用户名: 密码: 验证码:
外场诱导硅酸盐玻璃定向析晶及可控非线性光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去几十年中,非线性光学材料由于在光通信方面的应用引起了研究者极大的兴趣。其中,非线性光学玻璃由于其制备工序简易、成本低廉等优点受到越来越多的关注。玻璃块体内非线性晶粒微结构的排列可使玻璃显示出各向异性的物理性能。基于这一原理,利用外场诱导(热场或飞秒激光强光场)在玻璃内控制析出晶体的晶相、分布、大小以及取向等实现非线性光学性能可控,对于设计及制造新型多功能非线性光学材料有十分重要的指导意义。
     首先,本文在SrO-TiO2-SiO2玻璃中采取传统的热场处理进行诱导析晶,通过Maker条纹法及X射线衍射等方法来分析玻璃中Sr2TiSi208晶体的析出行为,并研究其二阶非线性光学性能。研究表明,经过热处理后,玻璃表面易析出具有择优取向的非线性Sr2TiSi2O8晶体,其极轴c轴与样品表面垂直。随着热处理温度的升高或处理时间延长,Maker条纹测试中在玻璃表面垂直方向得到二次谐波产生信号,表明玻璃由表面定向析晶开始向内部发展,且变为玻璃内部自由取向的体析晶。
     热处理析晶虽然可以得到微纳米定向析晶,但是由于其可控性差且耗时长等缺点,难以实现空间析晶可控,因此我们提出另一种处理方法,即飞秒激光辐射诱导法。由于在时间和空间上可对飞秒激光的能量累积进行有效控制,飞秒激光微加工透明材料当前受到研究者越来越多的关注。基于这种原理,利用飞秒激光诱导处理的精确性,在玻璃内部控制析出晶体的晶相、大小、形状、分布及其取向,诱导产生特殊的线性和非线性光学特性,对于制造新型多功能复合材料以及激光应用技术等研究领域具有十分重要的指导意义。因此,本论文介绍了高重复频率(如300kHz)的飞秒激光在硅酸盐玻璃三维空间内部成功诱导析出具有取向的铌酸锂(LiNbO3)晶体以及锶钛硅(Sr2TiSi2O8)晶体。
     在Li2O-Nb2O5-SiO2玻璃中,可以通过调节脉冲能量以及使飞秒激光的偏振方向与激光扫描方向平行在玻璃内部的激光线中得到微米/纳米级的非线性晶体颗粒。通过电子背散射衍射测试结果发现,在低脉冲能量且偏振方向与激光移动方向平行时,可得朝向与激光移动方向平行的定向非线性纳米晶。倍频测试结果显示,在宏观激光线中非线性纳米晶具有整体的择优取向性。另外,为了更好的研究纳米晶在激光线中的取向性,我们进行了一系列相干纳米晶的倍频测试,发现写入方向相反的激光线中非线性晶体的极轴取向性。通过X射线能谱分析及核子微探针等方法对激光线进行化学分析,并借助静态模式以及移动过程中辐照区域的温度场及化学势梯度分布情况,来分析晶体析出及定向生长的机理。
     在SrO-TiO2-SiO2玻璃系统中,我们分别在化学计量组分及非化学计量组分的玻璃样品中进行激光辐射诱导。前者中,发现改变激光辐射条件不仅可以得到晶体大小、分布的可控析出,同时也可控制玻璃中析出的晶相。倍频测试结果显示该样品激光线中非线性晶体(大尺寸或微/纳米晶)的极轴大致与激光移动方向平行。而在非化学剂量组分玻璃中,激光诱导后玻璃中可获得纯Sr2TiSi2O8晶体。同时采用电子背散射衍射测试方法,讨论了各种激光参数如写入方向和激光偏振对非对称性写入及定向析晶的影响,研究了玻璃中的超快不对称性写入及定向析晶现象。探讨了激光与材料的相互作用过程,为控制激光写入提供了有利的理论依据。研究表明,这种不对称性写入主要是由超快激光固有的脉冲前端倾斜的存在而造成。同时,这种脉冲前端倾斜受飞秒激光的偏振方向影响而产生不同的各向异性的光敏性,从而导致晶体析出及生长过程中晶体的取向性差异。
In the past few years, nonlinear optical materials have attracted much attention due to their application in optical telecommunications. Nonlinear optical glass-related materials have been widely studied according to their advantages. Glass ceramics having an aligned microstructure would exhibit anisotropy of physical properties. This dissertation mainly contributes to the control of micro/nano-crystallization in silicate glass in crystalline phase, distribution, size and orientation under additional field, particularly by femtosecond irradiation, to master the nonlinear optical properties of glass further. This work is significant for the design and production of novel nonlinear optical material with multi-function in future.
