid manners [J]. China welding, 2004, 13(1): 41-45.
    [22]陈彦斌,徐庆鸿,苏彦东.激光-同轴电弧复合热源焊接[J].焊接学报, 1995, 16(4): 239-242
    [23] Ishide Takashi, Tsubota Shuho, Watanabe Masao. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products [C]. Proceeding of SPIE, first international symposium on high-power laser macroprocessing. Osaka: SPIE, 2002: 347-352
    [24] Tsubota Shuho, Ishide Takashi, Watanabe Masao. Laser welding system for various 3-D welding development of coaxial laser welding head [J]. Mitsubishi heavy industries, Ltd. Technical review, 2005, 42(2):1-5.
    [25] Hu B, Ouden G. den. Laser induced stabilization of the welding arc [J]. Science and technology of welding and joining, 2005, 10(1): 76-81
    [26] Liu Liming, Wang Jifeng, Song Gang. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy [J]. Materials science and engineering A, 2004, 381(1-2):129-133
    [27] Paulini J, Simon G. A theoretical lower limit for laser power in laser-enhanced arc welding [J]. J. Phys. D: Appl. Phys., 1993, 26(9): 1523-1527
    [28]陈彦宾.激光-TIG复合热源焊接物理特性研究. [博士学位论文].哈尔滨:哈尔滨工业大学, 2003.
    [29] Bagger C, Olsen F O. Comparison of Plasma, Metal Inactive gas (MIG) and tungsten inactive gas (TIG) processes for laser hybrid welding [C]. Proceedings of ICALEO 2003. Jacksonville FL: LIA, 2003: LMPA, 11-20
    [30] Shi G, Hilton P. A comparison of the gap bridging capability of CO2 laser and hybrid CO2 laser MAG welding on 8mm thickness C-Mn steel plate [J]. Welding in the world, 2005, 49(7/8): 75-87
    [31] Fujinaga S, Ohashi R, Katayama S. Improvements of welding characteristics of aluminum alloys with YAG laser and TIG arc hybrid system [C]. Proceeding of SPIE, first international symposium on high-power laser macroprocessing. Osaka: SPIE, 2002: 301–306
    [32] Arias Jorge L, Romero Pablo, Vandewynckele Ambroise, et al. Laser-TIG hybrid welding of very thin austenitic stainless steel sheets [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 104-107
    [33] Moore P L, Howse D S, Wallach E R. Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels [J]. Science and technology of welding and joining, 2004, 9(4):314-322
    [34] Hu B, Richardson I.M. Hybrid laser/GMA welding aluminum alloy 7075 [J]. Welding in the world, 2006, 50(7/8): 51-57
    [35] Petring D, Fuhrmann C, Wolf N. Investigations and applications of laser-arc hybrid welding from thin sheets up to heavy section components [C]. Proceedings of ICALEO 2003. Jacksonville FL: LIA, 2003: LMPA, 1-10
    [36]张志勇,田志凌,彭云.铝合金先进焊接工艺[J].焊接, 2003, 2003(7): 5-9
    [37]陈俐,董春林,吕高尚,等. YAG/MAG激光电弧复合焊工艺研究[J].焊接技术, 2004, 33(4): 21-23
    [38]吴圣川,刘建华,胡伦骥. ZL114铝合金激光-电弧的复合焊接[J].电焊机, 2004, 34(9): 10-12
    [39]刘黎明,王继锋,宋刚.激光电弧复合焊接AZ31B镁合金[J].中国激光, 2004, 31(12): 1523-1526
    [40] Bratt Craig, Noel Jack. Laser hybrid welding of advanced high strength steels for potential automotive application [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: Hybrid laser welding, 1-9
    [41] Tsukamoto Susumu, Kawaguchi Isao, Arakane Goro, et al. Suppression of porosity using pulse modulation of laser power [C]. Proceedings of ICALEO 2001. Jacksonville FL: LIA, 2001: LMPC, paper1702
    [42] Chae Huunbyung, Kim Cheolhee, Jim Jeonghan, et al. The effect of process parameters on the gap bridging capability for CO2 laser-GMA hybrid welding [C].Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 169-173
