用户名: 密码: 验证码:
高压电场对玻璃的结构与性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的各种性能与材料的组成、制备工艺、组织结构有很大的联系,如平板玻璃的化学稳定性除了取决于玻璃的化学组成,还与玻璃的成型工艺及玻璃表面的离子种类和分布状态有关;定向析晶极性微晶玻璃的压电性能及非线性光学性能与晶粒定向程度有很大的关系,不同的制备工艺获得的微晶玻璃其晶粒定向程度及微观织构差异较大。传统的制备工艺所获得的微晶玻璃其晶粒在宏观上呈现无序分布的状态,而特殊工艺制备的微晶玻璃其晶粒具有定向排列结构。目前,玻璃的传统制备工艺理论及应用研究相对较成熟,但是在特殊条件下如引入外场对玻璃的制备过程及玻璃的结构与性能影响研究较少。.在材料制备过程中引入特殊条件如高压电场,超声波,强磁场等来改善和控制材料的微观结构与性能逐渐成为当前材料科学中的一个重要研究课题及材料制备手段。
     本论文工作以浮法玻璃及SrO-TiO2-SiO2微晶玻璃为研究对象。主要工作之一是利用高压电场处理来提高浮法玻璃表面化学稳定性。本文较为全面的介绍了现有的提高玻璃表面化学稳定性防止风化的方法以及本文中应用的高压电场处理法;在模拟浮法玻璃生产条件及综合分析的基础上,对浮法玻璃施加高压电场处理。采用紫外可见光谱仪(Uv-Vis)、红外反射光谱法(IRRS)及辉光放电光谱法(GD-OES)研究了浮法玻璃表面结构与性能以及表面各元素成分的变化情况。同时利用扫描电镜电子能谱(EDAX)分析了玻璃断面距离表面0-20μm内元素的浓度分布。研究了高压电场对浮法玻璃结构与性能的影响,探讨了高压电场下浮法玻璃的离子迁移扩散分布规律及其迁移机理。
     其次,通过辅助高压电场恒温场定向析晶工艺,制备了具有晶粒定向结构的Sr2TiSi208极性微晶玻璃,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电子能谱(EDAX)等测试手段分析了微晶玻璃的组成、显微结构和性能,研究了辅助高压电场对微晶玻璃的微观结构、形貌及压电性能等的影响,计算了玻璃在电场辅助定向析晶过程中活化能的变化及晶粒定向指数。最后探讨了辅助高压电场下玻璃的定向析晶机理。
     本文主要的研究进展如下:
     (1)平板玻璃中Na+的存在是导致其风化的主要原因;高压电场处理浮法玻璃,玻璃的透过率及红外反射率均有所降低,在高压电场的作用下玻璃上表面(空气接触面)的Na+向玻璃内部迁移,玻璃下表面(涉锡面)的Na+浓度在电场作用下增加,结果在玻璃上表面形成低碱富硅层;玻璃下表面由于渗Sn的原因结构变得更致密,使得玻璃透过率降低;
     (2)高压电场处理温度增加,玻璃红外反射光谱的反射峰的位置没有改变,但峰值明显下降。玻璃上表面的红外反射率随处理温度升高而降低;在3min内,红外反射率和透过率随电场处理时间增加而降低;施加的电场强度越高,玻璃中离子在电场方向的迁移能力越强,能谱结果表明,电场强度越高,玻璃上表面的Na+离子向内部迁移越多,下表面的Na+含量有所增加,但是变化不大;
     (3)建立了高压电场下玻璃离子迁移扩散模型;探讨了影响玻璃离子迁移扩散的主要因素,主要有玻璃的化学组成与结构,电场处理温度以及处理强度、时间、泄露电流等;
     (4)在模拟浮法玻璃退火温度范围内,对玻璃施加高压电场。在温度场和电场协同作用下。泄露电流强度不大于150μA/cm2时,高压电场提高正极附近玻璃表面(空气接触面)的化学稳定性,同时负极附近玻璃表面(渗锡面)的化学稳定性变化不大。对比未处理过的试样,电场处理的试样风化情况有所减轻。表明浮法玻璃可以利用高压电场有效地提高其表面(尤其是空气接触面)化学稳定性;
     (5)选择2.0SrO-1.0TiO2-2.9SiO2(mol%)玻璃系统,采用恒温电场辅助析晶工艺制备出了晶粒定向的Sr2TiSi2O8 (STS)极性微晶玻璃,所得极性微晶玻璃具有较好的压电性能,其压电常数d33=12×10-12C/N;电场恒温场中,微晶玻璃在总体上表现出c轴垂直于玻璃表面的晶体生长择优取向。其相对定向晶化指数为OI恒温=0.231,OI电场=0.897,与恒温析晶的晶相相比较,电场辅助下Sr2TiSi2O8微晶玻璃的析晶定向指数变大,晶粒定向程度增加:
     (6)研究了Sr2TiSi2O8 (STS)玻璃晶化的动力学因素,采用差热分析方法及玻璃晶体生长厚度和晶化时间的关系计算了STS玻璃晶化活化能和控制因子。实验结果表明:在电场恒温场下,外加电场降低了极性微晶体的晶体形成活化能,活化能为324 kJ/mol,小于未加载电场的347 kJ/mol;
     (7)利用EDX测量了部分晶化的Sr2TiSi208玻璃中Ti离子随晶化层方向的分布,Ti离子在晶化面前后发生明显的偏析现象。在核化过程中,Ti离子出现耗尽层,表明Ti离子具有向玻璃表面迁移的趋势;在SrO-TiO2-SiO2微晶玻璃中,探讨了玻璃-晶体转变产牛的体积效应对微晶玻璃定向析晶的影响;利用偶极子模型,计算了微晶体附近的静电势分布以及微晶体前端静电势分布。结果表明在电场辅助恒温场定向析晶工艺中,极性微晶玻璃中晶粒在不同方向上的生长速率差异较大;
     (8)外加电场对晶体的整个生长过程的影响,包括核化处理过程,晶体生长动力学,溶质的传输,生长界面前沿处的溶质附加动力学,外加电场中由于EDL效应导致Ti4+离子向靠近阴极的玻璃表面扩散加强,由于Ti4+离子很强的核化能力,从而加速了STS玻璃的晶化前沿处的核化生长。电场对玻璃核化、析晶过程的影响与玻璃相、析出晶相的介电常数有关。由定向析晶过程中的温度场和外加高压电场,共同提供了玻璃样品阴极面表层区域Sr2TiSi2O8微晶进一步晶化所需的能量,使晶体的析出进一步增强。同时在电场恒温场下,外加电场降低了极性微晶体的晶体形成活化能。显著改变了在不同方向上晶粒的生长速率,使得微晶体择优取向生长,有利于极性微晶玻璃的定向析晶
The properties of material have a strong relation with material composition, preparation process, structure etc.; for example, the chemical stability of plat glass depends on the chemical composition of glass, as well as the molding process and the distribution state of ionic species. Piezoeletric property and nonlinear optical property of directional polar glass great related with the orientation degree of grain; different preparation process can obtain different glass with various oriention degree of grain and microstructure. The grain of glass-cramic obtained by traditional preparation show in a disordered state, while glass-ceramic prepared by special process have orientation structure. At present, traditional preparation process theory and application research of glass were relatively mature, but in special conditions such as the introduction of outfield affecting the preparation process of glass and its structure and properties were rare studied. Thus the introduction of special conditions' such as high-voltage electric field, ultrasound, magnetic field and others to improve and control the microstructure and properties of material during the preparation process of material gradually becomes an important research subject and preparation method in material science.