     In this thesis, thermal field was used to induce crystals in SrO-TiO2-SiO2glass. The crystallization behavior of glasses in different heat-treated condition and their second-order nonlinear optical properties have been analyzed by Maker fringes method and X-ray diffraction measurement, respectively. It showed that the oriented crystallization of nonlinear Sr2TiSi2O8crystals can be obtained in the surface layer by heat treatment. The polar axis of oriented crystals was perpendicular to the sample surface. Moreover, by applying higher temperature or prolonging the time duration of heat treatment, the maximum intensity of second harmonic generation shifting toward0°is likely due to the presence of randomly distributed crystals in glass and surface crystallization turns to be volume at this moment.
     However, since it is hard to control crystallization by heat treatment and time-consuming, femtosecond laser irradiation was proposed to realize the control of crystallization in glass owing to the accessible control of energy deposition in time and in space. It opens fantastic opportunities to manufacture novel multifunctional materials by manipulating the crystallization of nonlinear crystals embedded in glasses. Therefore, we achieved to precipitate preferential oriented LiNbO3and Sr2TiSiiO8crystals in glass with femtosecond laser irradiation at high repetition rate (typ.300kHz).
     In Li2O-Nb2O5-SiO2glass, we obtained micro-/nano-crystals in glass sample by varying pulse energy and polarization direction. Specifically, when applying low pulse energy and polarization parallel to laser writing direction, the oriented nano-crystallization has been obtained as shown by EBSD (Electron back-scattered diffraction). Second harmonic (SH) microscopy measurement illustrated preferred orientation of crystallization in laser lines. In order to understand the exact orientation of crystals with respect to the writing direction, a series of coherent SH measurement has been achieved in pairs of laser lines written in opposite orientation. EDS (Energy Dispersive Spectrometer) and nuclear micro-probe has been used to realize the chemical analysis in laser lines. The mechanism of oriented crystallization was discussed both in static mode and in dynamic mode through illustrating the distribution of different gradients.
     In SrO-TiO2-SiO2system, laser irradiation was applied both in stoichiometric and non-stoichiometric glasses. In the former case, not only the size and distribution can be controlled by varying laser parameters, but also the crystalline phase can be chosen in samples. SH microscopy measurement was used to characterize the nonlinear properties of glass and it implied that the polar axis of crystals is always along the writing direction. In non-stoichiometric glass, only pure Sr2TiSi2O8crystals were obtained. The asymmetric writing involving oriented crystallization has been studied by varying polarization and writing orientation. The orientational dependent is likely due to the combined action of oblique pulse front tilt affected by the polarization orientation plane leading to different anisotropic photosensitivity and its aftereffects to induce asymmetric distribution of thermal and chemical gradients.
引文
[1]. Aitchison, J. S.,Prohaska, J. D.,Vogel, E. M., The nonlinear optical properties of glass[J]. Met Mater Process 1997,8 (4),277-290.
    [2]. Qiu, J. R.,Si, J. H.,Hirao, K., Photoinduced stable second-harmonic generation in chalcogenide glasses[J]. Opt Lett 2001,26 (12),914-916.