    [43] Jasmau Ulf, Hoffmann Jan, Seyffarth Peter. L. Nd:YAG-Laser-GMA-Hybrid welding in shipbuilding and steel construction [J]. Lecture notes in control and information sciences, 2004, 299(1): 14-24
    [44] Diebold T P, Albright C E. Laser-GTA welding of aluminum alloy 5052 [J]. Welding Journal, 1984, 63(6): 18-24
    [45] Natio Yasuaki, Mizutani Masami, Katayama Seiji. Observation of keyhole behavior and melt flows during laser-arc hybrid welding [C]. Proceedings of ICALEO 2003. Jacksonville FL: LIA, 2003: LMPA, 41-47
    [46] Natio Yasuaki, Mizutani Masami, Katayama Seiji. Effect of oxygen in ambient atmosphere on penetration characteristics in single yttrium–aluminum–garnet laser and hybrid welding [J]. Journal of laser applications, 2006, 18(1): 21-27
    [47] Natio Yasuaki, Mizutani Masami, Katayama Seiji, et al. Effect of Ambient atmosphere on penetration geometry in laser and hybrid welding [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: Hybrid laser welding, 41-49
    [48] Shinn B W, Farson D F, Denney P E. Laser stabilisation of arc cathode spots in titanium welding [J]. Science and technology of welding and joining, 2005, 10(4): 475-481
    [49] Arias Jorge L, Romero Pablo, Vandewynckele Ambroise, et al. Laser-TIG hybrid welding of very thin austenitic stainless steel sheets [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 104-107
    [50] Remes Heikki. Fatigue strength of laser and hybrid welded joints [EB/OL]. http://www.hut.fi/Yksikot/Laiva/Tutkimus/Seminar/Remes.pdf, 2002-3-15
    [51] Liu Liming, Liu Xujing, Liu Shunhua. Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer [J]. Scripta materialia, 2006, 55(4): 383-386
    [52] Liu L.M, Song G, Chi M.S. laser-tungsten inert gas hybrid welding of dissimilar AZ based magnesium alloys [J]. Materials science and technology, 2005, 21(9): 1078-1082
    [53]陈彦宾,李俐群,陈凤东.激光维持燃烧波对激光-TIG复合热源的影响[J].哈尔滨工业大学学报, 2003, 35(6): 695-697
    [54]陈彦宾,陈杰,李俐群,等.激光与电弧相互作用时的电弧形态及焊缝形态[J].焊接学报, 2003, 24(1):55-56
    [55] Page C.J, Devermann T, Blffin J, et al. Plasma augmented laser welding and its applications [J]. Science and technology of welding and joining, 2002, 7(1): 1-10
    [56] Vitek J.M, David S.A, Richey M.W, et al. Weld pool shape prediction in plasma augmented laser welded steel [J]. Science and technology of welding and joining, 2001, 6(5): 305-314
    [57] Krivtsun V. Investigation of hybrid processes of metal treatment and development of integrated plasma torches for laser+plasma arc welding, cutting and surfacing [EB/OL]. http://www.kar.net/~plasma/results/project.html, 1999
    [58] Stelling K, Schobbert H, Kannengiesser Th. et al. Verticai-up and -down laser plasma powder hybrid welding of a high nitrogen austenitic stainless steel [J]. Welding in the world, 2005, 49(5/6): 45-49
    [59] Boelldinghaus Th, Schobbert H. Nd:YAG laser plasma powder hybrid welding of austenitic stainless steels [C]. Trends in proceeding of ASM international 2003. Ohio: ASME, 2003: 453-458
    [60] Denney P, Harwig D, Brown L. Hybrid laser weld development for shipbuilding applications [C]. Proceedings of Ship Production Symposium and Expo. Ypsilanti. Michigan: NSPR ASE, 2001:1-18
    [61] Kaierle S, Bongard K, Dahmen M. Innovative hybrid welding process in a industrial application [C]. Proceedings of ICALEO 2000. Orlando: LIA, 2000: Section C, 91-98