     In this paper, the float-glass and SrO-TiO2-SiO2 glass-ceramic were selected as the research objective. The first point of this paper includes researches and experiments on how to increase the chemical resistance of float-glass surface, applying a high-voltage electric field. The paper comprehensively introduced the existing methods of improving chemical stability of glass surface to prevent weathering and the high-voltage electric field applied in this method. On the basic of systemic analysis the production conditions of float-glass technology and simulation around the laboratory, float-glass was treated under high-voltage electric field. Uv-Vis Spectrophotometer analysis was used to research the optical properties of the upper surface of the float-glass. The variation of bonds in the upper surface was investigated by Infrared Reflection Spectroscopic (IRRS) analysis. While Glow Discharge-Optical Emission Spectrometry (GD-OES) analysis was employed as verifying method to study the variation contents of element on the quality of float-glass upper surface. Using scanning Electron Electronic Spectrum(EDAX) analysis to analyse concentration distributions of elements in glass 0~20μm from the surface. The impact of high-voltage electric field on the structure and properties of float-glass were discussed, and the mechanism of ion migration and diffusion of float-glass in high-voltage electric field was also studied.
     In another point of this paper, Sr2TiSi208 glass-ceramic with polar oriented structure were fabricated through a special isothermally orientating crystallization process. The phase composition, microstructure and properties, the influence of high-voltage electric field on microcosmic structure, morphology and piezoelectric properties of glass-ceramic were investigated using XRD, SEM, EDAX and absorbance spectrum. Meanwhile, the changes in crystallization activation energy and crystal orientation index of glass under the auxiliary high-voltage electric field were calculated. Finally, the paper discussed the mechanism of orientation crystallization mechanism of glass under the auxiliary high-voltage electric field.
     My main works and progress obtained includes as follows:
     (1) The existence of Na+ in float glass is the major cause of weathering. In the high-voltage electric field, glass transmittance and infrared reflectance rate decreased, Na+ on the surface will move inwards resulting in low alkali and silicon-rich layer on the surface; while the concentration of Na+ under the surface will increase in this electric field, and with the infiltration of Sn, the structure become more dense, making the glass transmittance reduced.
     (2) With the heating-treatment under high-voltage electric field increasing, peaks of infrared spectral reflectance of glass have not changed, but the position of peak decreased obviously. Infrared reflectivity on the glass surface decreased with the processing temperature increasing; in 3min, the infrared reflectance and transmittance reduces with increases processing time in the electric field; The higher the applied electric field intensity, the stronger the ion migration ability of the glass in the direction electric field; the energy spectrum results show that the higher the field intensity, the more Na+ on the surface of glass migrating towards internal, and the Na+ content on the lower surface increases slightly.
     (3) A migration diffusion model of ion in glass under high-voltage electric field was simulated, and the main factors of ion migration diffusion were discussed; including chemical composition and structure of glass, electric processing temperature and processing time, leak current strength, etc.