    [3]. Gu, J. M.,Yan, Y. L.,Zhao, Y. S., et al., Controlled Synthesis of Bulk Polymer Nanocomposites with Tunable Second Order Nonlinear Optical Properties[J]. Adv Mater 2012,24 (17),2249-2253.
    [4]. McMillan, P. W., Glass Ceramics[M]. Academic Press:London,1974.
    [5]. Ding, Y.,Miura, Y.,Nakaoka, S., et al., Oriented surface crystallization of lithium niobate on glass and second harmonic generation[J]. JNon-Cryst Solids 1999,259,132-138.
    [6]. Ding, Y.,Miura, Y.Yamaji, H., Oriented surface crystallisation of lithium disilicate on glass and the effect of ultrasonic surface treatment. Phys Chem Glasses 1998,39 (6),338-343.
    [7]. Ashbee, K. H. G, Anisotropic glass-ceramics produced by extrusion through opposed dies[J]. J Mater Sci 1975,10 (6),911-917.
    [8]. Keding, R.,Russel, C., The mechanism of electrochemically induced nucleation in glass melts with the composition 2BaO center dot TiO2 center dot 2.75SiO(2). JNon-Cryst Solids 2005,55/(16-17),1441-1446.
    [9]. Toyohara, N.,Benino, Y.,Fujiwara, T., et al., Enhancement and depression in second-order optical nonlinearity of Ba2TiGe2O8 in crystallized glass prepared in a high magnetic field[J]. JAppl Phys 2006,99 (4).
    [10].Davis, K. M.,Miura, K.,Sugimoto, N., et al., Writing waveguides in glass with a femtosecond laser[J]. Opt Lett 1996,21 (21),1729-1731.
    [11].Glezer, E. N.,Milosavljevic, M.,Huang, L., et al., Three-dimensional optical storage inside transparent materials[J]. Opt Lett 1996,21 (24),2023-2025.
    [12].Glezer, E. N.,Mazur, E., Ultrafast-laser driven micro-explosions in transparent materials[J]. Appl Phys Lett 1997,71 (7),882-884.
    [13].Miura, K.,Qiu, J. R.,Inouye, H., et al., Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl Phys Lett 1997,71 (23),3329-3331.
    [14].Homoelle, D.,Wielandy, S.,Gaeta, A. L., et al., Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Opt Lett 1999,24 (18),1311-1313.
    [15].Sudrie, L.,Franco, M.,Prade, B., et al., Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Opt Commun 1999,171 (4-6),279-284.
    [16].Miura, K.,Qiu, J. R.,Mitsuyu, T., et al., Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses[J]. Opt Lett 2000,25 (6),408-410.
    [17].Streltsov, A. M.,Borrelli, N. F., Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Opt Lett 2001,26 (1),42-43.
    [18].Zeil, P.,Voigtlander, C.,Thomas, J., et al., Femtosecond laser-induced apodized Bragg grating waveguides[J]. Opt Lett 2013,38 (13),2354-2356.
    [19].Grenier, J. R.,Fernandes, L. A.,Herman, P. R., Femtosecond laser writing of optical edge filters in fused silica optical waveguides[J]. Opt Express 2013,21 (4),4493-4502.
    [20].Chen, H. Y.,Lv, T.,Zheng, A. S., et al., Directly writing embedded waveguides in lithium niobate by a femtosecond laser[J]. Optik 2013,124 (3),195-197.
    [21].Bricchi, E.,Mills, J. D.,Kazansky, P. G., et al., Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Opt Lett 2002,27 (24),2200-2202.
    [22].Burakov, I. M.,Bulgakova, N. M.,Stoian, R., et al., Spatial distribution of refractive' index variations induced in bulk fused silica by single ultrashort and short laser pulses[J]. J Appl Phys 2007,101(A).