    [62] Denney Paul.E, Shinn Brandon.W, Fallara P.Mike. Stabilization of pulsed GMAW in titanium welds with low power lasers [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: Hybrid laser welding, 11-15
    [63] Shi S.G, Hilton P, Mulligan S, et al. Hybrid Nd:YAG laser-MAG welding of thick section steel with adaptive control [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: Hybrid laser welding, 25-32
    [64] Jokinen T, Karhu M. Narrow gap hybrid welding of thick stainless steel [C]. Proceedings of ICALEO 2003. Jacksonville FL: LIA, 2003: LMPA, 66-75
    [65] Jokinen Tommi, Kujanpaa Veli. High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor [J]. Fusion engineering an design, 2003, 69(1-4): 349-353
    [66] Thomy C., Seefeld T. & Vollertsen F. Application of high-power fibre lasers in laser and laser MIG welding of steel and aluminum [J]. Welding in the world, 2005, 49(7/8): 88-98
    [67] Kutsuna Muneharu, Chen Liang. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel[C]. Proceeding of SPIE, first international symposium on high-power laser macroprocessing. Osaka: SPIE, 2002: 341-346
    [68] Fellman Anna, Jernstrom Petteri, Kujanpaa veli. CO2-GMA hybrid welding of carbon Steel-the effect of shielding gas composition [C]. Proceedings of ICALEO 2003. Jacksonville FL: LIA, 2003: LMPA, 56-65
    [69] Hyatt C V, Magee K.H, Porter J.F, et al. Laser-assisted gas meta arc welding of 25-mm-thick HY-80 plate [J]. Welding journal, 2001, 80(7): 163s-172s
    [70]雷正龙,陈彦宾,李俐群,等. CO2激光-MIG复合焊接射滴过渡的熔滴特性[J].应用激光, 2004, 24(6):361-364
    [71]张旭东,陈武柱,双元卿,等. CO2激光-MIG同轴复合焊方法及铝合金焊接的研究[J].应用激光, 2005, 25(1): 1-3
    [72] Casalino Giuseppe, Ludovico Antonio, Chieco Giuseppe. Characterisation of Al-Mg alloys MIG-laser CO2 combined welding [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 190-195
    [73] Haferkamp H, Ostendorf A, Bunte J, et al. Increased seam quality for laser-GMA hybrid welding of zinc-coated steel [C]. Proceedings of ICALEO 2002. Orlando: LIA, 2002: LMPA, paper1634140
    [74] Schubert E, Wedel B Kohler G. Influence of the process parameters on the welding results of laser-GMA welding [C]. Proceedings of ICALEO 2002. Orlando: LIA, 2002: LMPA, paper156442
    [75] Reutzel E.W, Kelly S.M, Tressler J.F, et al. Experimental analysis of practical aspects of hybrid welding of thick sections [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 143-152
    [76] Coste Frederic, Fabbro Remy, Alais Cyprien, et al. Laser and hybrid welding of high strength steel application to pressure vessel manufacturing [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 174-182
    [77] Hong Seung-Gab, Lee JongBong. Effects of hybrid welding parameters on porosity formation in C-Mn steel for shipbuilding [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 83-189
    [78] Tueyama, Tong H, Yazawa I, et al. Aluminum alloy sheet welding by the laser AC pulsed MIG hybrid process [J]. Welding international, 2004, 18(5): 345-350
    [79] Wieschemann A, Kelle H, Dilthey D. Hybrid-welding and the HyDRA MAG + Laserprocesses in shipbuilding [J]. Welding international, 2003, 17(10): 761-766
    [80]张绍彬,赵家瑞,孙栋,等.焊接电弧与激光相互作用机理的研究[J].焊接技术, 1991, 1991(4): 6-8
    [81] Fellman Anna, Salminen antti. A study of the phenomenon of CO2-laser welding with filler wire and MAG hybrid welding [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 117-126