     (4) High-voltage electric field was imposed on glass in the simulated annealing temperature range of float-glass. In the synergy of temperature and electric field; when the leakage current density is not greater than 150μA/cm, the high-voltage electric field improves the chemical stability of the glass surface (air interface) near the cathode, while the chemical stability of the glass surface (tin in surface) near the negative changes little. The weathering of glass treated in electric field was improved compared with the untreated sample. High-voltage electric field can effectively improve surface (especially the air interface) chemical stability of float-glass.
     (5) This report select the 2.0SrO-1.0TiO2-2.9SiO2 (mol%) glass system, and polar oriented Sr2TiSi2O8(STS) glass-ceramics were fabricated through a special isothermally orientating crystallization process. The polarity glass-ceramic has good piezoelectric properties, its piezoelectric constant d33 is 10×12-12C/N; In the electric constant temperature field, crystal in general showed c-axis perpendicular to the glass surface of the crystal growth preferential orientation. The relative orientation crystallization index OIconstant temperature is 0.231, OIelectric field is 0.897, and compared with the crystallization prepared in constant temperature, the crystalline directional index of electric field-assisted Sr2TiSi2O8 glass-ceramics enlarged, the degree of grain orientation increased.
     (6) Based on DTA analysis method the factors of crystallization kinetics of Sr2TiSi208(STS) glass were studied to calculate the STS glass crystallization activation energy and control factors. The results show that:in the condition of auxiliary electric constant temperature, the applied electric field reduces the activation energy of micro-crystals of the polarity crystals, the activation energy is 324 kJ/mol, smaller than the unloaded 347 kJ/mol;
     (7) By applying EDX analysis method to measure Ti ion distribution in the Sr2TiSi2O8 glass with the direction of crystallization layer, Ti ion occurred segregation phenomenon in the crystallization. The depletion layer of Ti ion appears that Ti ion has a trend of migration to the glass surface in the nucleation process; In SrO-TiO2-SiO2 glass-ceramics, the impact of volume effect on the oriented crystallization of glass-ceramics in the glass-crystal transition was discussed, the distribution of the electrostatic field based on the dipole model and the undulation in the energy of the crystal growth was calculated. The results indicate that in auxiliary electric constant temperature field of grain orientation process in the polar glass-ceramics, the growth rate of grains have great difference in different directions.
     (8) The impacts of electric field on the whole process of crystal growth include nucleation process, crystal growth dynamics, the transmission of solute, the growth of solutes in front of the interface, the EDL effect of the external electric field led to Ti4+ ions diffusion strengthen near the cathode glass surface, due to the strong nucleation ability of Ti4+ ions accelerates the nucleation growth in crystallization front of STS glass. The influence of electric field on the nucleation and crystallization of glass related with glass phase and the dielectric constant of the crystal phase precipitated. Both the temperature field and additional high-voltage electric field provide the energy for further crystallization of Sr2TiSi2O8 microcrystalline near the cathodic glass surface area with the energy required for further crystallization, further enhancing the crystallization. Meanwhile in the electric constant temperature field, the applied electric field reduces the activation energy of polarity micro-crystals, changes the grain growth rate in different directions, significantly affects the grain orientation growth of glass-ceramics and benefits the preferred orientation growth of polarity micro-crystal.
引文
[1]国家自然科学基金委员会工程与材料科学部.无机非金属材料科学[M].北京,2006:p1-3
    [2]Shen Zuwu, Liu Qiming Meng Li, Wang Hongcheng, Effect of Additional Applied Thermal/Electric Field on the Float-glass Surface, J. Wuhan University of Technology Materials Science,2009,24:308-311.
    [3]Y. Ding, A. Osaka, and Y. Miura. Enhanced surface crystallization of beta-barium borate on glass due to ultrasonic treatment. J. Am. Ceram. Soc,1994,77(3):749-752
    [4]王强,王春江,庞雪君,赫冀成.利用强磁场控制过共晶铝硅合金的凝固组织.材料研究学报,Vo1.18 No.6 Dec.2004:568-576
    [5]Shyu, Jiin-Jyh; Chen, Yu-Hsien. Effect of electric field on the crystallization of lead titanate in a glass, J Mater Sci,v 39, n 1 Jan 1 2004:p 159-163
    [6]Regnier P, Serruys Y, Zemskoff A. Electric Field Stimulated Sodium Depletion of Glass and Related Penetration of Environmental Atomic Species. Phys Chem Glasses, v 27, n5,Oct,1986:p 185-189
    [7]Liang K M, et al, The 3rd European Interregion Colloquium on Ceramics, France, 1991.