    [23].Rajeev, P. P.,Gertsvolf, M.,Bhardwaj, V. R., et al., Memory and nanostructure formation in the intense field ionization of fused silica[J]. Springer Series Chem 2007,88,680-682.
    [24].Eaton, S. M.,Zhang, H. B.,Herman, P. R., Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Opt Express 2005,13 (12), 4708-4716.
    [25].Itoh, K.,Watanabe, W.,Nolte, S., et al., Ultrafast processes for bulk modification of transparent materials[J]. Mrs Bull 2006,31 (8),620-625.
    [26].Shimizu, M.,Sakakura, M.,Ohnishi, M., et al., Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses[J]. J Appl Phys 2010,108 (7).
    [27].Sakakura, M.,Shimizu, M.,Shimotsuma, Y., et al., Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses[J]. Appl Phys Lett 2008,93 (23).
    [28]. Yu, B.,Chen, B.,Yang, X. Y., et al., Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses[J]. J Opt Soc Am B 2004,21 (1),83-87.
    [29].Zhu, B.,Dai, Y.,Ma, H. L., et al., Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses[J]. Opt Express 2007,75 (10), 6069-6074.
    [30].Dai, Y.,Zhu, B.,Qiu, J. R., et al., Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser[J]. Appl Phys Lett 2007,90 (18).
    [31].Yonesaki, Y.Miura, K.,Araki, R., et al., Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser[J]. J Non-Cryst Solids 2005,557 (10-11),885-892.
    [32].Fan, C. X.,Poumellec, B.,Lancry, M., et al., Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation[J]. Opt Lett 2012,37 (14),2955-2957.
    [33].Dai, Y.,Ma, H. L.,Lu, B., et al., Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass[J]. Opt Express 2008,75(6),3912-3917.
    [34].Dai, Y.,Zhu, B.,Qiu, J. R., et al., Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser[J]. Chem Phys Lett 2007,443 (4-6), 253-257.
    [35].Lin, G.,Luo, F. F.,He, F.,et al., Space-selective precipitation of Ge crystalline patterns in glasses by femtosecond laser irradiation[J]. Opt Lett 2011,36 (2),262-264.
    [36].Stone, A.,Jain, H.,Dierolf, V., et al., Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating[J]. J Opt Soc Am B 2013,50(5),1234-1240.
    [37].Stone, A.,Sakakura, M.,Shimotsuma, Y., et al., Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers[J]. J Non-Cryst Solids 2010,356 (52-54),3059-3065.
    [38].Stone, A.,Sakakura, M.,Shimotsuma, Y., et al., Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation[J]. Opt Express 2009,17 (25),23284-23289.
    [39].Franken, P. A.,Hill, A. E.,Peters, C. W., et al., Generation of Optical Harmonics[J]. Physical Review Letters 1961,7 (4),118-119.
    [40].Bloembergen, N., Surface nonlinear optics:a historical overview[J]. Appl Phys B-Lasers O 1999,68 (3),289-293.
    [41].Bloembergen, N.,Pershan, P. S., Light Waves at the Boundary of Nonlinear Media[J]. Physical Review 1962,128 (2),606-622.
    [42].Butcher P.N., C. D., The elements of nonlinear optics[M]. Cambridge University Press: Cambridge,1990.
    [43].Kleinman, D. A., Nonlinear Dielectric Polarization in Optical Media[J]. Physical Review 1962,126(6),1977-1979.
    [44].Guenther R., Modern Optics[M]. John wiley and sons:New york,1990.
    [45].Jerphagnon J., K. K. S., Maker Fringes:A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals[J]. JAppl Phys 1970,41 (4),1667-1681.
    [46].Maker, P. D.,Terhune, R. W.,Nisenoff, M., et al., Effects of Dispersion and Focusing on the Production of Optical Harmonics[J]. Physical Review Letters 1962,8(1),21-22.