    [82] Uchiumi Satoru, Wang Jing-bo, Katayama Seiji, et al. Penetration and welding phenomena in YAG laser-MIG hybrid welding of aluminum alloy [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: Hybrid laser welding, 76-85
    [83] Travis D, Dearden G, Watkins K.G, et al. Sensing for monitoring of the laser-GMAW hybrid welding process [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: Hybrid laser welding, 35-40
    [84] Lampa Conny, Kaplan Alexander F.H, Powell John, et al. An analytical thermodynamic model of laser welding [J]. J. Phys. D: Appl. Phys., 1997, 30(9): 1293-1299
    [85] Semak Vladimir.V, Bragg William David, Damkroger Brian, et al. Transient model for the keyhole during laser welding [J]. J. Phys. D: Appl. Phys., 1999, 32(15): L61-L64
    [86] Kumar Subodh, Bhaduri S.C. Three-dimensional finite element modeling of gas metal-arc welding [J]. Metallurgical and materials transactions B, 1994, 25B(6): 435-441
    [87] Finke B.R, Kapadia P.D and Dowden J.M. A fundamental plasma based model for energy transfer in laser material processing [J]. J. Phys. D: Appl. Phys., 1990, 23(6): 643-654
    [88] Zhou J, Tsai H.L, Wang P.C, et al. Modeling of Hybrid laser-MIG keyhole welding process [C]. Proceedings of ICALEO 2003. Jacksonville FL: LIA, 2003: LMPA, 135-141
    [89] Zhou J, Zhang W.H, Tsai H.L, et al. Modeling the transport phenomena during hybrid laser-MIG welding process [C]. Proceeding of IMECE’03, 2003 ASME international mechanical engineering congress & exposition. Washiington D.C: ASME, 2003:1-8
    [90]吴圣川,刘建华.铝合金激光-电弧复合焊的有限元数值模拟[J]航空制造技术, 2005, 2005(12): 74-76
    [91] Goncalves V, Salema A. Laser/TIG hybrid welding-Program for the calculation ofwelding parameters and pre-heating temperature in alloy steels [J]. International journal for the joining of materials, 2002, 14(3-4): 33-37
    [92] Reutzel E W, Kelly S M, Martukanitz. Laser-GMA hybrid wlding: process monitoring and thermal modeling [C]. ASM Proceedings of the International Conference, Trends in Welding Research. Pine Mountain: ASM Internation, 2005: 143-148
    [93] Graf T, Staufer H. LaserHybrid process at Volkswagen [DB/OL]. http://www.iiw-iis.org, IIW-DOC, XII-1730-02. 2003
    [94] Graf.T, Staufer H. Laser-hybrid welding drives VW improvements [J]. Welding journal, 2003, 82(1): 42-48
    [95] Moore P.L, Howse D.S, Wallach E.R. Development of laser, and laser/MAG hybrid welding for land pipeline applications [J]. Welding and cutting, 2004, 3(3): 186-191
    [96] Muller, Koczera S. Shipyard uses laser-GMAW hybrid welding to achieve one-sided welding [DB/OL]. Http://www.thefabricator.com/ArcWelding/ArcWelding_Articlecfm?ID=777, 2003
    [97] Jernstrom Petteri. Hybrid welding of hollow section beams for a telescopic lifter[C]. Proceeding of SPIE, first international symposium on high-power laser macroprocessing. Osaka: SPIE, 2002: 353-356
    [98] Bagger C., Sondrup L.C, Olsen F.O, Laser/TIG hybrid welding of pot for induction heater [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: LMP, Hybrid Laser Welding, 60-69
    [99] Lee Mok-Young, Chang Woong-Seong, Kweon Young-Gak, et al. Laser-MIG hybrid weldability of high strengthen steel for car industry [C]. Proceedings of ICALEO 2005. Florida: LIA, 2005: LMP, 134-142
    [100]肖荣诗,陈继民,陈涛,等.关于CO2激光深熔焊接的临界功率密度[J].应用激光,2000, 20(1): 1-3.