    [8]Liang K M, et al, Conf. on Electrical Insulation and Dielectric Phenomena, TX, USA, 1991
    [9]田贺斌,杨天新,王永强,王颖,李世忱.电场辅助K+、Na+交换玻璃光波导的制作与优化.天津理工学院学报 Vo1118 No14 Decl 2002:6-8
    [10]李长红,戴基智,宋新祥,易鹏.电场辅助离子交换制备玻璃光波导.激光技术 第30卷第2期2006年4月:189-191
    [11]周青春,陈铮,董师润.电场辅助阳极连接碱金属耗尽层模型. 中国有色金属学报.2002年12月Dec.2002:1268-1271
    [12]Liu W, Gu XM, Liang KM, et al. Raman studies of the phase separation mechanism of CaO-Al2O3-SiO2 glasses in an electric field, Metall. Mater. Trans. B,1999,30 (4): 685-688
    [13]Liu W, Gu X M, Liang K M, et al. Raman studies of the phase separation mechanism of CaO-Al2O3-SiO2 glasses in an electric field; Metall. Mater. Trans B.1999,30 (4): 685-688
    [14]Liu W, Liang K M, Gu X M, et al. Phase separation of CaO center dot Al2O3 center dot SiO2 glasses induced by electric field, J. Mater. Sci.1999,34 (14):3455-3459
    [15]Liu W, Gu XM, Liang KM, et al. Controlled phase separation by an electric field in glassesMat. Sci. Eng. A-Struct,1999,265 (1-2):25-28
    [16]Liu W, Chen H, Zheng YK, et al. Phase separation of CaO center dot B2O3 center dot P2O5 glasses induced by polarization in an electric field; J. Mater. Sci.2000,35 (6):1507-1510
    [17]Liu W, Gu XM, Liang KM, et al. The phase separation mechanism of CaO-B2O3-P2O5 in an electric field, J. Mater. Res.,1999 14 (5):2096-2099
    [18]Liu W, Gu XM, Liang KM, et al. Controlled phase separation by an electric field in glasses, Mat. Sci. Eng. A-Struct.1999,265 (1-2):25-28 JUN 15 1999
    [19]Gu XM, Liu W, Liang KM, The effect of electric field on phase separation in glasses: a model and experimental testing, Mat. Sci. Eng:A-Struct.2000,278 (1-2):22-26
    [20]Long X C, Myers R A, Brueck S R J, Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres, Electron. Lett.,1994,30(25): 2162-2163
    [21]Nasu H, New Application of Microcrystals doped Glasses-Mainly on Third order Optical Nonlinearity of Semiconductor Microcrystals-doped Glass Thin Films, J. Soc. Powder Tech.,1995,32(1):31-38
    [22]Tanaka K, Kashima K, Hirao K, et al., Second harmonic generation in electrically poled Li2O-Nb2O5 TeO2 glasses, J. Non-Crystal. Solids,1995,185(1-2):123-129
    [23]Yoshitsugu Yamamoto, Hiroyuki Nasu, Tadanori Hashimoto, et al., Second harmonic generation from thermally poled CdS microcrystal-containg glasses, J. Non-Cryst. Solids,2001,281:198-204
    [24]林健,黄文旵,罗丽庆.辅助电场下TeO2-Nb2O5-AgCI系统玻璃的核化与析晶机理研究无机材料学报 第20.卷第3期 2005(5):557-562
    [25]李伟民,李成铭.在线玻璃.防霉喷涂装置的设计.中国建材装备,1986(5): 35-39
    [26]段京田,嵇书伟.玻璃防霉新技术在浮法生产线上的应用.中国建材装备,2001(3):25-26
    [27]森谷太郎,成濑省,功刀雅长等编集,邱标麟译.玻璃制造学.台南:复文书、局,1984:578
    [28]韦 林.玻璃器皿表面的金属及金属氧化物着色薄膜.玻璃工业,1984(2):30-33
    [29]钟代发,崔万秋·喷涂法制彩色压花玻璃的研究.玻璃, 1984(3)::3-7
    [30]钟代发,崔万秋.喷除法制彩色压花玻璃的研究(续).玻璃,1984(4):12-17
    [31]西北轻工学院.玻璃工艺学.北京:中国轻工业出版社,2004(8):83
    [32]W.A.Weyl. Structure of subsurface layers and their role in glass technology. J.Non-Cryst.Solids,1975.19 (12):1-25
    [33]Weyl W A. The Consititution of Glass Vol Ⅱ. New York, London, Sydney:John Wiley of sons Inc,1968:1014-1023
    [34][前苏联]基泰戈罗茨基ИИ主编,郑庆海等译.玻璃生产手册.北京:轻工业出版社,1966:169
    [35]H. Brill. The morphology of weathering on historical glasses. Riv. Staz. Sper., 2000.6:7-8
    [36]W. D. Kingery. Introduction to Ceramics. John Wiley and Sons.,2nd edition,1976: 54-60
    [37]陈芳,王德宪.浮法玻璃表面渗锡与渗锡量测定[J].玻璃.2008.2.37-42.
    [38]Frischat,G.H. On the Origin of the Tin Hump in Several Float Glasses. Journal of Non-Crystalline Solids,2001,283(1-3):246-249
    [39]L. Colombin, et al. Penetration of tin in the bottom surface of float glass synthesis[J]. Journal of Non-crystal Solids,38-39,1980,551-556.
    [40]K.F.E. Williams, C.E.Tin.Oxidation State, Depth Profile of Sn2+ and Sn4+ and Oxygen Diffusivity in Float Glass by Mossbauer Spectroscopy. Journal of Non-Crystalline Solids,1997,211:103-107
    [41]A, Sears, D.Holland, et al.Physics and chemistry of-glasses[J].41(1), (2000) 42.
    [42]M.M.Karim, D.Hlland. Physics and Chemistry of glasses[J].36 (5), (19-95)206.
    [43]D.Benne, et al. Journal of Non-crystal Solids[M].318, (2003),202.
    [44]T.Lombardo, et al. Glass Technology[J].46(3), (2005),271.