    [47].Giordmaine, J. A., Mixing of Light Beams in Crystals[J]. Physical Review Letters 1962,8 (1), 19-20.
    [48].Armstrong, J. A.,Bloembergen, N.,Ducuing, J., et al., Interactions between Light Waves in a Nonlinear Dielectric[J]. Physical Review 1962,127(6),1918-1939.
    [49].Myers R. A., M. N., Brueck S. R. J., Large second-order nonlinearity in poled fused silica[J]. Optics Letters 1991,16(22),1732-1734.
    [50].Kazansky, P. G.,Russel, P. S., Thermally Poled Glass-Frozen-in Electric-Field or Oriented Dipoles[J]. Opt Commun 1994,110(5-6),611-614.
    [51].Mukherjee, N.,Myers, R. A.,Brueck, S. R. J., Dynamics of 2nd-Harmonic Generation in Fused-Silica[J]. J Opt Soc Am B 1994,11 (4),665-669.
    [52]. Le Calvez, A., Freysz, E., Ducasse, A., Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica[J]. Optics Letter 1997,22 (20), 1547-1549.
    [53].Margulis, W.,Laurell, F.,Lesche, B., Imaging the Nonlinear Grating in Frequency-Doubling Fibers[J]. Nature 1995,378 (6558),699-701.
    [54].Quiquempois, Y.,Kudlinski, A.,Martinelli, G., Zero-potential condition in thermally poled silica samples:evidence of a negative electric field outside the depletion layer[J]. J Opt Soc Am B 2005,22 (3),598-604.
    [55].Qiu, M.,Egawa, S.,Horimoto, T., et al., The thickness evolution of the second-order nonlinear layer in thermally poled fused silica[J]. Opt Commun 2001,189 (1-3),161-166.
    [56].Kazansky, P. G., Dong, L., Russell, P. S. J., High second-order nonlinearities in poled silicate fibers[J]. Optics Letter 1994,19,701-703.
    [57].Takebe, H., Kazansky, P. G., Russell, P. S. J., Morinaga, K., Effect of poling conditions on second-harmonic generation in fused silica[J]. Optics Letter 1996,21,468-470.
    [58].Nasu, H.,Okamoto, H.,Kurachi, K., et al.,2nd-Harmonic Generation from Electrically Poled Sio2 Glasses-Effects of Oh Concentration, Defects, and Poling Condition[J]s. J Opt Soc Am B 1995,12 (4),644-649.
    [59].Tanaka, K., Narazaki, A., Hirao, K., Large optical second-order nonlinearity of poled WO3 -TeO2 glass[J]. Optics Letter 2000,25,251-253.
    [60].Dussauze, M.,Zheng, X. L.,Rodriguez, V., et al., Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses[J]. Opt Mater Express 2012,2(1), 45-54.
    [61].Jing, R.,Guang, Y.,Huidan, Z., et al., Second-harmonic generation in thermally poled chalcohalide glass[J]. Opt Lett 2006,31 (23),3492-3494.
    [62].Dussauze, M.,Malakho, A.,Fargin, E., et al., Large second order optical nonlinearity in thermally poled amorphous niobium borophosphate films[J]. JAppl Phys 2006,100 (1).
    [63].Dussauze, M.,Fargin, E.,Lahaye, M., et al., Large second-harmonic generation of thermally poled sodium borophosphate glasses[J]. Opt Express 2005,13 (11),4064-4069.
    [64].Guignard, M.,Nazabal, V.,Troles, J., et al, Second-harmonic generation of thermally poled chalcogenide glass[J]. Opt Express 2005,13 (3),789-795.
    [65].Narazaki, A.,Tanaka, K.,Hirao, K., Surface structure and second-order nonlinear optical properties of thermally poled WO3-TeO2 glasses doped with Na+[J]. J Opt Soc Am B 2002, 19(1),54-62.