    [101] Rayes M.EL, Walz C, Sepold G. The influence of various hybrid welding parameters on bead geometry [J]. Welding journal, 2004, 83(5): 147s-153s
    [102]安藤弘平,长谷川光雄.焊接电弧现象[M].施雨湘,译.北京:机械工业出版社, 1985: 1-622
    [103] Lin M.L, Eagar T.W. Influence of arc pressure on weld pool geometry [J]. Welding journal, 1985, 64(6): 163s-169s
    [104] Kern M, Beck M, Berger P. Process stabilizing potential of shielding gas mixtures[C]. Proceeding of SPIE, XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. Edinburgh: SPIE, 1996: 526-529
    [105]洪蕾,吴刚,陈武柱.保护气流对CO2激光焊接铝合金的影响[J].中国激光, 2005, 32(11): 1571-1576
    [106]唐霞辉,朱海红,朱国富.高功率CO2激光焊接等离子体控制试验研究[J].中国激光,1997,A24(2): 174-178
    [107] Bennett, Bernard. Effects of shielding gas in pulsed MIG welding [J]. Joining & materials, 1989, 2(6): 279-280
    [108] Suban M, Tusek J. Dependence of melting rate in MIG/MAG welding on the type of shielding gas used [J]. Journal of materials processing technology, 2001, 119(1-3): 185-192
    [109] Hamadou M., Fabbro R, Caillibotte G. Effect of gas shielding delivery mode on high power CO2 laser welding [C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: LMP, Laser welding & brazing, 171-180
    [110] Chen Yanbin, Lei Zhenglong, Li Liqun, Study of welding characteristics in CO2 laser-TIG hybrid welding process [C]. Proceedings of ICALEO 2003. Jacksonville FL: LIA, 2003: LMPA, 41-47
    [111]张文钺.焊接冶金学[M].北京:机械工业出版社, 1997: 1-208
    [112]张汉谦.钢熔焊接头金属学[M].北京:机械工业出版社, 2000: 1-264
    [113] Matsunawa A. Role of surface tension in fusion welding (Part 3) [J]. Transactions of JWRI, 1984, 13(1): 147-156
    [114]拉达伊D.焊接热效应[M].熊第京,郑朝云,史耀武译.北京:机械工业出版社, 1997: 21-251
    [115]刘金合,杨德才,陆开静.激光焊接的等离子态负透镜效应[J].激光与光电子学进展, 1999, 1999(9): 138-141
    [116] Essien M., Fuerschbach P.W. Beam characterization of a materials processing CO2 laser [J]. Welding journal, 1996, 75(2): 47s-54s
    [117]曹明翠,郑启光,陈祖涛,等.激光热加工[M].武汉:华中理工大学出版社, 1995: 166-262
    [118] Ready J.F. Industrial applications of lasers [M]. New York: Academic press, 1978: 380-382
    [119] Vollertsen Frank, Thomy Claus. Mgnetic stirring during laser welding of aluminum[C]. Proceedings of ICALEO 2004. San Francisco: LIA, 2004: LMP, Hybrid Laser Welding, 16-24
    [120] Tse H.C, Man H.C, Yue T.M. Effect of magnetic field on plasma control during CO2 laser welding [J]. Optics & laser technology, 1999, 31(5): 363-368
    [121] Tse H.C, Man H.C, Yue T.M. Effect of magnetic and electric field on plasma control during CO2 lase welding [J]. Optics and lasers in engineering, 1999, 32(1):55-63
    [122] Tse H.C, Man H.C, Yue T.M. Effect of electric field on plasma control during CO2 laser welding [J]. Optics and lasers in engineering, 2000, 33(3):181-189
    [123]曹明盛.物理冶金基础[M].北京:冶金工业出版社, 1987: 1-109
    [124]田锡唐.焊接结构[M].北京:机械工业出版社, 1996: 1-90
    [125]彭云,王成,陈武柱,等.两种规格超细晶粒钢的激光焊接[J].焊接学报, 2001, 22(1):31-35
    [126]田志凌,何长红,张晓牧,等. 400MPa级超细晶粒钢的焊接[J].焊接学报, 2001, 22(6): 1-4
    [127]屈朝霞,田志凌,何长红,等.超细晶粒钢及其焊接性[J].钢铁, 2000, 35(2):70-73
    [128]郑虹,唐海燕,张青.咬边缺陷分析及对策.机械设计与制造[J], 2002, 2002(2):73-74
    [129]郑州机械研究所. CO2气体保护焊[M].北京:机械工业出版社, 1978: 1-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700