    [45]Walters W V, Adams P B. Factors affecting the viability of sclerotia of Sclerotinia sclerotiorum in soil. J Non-tryst Solids,1975.19:183-190
    [46]H.Faanz. Durability and corrosion of silicate glass surface.J Non-tryst. Solids, 1980.42:529-534
    [47][德]舒尔兹H编,黄照柏译.玻璃的本质结构和性质.北京:中国建筑工业出版社,1984:35
    [48][美]托利F V主编,刘时衡,岭超南,彭金安译.玻璃制造手册,下册.北京:中国建筑工业出版社,1983:443
    [49]Sieger J S. Chemical characteristics of float glas surfacees. J Non-tryst Solids, 1975.19:213-220
    [50]作花济夫著,蒋幼美译.玻璃非晶态科学.北京:中国建筑工业出版社,1986:62
    [51]Josef Matousek, Martin Maryska, Ales Helebrant. Corrosion of glass with stress in the water and acid solutions. Glass Sci.Technol.1996.69:100
    [52]Minoru Tomozawa. Concentration Dependence of the Diffusion Coefficient of Water in SiO2 Glass. Journal of the American Ceramic Society,1985.68(9): 251-252
    [53]M.Tomozawa, Dong-Lae Kiml, Anand Agarwal. Water diffusion and surface structural relaxation of silica glasses. J Non-cryst Solids,2001.288(8):73-80
    [54]Hans Bach. J Non-cryst Solids,1997.209:1-18
    [55]高名岑.浮法玻璃表面吸水量的XPS研究.硅酸盐学报,1995(3):355-358
    [56]高名芩.玻璃风化及其防止法.武汉:武汉工业大学出版社,1995:245
    [57]魏永忠.浅谈平板玻璃的防霉纸包装.节能利废,2002(12):39
    [58]蔡大年.浮法玻璃防霉衬纸防霉机理探讨..纸和造纸,1995(7):5
    [59]段京田,嵇书伟.玻璃防霉新技术在浮法生产线上的应用.中国建材装备,2001(3):25-26
    [60]方久华.平板玻璃防霉研究.中国玻璃,2000(2):7-9
    [61]浙江大学.玻璃工艺原理.北京:中国建工出版社,1974:82
    [62]刘群纲.平板玻璃发霉与防霉的研究.玻璃,1992(22):36
    [63]蒋 荃.BMA-IL型平板玻璃防霉液的研制.中国建材科技,1994.3(6):21-24
    [64]D.I. Atkinson, P.W. McMillan. Nucleation and crystallization in glass system Li2O-SiO2. J. Mater. Sci.1978,12(3):443-447
    [65]Y. Z. Yue, R. Keding, and C. Russel. Oriented calcium metaphosphate glass-ceramics. J. Mater. Res.1999,14(10):3983-3987
    [66]R. Ramesh and D. G. Schlom. Orienting ferroelectric films. Science 2004:296 (5575):1975-78
    [67]E. Crossman. Method of preparation for glass ceramics with arranged sheet crystallite. US Patent 3905824,1975
    [68]K.H.G. Ashbee. Exclusion of reinforced glass ceramic ceramics with fluromica. J. Mater. Sci.1975,10(1):911-14
    [69]C.L. Booth, G.E. Rindone. Crystallization orientation of glass ceramics from in-nucleated glass. J. Amer. Ceram. Soc.1964,47(1):7-13
    [70]G. J. Gardopee, R. E. Newnham, L. E. Cross. Polar glass ceramics in a temperature gradient. Appl. Phys. Lett.1980, 36(2):293-294
    [71]G. J. Gardopee, R. E. Newnham and B. S. Bhalla. Pyroelectric Li2SiO3 glass ceramics. Ferroelectrics,1981,33(1):155
    [72]A. Halliyal, A. Safari, A. S. Bhalla, R. E. Newnham and L. E. Cross. Grain-oriented glass ceramics for piezoelectric devices. J. Amer. Ceram. Soc.1984,67(1) 331-334
    [73]A. Halliyal, A. Safari, A. S. Bhalla, R. E. Newnham. Grain-oriented glass ceramics: new materials for hydrophone application. Ferroelectrics 1983,50(1) 45-50
    [74]A. Halliyal, A. S. Bhalla, R. E. Newnham. Polar glass ceramics-a new family of electro-ceramic materials:Tailoring the piezoelectric and pyroelectric properties. Mater. Res. Bull.1983,18(4) 1007-11
    [75]A. Halliyal, A. S. Bhalla, S. A. Markgraf, L.E. Cross. Unusual pyroelectric and piezoelectric properties of fresnoite (Ba2TiSi2O8) single-crystal and polar glass-ceramics. Ferroelectrics 1985,62 (1-2):27-38
    [76]A. Halliyal, A. S. Bhalla, L. E. Cross and R. E. Newnham. Dielectric, piezoelectric and pyroelectric properties of Sr2TiSi2O8 polar glass ceramics:a new polar material. J. Mater. Sci.1985,20(11),3745-49
    [77]孙诗兵,丁振亚,方承平.恒温场制备极性玻璃陶瓷工艺的研究.华东理工大学学报.1998,2:56-60
    [78]孙诗兵.梯温场中玻璃陶瓷定向析晶的过程及工艺.山东建材学院学报,1997:11(3):197-201
    [79]Y. Ding, A. Osaka, and Y. Miura. Enhanced surface crystallization of beta-barium borate on glass due to ultrasonic treatment. J. Am. Ceram. Soc,1994,77(3):749-752
    [80]Y. Ding, A. Osaka, and Y. Miura. Stimulated surface crystallization of lithium-niobate on tellurite glass due to ultrasonic treatment. J. Non-Cryst. Solids 1994,178(1):103-108