    [66].Liu, Q. M.,Zhao, X. J.,Tanaka, K., et al., Second-harmonic generation in Ge-As-S glasses by electron beam irradiation and analysis of the poling mechanism[J]. Opt Commun 2001,198 (1-3),187-192.
    [67].Liu, Q. M.,Gan, F. X.,Zhao, X. J., et al., Second-harmonic generation in Ge20As25S55 glass irradiated by an electron beam[J]. Opt Lett 2001,26 (17),1347-1349.
    [68].Quiquempois, Y.,Martinelli, G..Dutherage, P., et al., Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses[J]. Opt Commun 2000,776 (4-6),479-487.
    [69].Ye, X. W.,Liu, L. Y.,Xu, L., et al., Second-order nonlinearities of lead borate glasses poled with different electrodes[J]. JNon-Cryst Solids 2008,354 (12-13),1250-1255.
    [70].Xi, Y. G.,Xu, Z. L.,Hou, Z. J., et al., Second-order optical nonlinearity in bulk PbO/B2O3 glass[J]. Opt Commun 2002,210 (3-6),367-373.
    [71].Xu, Z. L.,Liu, L. Y.,Fei, Y, et al., Nonuniform bulk second-order optical nonlinearity in PbO/B2O3 glass[J]. Appl Phys Lett 2000,77 (1),70-72.
    [72].Bernardo, E.,Scarinci, G.,Hreglich, S., Development and mechanical characterization of A12O3 platelet-reinforced glass matrix composites obtained from glasses coming from dismantled cathode ray tubes[J]. JEur Ceram Soc 2005,25 (9),1541-1550.
    [73].Holand, W.,Rheinberger, V.,Apel, E., et al., Principles and phenomena of bioengineering with glass-ceramics for dental restoration[J]. JEur Ceram Soc 2007,27 (2-3),1521-1526.
    [74].Komatsu, T.,Tawarayama, H.,Mohri, H., et al., Properties and crystallization behaviors of TeO2-LiNbO3 glasses[J]. JNon-Cryst Solids 1991,755(2-3),105-113.
    [75].Takahashi, Y.,Saitoh, K.,Benino, Y., et al., Formation of Ba2TiGe2O8 phase in BaO-TiO2-GeO2 glasses and their optical non-linearities[J]. J Non-Cryst Solids 2004,345, 412-416.
    [76].Maruyama, N.,Honma, T.,Komatsu, T., Morphology design of highly oriented nonlinear optical Ba2TiSi2O8 crystals at the glass surface by crystallization in reduced atmosphere[J]. Opt Mater 2009,32 (1),35-41.
    [77]. Wang, H. C.,Liu, Q. M.,Cheng, J. S., Field-assisted Isothermal Oriented Crystallization of SrO-TiO2-SiO2 Polar Glass-Ceramics[J]. Adv Mat Res 2009,66,49-52.
    [78].Anspach, O.,Keding, R.,Russel, C., Oriented lithium disilicate glass-ceramics prepared by electrochemically induced nucleation[J]. JNon-Cryst Solids 2005,351 (8-9),656-662.
    [79].Mortier, M.,Monteville, A.,Patriarche, G., Devitrification of fluorozirconate glasses:from nucleation to spinodal decomposition[J]. JNon-Cryst Solids 2001,284 (1-3),85-90.
    [80].Beall, G. H., Duke, D. A., Transparent glass-ceramics[J]. J Mater Sci 1969,4,340-352.
    [81].Rudnick, J.,Stern, E. A., Second-Harmonic Radiation from Metal Surfaces[J]. Physical Review B 1971,4 (12),4274-4290.
    [82].Bachelier, G.,Russier-Antoine, I.,Benichou, E., et al., Multipolar second-harmonic generation in noble metal nanoparticles[J]. JOpt Soc Am B 2008,25 (6),955-960.
    [83].Nappa, J.,Revillod, G.,Russier-Antoine, I., et al., Electric dipole origin of the second harmonic generation of small metallic particles[J]. Physical Review B 2005,71 (16).