    [81]Y. Ding, A. Osaka, and Y. Miura. Surface crystallization of lead titanate from glass enhanced by ultrasonic treatment with suspension. J. Non-Cryst. Solids 1994,176(2): 200-207
    [82]Y. Ding, A. Osaka, and Y. Miura. Surface crystallization of lithium diborate on glass induced by ultrasonic treatment. Mater. Lett.1993,18(1):78-83
    [83]Y. Ding, A. Osaka, Y. Miura, H. Toratani, and Y. Matsuoka. 2nd-order optical nonlinearity of surface crystallized glass with lithium-niobate. J. Appl. Phys.1995, 77(9):2208-2210
    [84]Y. Ding, N. Masuda, Y. Miura, and A. Osaka. Preparation of polar oriented Sr2TiSi2O8 films by surface crystallization of glass and second harmonic generation. J. Non-Cryst. Solids 1996,203(1):88-95
    [85]Y. Ding, Y. Miura, and A. Osaka. Polar-oriented crystallization of fresnoite (ba2tisi2o8) on glass-surface due to ultrasonic treatment with suspensions. J. Am. Ceram. Soc.1994,77(11):2905-2910
    [86]Y. Ding, Y. Miura, and A. Osaka. Stimulated surface crystallization of β-barium borate on glass due to ultrasonic treatment and second harmonic generation. J. Mater. Res.1996,11(2):495-502
    [87]Y. Ding, Y. Miura, and H. Yamaji. Oriented surface crystallisation of lithium disilicate on glass and the effect of ultrasonic surface treatment. Phys. Chem. Glasses. 1998,39(2):338-343
    [88]Y. Ding, Y. Miura, S. Nakaoka, and T. Nanba. Oriented surface crystal-lization of lithium niobate on glass and second harmonic generation. J.Non- Cryst. Solids, 1999,259(1):132-138
    [89]G. von der Gonna, R. Keding, and C. Russel. Oriented growth of mullitefrom a glass melt using electrochemical nucleation. J. Non-Cryst. Solids 1999,243(1):109-115
    [90]K. Gerth, C. Russel, R. Keding, P. Schleevoigt, and H. Dunken. Orientedcrystallisation of lithium niobate containing glass ceramic in an electric field and determination of the crystallographic orientation by infrared spectroscopy. Phys. Chem. Glasses 1999,40(1):135-139
    [91]R. Keding, and C. Russel. Electrochemical nucleation for the preparation of oriented glass ceramics. J. Non-Cryst. Solid,1997,219(1):136-141
    [92]R. Keding, and C. Russel. Oriented Crystallization of Fresnoite in an electric field. Phys. Chem. Glasses 1996,100(9):1515-18
    [93]R. Keding, and C. Russel. Oriented glass-ceramics containing fresnoite prepared by electrochemical nucleation of a BaO-TiO2-SiO2-B2O3 melt. J.Non-Cryst. Solids 2000,278(1):7-12
    [94]R. Keding, and C. Russel. Oriented strontium fresnoite glass-ceramics prepared by electro-chemically induced nucleation. J. Mater. Sci.2004,39(6):1433-1435
    [95]R. Keding, and C. Russel. The structural interpretation of the nucleation of alkali-silicate melts during cooling. Glass Sci. Technol.2002,75(1):98-102
    [96]J.T. Alfors, M. C. Stinton, R. A. Mathews and A. Pabst. Seven new minerals from Eastern Fresno County, California. Am. Mineral.1965,50(1):314-321
    [97]P. B. Moore and S.J. Louisnathan. Unusual Structure of Ti in Fresnoite. Science 1967,156(3780):1361-1362
    [98]M. Kimura, Y. Fujino, T. Kawamura. New piezoelectric crystal-synthetic fresnoite (Ba2Si2TiO8). Appl. Phys. Lett.1976, 29(4):227-228
    [99]M. Kimura. Elastic and piezoelectric properties of Ba2Si2TiO8. J. Appl. Phys.1977, 48(7):2850-2856
    [100]S. Haussiihl, J. Eckstein, K. Recker and F. Wallrafen. Growth and physical properties of fresnoite Ba2TiSi2O8. J. Non-Crystal. Solids 1977,40(1):200-204
    [101]S. A. Markgraf, A. Halliyal, A. S. Bhalla, R. E. Newnham, C. T. Prewitt. X-ray structure refinement and pyroelectric investigation of fresnoite, Ba2TiSi2O8. Ferroelectrics 1985,62:17-26
    [102]S. A. Markgraf, C. A. Randall, A. S. Bhalla. Incommensurate phases in the system Ba2TiSi2O8- Ba2TiGe2O8. Ferroelectrics Lett.1990,11 (5):99-102.
    [103]S. A. Markgraf, C. A. Randall, A. S. Bhalla, et al. Incommensurate phase in Ba2Si2TiO8. Solid State Comm.1990,75 (10):821-824
    [104]T. Asahi, T. Osaka, J. Kobayashi, et al. Optical study on a phase transition of fresnoite Ba2Si2TiO8. Phys. Rev. B 2001,63(6):094104
    [105]M. A. Roberts, G. Sankar, J. M. Thomas, R. H. Jones, H. Du, J. Chen, W. Pang, and R. Xu. Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium. Nature 1996,381(3):401-404
    [106]H. B. Du, J. S. Chen, and W. Q. Pang. Synthesis and characterization of a novel layered titanium silicate JDF-L1. J. Mater. Chem.1996:6(6) 1827-1830
    [107]T. Hoche, W. Neumann, S. Esmaeilzadeh, R. Uecker, M. Lentzen, and C. Riissel. The crystal structure of Sr2TiSi2O8. J. Solid State Chem.2002,166(1):15-23
    [108]K. Ramesha and J. Gopalakrishnan. Chimie douce synthesis of a new non-linear optical material:Bal.5VOSi2O7. Solid State Sci.2001,3(1):113-119
    [109]M. L. Haeierdanz and U. Muller. A new access to alkali vanadates(Ⅳ,Ⅴ) crystal-structure of Rb2V3O8.Zeit. Anorg. Allgem. Chem.1992,613(1):63-66
    [110]G. Blasse. Fresnoite (Ba2TiSi2O8)-Luminescent compound with a long decay time. J. Inorg. Nucl. Chem.1979,41 (5):639-641
    [111]J. Gopalakrishnan, K. Ramesha, K. K. Rangan, et al. In search of inorganic nonlinear optical materials for second harmonic generation. J Solid State Chem. 1999,148 (1):75-80
    [112]Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu.Large second-order optical nonlinearities of fresnoite-type crystals in transparent surface-crystallized glasses. J. Appl. Phys.2004,95(16) 3503-3508
    [113]R. Y. Ting, A. Halliyal, A. S. Bhalla. Polar glass ceramics for sonar transducers. Appl. Phys. Lett.1984,44(9):852-54
    [114]R. Keding, and C. Russel. The structural interpretation of the nucleation of alkali-silicate melts during cooling. Glass Sci. Technol.2002,75(1):98-102
    [115]C. Russel. Oriented crystallization of glass. A review. J. Non-Cryst. Solids,1997, 219(2):212-218
    [116]Z. Y. Ding, Y. X. Zhao, W. Wang and Y. B. Huang. Relationship between the spatial distribution of crystallites and pyroelectric constant in polar Ba2TiSi2O8 glass ceramics. J. Non-Cryst. Solids 1989,112(1-2):258-262
    [117]W. M. Xie, Z. Y. Ding and P. L. Zhang. Pyroelectric properties of diphasic polar glass ceramics at low temperature. J. Amer. Ceram. Soc.1996,79(12):3336-3338
    [118]谢为民,丁振亚.提高极性微晶玻璃介电性能的研究.硅酸盐学报1996,24(5):119-122
    [119]段非,方承平,丁振亚BaO-SrO-TiO2-SiO2透明极性微晶玻璃的研究.硅酸盐学报1998,26(3),123-126
    [120]W.M. Xie, Z.Y. Ding. DTA Investigation of Crystallization behavior in SrO-TiO2-SiO2 glass-ceramics. J. Wuhan Univ. Technol.1995,10(2):11-16
    [121]F. Duan, C. P. Fang, Z. Y. Ding and H. Q. Zhu. Properties and application of a piezoelectric glass crystalline phase composite in the BaO-SrO-TiO2-SiO2 system. Mater. Lett.1998,34(2):184-187
    [122]J.P. Zhang, B.I. Lee., R. W. Schwartz and Z. Y. Ding. Grain oriented crystal-lization, piezoelectric, and pyroelectric properties of (BaxSr2-x)TiSi2O8 glass ceramics. J. Appl. Phys.1999,85 (12):8343-48
    [123]谢为民,方承平.极性微晶玻璃的恒温定向析晶.硅酸盐学报[J],1997,25(1):115-118
    [124]Jikang Yuan, Peizhen Fu,etc. A new nonlinear optical material Sr2TiSi2O8[J]. Progress in Crystal Growth and Characterization of Materials (2000) 103-106
    [125]易克俊,陈银兰,孙玉珍,刘继翔..平板玻璃耐水性检测方法的研究[J].武汉理工大学学报,1991,(04)Vo1.13,No.4,15-20.
    [126]向世英.IRRS在破璃化学稳定性研究方面的应用.玻璃与搪瓷[J].1984.12(5):38-41
    [127]苏永选,孙太海,王小如等.辉光放电质谱研究与应用新进展.、分析测试学报,1999.18(3):82-87
    [128]李香庭.电子探针显微分析.硅酸盐,1980.2(4):61-62
    [129]高名芩.玻璃风化及其防止法[M]..武汉:武汉工业大学出版社,1995(12):269
    [130]土桥正二(TSU Chihashi Masatsugi)玻璃表面物理化学(Physics and Chemistry of Glass Surface)[M]东京:讲谈社(Tokyo:Kodansha),1979.204-210.
    [131]Myuller R L. Zr Tek Fiz.1955;25:236,246;转引自Frischat G H. Ionic Diffusion in Oxide Glass. Ohio;Trans Tech Publications,Ohio;1975;98
    [132]Chung Lim, Day D E. J Am Ceram Soc,1977;60:198
    [133]Terai R, Hayami R. J Non-Cryst Solids.1975;18:217
    [134]Compaan K, Haven Y. Trans Faraday Soc.1956;52:786
    [135]Compaan K, Haven Y. Trans Faraday Soc.1958;54:1448
    [136]Haven Y, Verkerk B. Phys Chem Glasses.1956;6:38
    [137]Urnes S. Phys Chem Glasses.1967;8:125
    [138]Varshneya A K. J Am Ceram Soc.1974;57:37
    [139]王承遇,陶瑛编著.玻璃表面和表面处理[M].中国建材工业出版社.1993;201
    [140]BURT R C. Sodium by electrolysis through glass. J. Opt. Soc. Am.1925.11(1): 87-91
    [141]Proctor T M, Sutton P M. Static space-charge distributions with a single mobile charge carrier. J. Chem.Phys.,1959.30(1):212-220
    [142]Snow E H, Dumesnil M E. Space charge polarization in glass films. J. Appl. Phys., 1966.37:2123-2131
    [143]Frischat G H. Ionic Diffusion in Oxide Glasses.Ohio;Trans Tech Publications. 1975;128-181
    [144][前苏联]别索诺夫著,陈伟鑫等译.电工理论基础[M].北京:高等教育出版社,1986(12):214.
    [145]王承遇,陶瑛,硅酸盐玻璃的风化[J],硅酸盐学报,2003,Vo1.31,No.1,78-85.
    [146]I. Gutzow, A. Dobreva, C. Russel, B. Durschang, J. Non-Cryst. Solids 215 (1997) 313.
    [147]Jikang Yuan, Peizhen Fu, etc. A new nonlinear optical material Sr2TiSi208. Progress in Crystal Growth and Characterization of Materials (2000) 103-106
    [148]Thomas Hoche, Wolfgang Neumann, etc. The Crystal Structure of Sr2TiSi2O8. Journal of Solid State Chemistry 166,15-23 (2002)
    [149]神田博太郎.热分析.化学工业出版社,1982:312-325
    [150]Yasuo Ochi, Tomonori Meguro, Kazuyuki Kakegawa. Orientated crystallization of fresnoite glass-ceramics by using a thermal gradient. Journal of the European Ceramic Society 26 (2006) 627-630
    [151]Markgraf S A,Halliyal A,Bhalla A S,etal. X-ray structure refinement and pyroelectric investigation of fresnoite,Ba2TiSi2O8.Ferroelectrics,1985;62:20
    [152]张克从,王希敏.非线性光学晶体材料科学[M].科学出版社,1996:236-243
    [153]朱满康,王如志,孙诗兵等.BTS极性微晶玻璃恒温场晶粒定向生长机理.硅酸盐学报[J].Vo1.30,No.5(2002),660-663
    [154]D. Kashchiev, Philos. Mag.25 (1972) 459.
    [155]J.O. Isard, Philos. Mag.35 (1977) 817.
    [156]G.S. Henderson, M.E. Fleet. The Structure of Ti silicate-glasses by micro-Raman spectroscopy. Can. Miner.1995,33(2):399-408
    [157]G.S. Henderson, X. Liu, and M. E. Fleet. A Ti L-edge X-ray absorption study of Ti-silicate glasses. Phys. Chem. Miner.2002,29(1):32-42
    [158]M. Schneider, W. Richter, R. Keding, and C. Riissel. XPS investigations on coordination and valency of Ti in fresnoite glasses and glass ceramics. J.Non-Cryst. Solids 1998,226(2):273-280
    [159]A. M. Coats, N. Hirose, J. Marr, etal. Tetrahedral Ti4+ in the solid solution Ba2Ti1+xSi2-xO8 (0≤x≤0.14). J. Solid State Chem.1996,126 (1):105-107
    [160]F. Farges Coordination of Ti in crystalline and glassy fresnoites:A high-resolution XANES spectroscopy study at the Ti K-edge. J Non-Cryst Solids 1996,204 (1): 53-64
    [161]V. R. Mastelaro and R. Keding.X-ray absorption spectroscopy investigation of Ba2TiSi2O8+xSiO2 glasses.J.Non-Cryst. Solids 2001,282(1-2):181-187
    [162]T. Hoche, H.J. Kleebe, and-R. Brydson. Can fresnoite (Ba2TiSi2O8) incor-porate Ti3+ when crystallizing from highly reduced melts?. Philos. Mag. A 2001,81(3): 825-839
    [163]R. Keding, G. Carl, and C. Russel.Oriented crystallization of glass.Glass Sci. Technol.2003,76(1):87-92
    [164]G. L. Catchen, L. H. Menke, K. Jamil, M. Blaszkiewicz, and B. Scheetz.Anomalous asymmetry of the electric-field gradient at the titanium site in fresnoite ceramics. Abstracts of Papers of the American Chemical Society,1989,198(1):24-26
    [165]M. Weisz, G. Helsch, G.H. Frischat, K. Helming.Textures in glass ceramics of the system Li2O-Al2O3-SiO2. Glastech. Ber. Glass Sci. Tech.2000,73. (SC1):98-103
    [166]K. Engel, G.H. Frischat.Textured Li2O·2SiO2 glass ceramics.J.Non-Cryst. Solids 1996,196(2):339-342
    [167]周歧发,姚奎,张良莹,姚熹.择优生长微晶玻璃及其性能研究.科学通报.1994,39(16):1468-1470
    [168]浙江大学,武汉建筑材料工业学院,上工院等编.硅酸盐物理化学[M].第一版,北京,中国建筑工业出版社.
    [169]S. Uda, S. Koh, X. Huang, J. Crystal Growth 292 (2006) 1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700