    [84].Canfield, B. K.,Kujala, S.,Kauranen, M., et al., Remarkable polarization sensitivity of gold nanoparticle arrays[J]. Appl Phys Lett 2005,86 (18).
    [85]. Jain, H., Transparent ferroelectric glass-ceramics[J]. Ferroelectrics 2004,306,111-127.
    [86].Zarzycki J., Glass and the vitreous state[M]. Cambridge University Press:Cambridge,1991.
    [87].Fokin, V. M.,Zanotto, E. D.,Yuritsyn, N. S., et al., Homogeneous crystal nucleation in silicate glasses:A 40 years perspective[J]. JNon-Cryst Solids 2006,352 (26-27),2681-2714.
    [88].Gibbs J.W., Vol. I, Thermodynamics. In Collected works[M], Yale University Press:New Haven,1948.
    [89].Berthoud A., Theorie de la formation des faces d'un crystal[J]. Journal de Chimique Physique 1912,10,624-635.
    [90].Kirkpatrick R.J., crystal growth from the melt:a review[J]. Am. Mineral,1975,60,798-814.
    [91].Cahn, J., Charle, R., The initial stages of phase separation in glasses[J]. Physical Chemistry of Glasses 1965,6,181-191.
    [92].Uhlmann, D., Kolbeck, A., Phase separation and the revolution in concepts of glass structure[J]. Physical Chemsitry of Glasses 1976,17,176-158.
    [93].Haller, W., Rearrangement kinetics of the liquid—liquid immiscible microphases in alkali borosilicate melts. Journal of Chemical Physics 1965,42,686-693.
    [94].Vigouroux, H. Etude de vitroceramiques optiques pour le doublement de frequence[D]. L' Universite Bordeaux 1,2012.
    [95].Vigouroux, H.,Fargin, E.,Fargues, A., et al., Crystallization and Second Harmonic Generation of Lithium Niobium Silicate Glass Ceramics[J]. J Am Ceram Soc 2011,94 (7), 2080-2086.
    [96].Atkinson, D. I. H.,McMillan, P. W., Glass-ceramics with random and oriented microstructures[J].J Mater Sci 1976,11 (6),994-1002.
    [97].Atkinson, D. I. H.,McMillan, P. W., Glass-ceramics with random and oriented microstructures[J]. J Mater Sci 1977,12 (3),443-450.
    [98].Russel, C., Oriented crystallization of glass. A review[J]. J Non-Cryst Solids 1997,219, 212-218.
    [99].Ding, Y.,Miura, Y.,Nakaoka, S., et al., Oriented surface crystallization of lithium niobate on glass and second harmonic generation[J]. J Non-Cryst Solids 1999,259 (1-3),132-138.
    [100]. Gardopee, G. J.,Newnham, R. E.,Bhalla, A. S., Pyroelectric Li2Si2O5 glass-ceramics[J]. Ferroelectrics 1981,55(1),155-163.
    [101]. Zhang, J. P.Lee, B. I.,Schwartz, R. W., et al., Grain oriented crystallization, piezoelectric, and pyroelectric properties of (BaxSr2-x)TiSi2O8 glass ceramics[J]. J Appl Phys 1999,85 (12),8343-8348.
    [102]. Ding, Y.,Masuda, N.,Miura, Y., et al., Preparation of polar oriented Sr2TiSi2O8 films by surface crystallization of glass and second harmonic generation[J]. J Non-Cryst Solids 1996, 203,88-95.
    [103]. Ding, Y.,Miura, Y.,Osaka, A., Stimulated surface crystallization of beta-barium borate on glass due to ultrasonic treatment and second harmonic generation[J]. J Mater Res 1996, 11 (2),495-502.
    [104]. Ding, Y.,Osaka, A.,Miura, Y., et al.,2nd-Order Optical Nonlinearity of Surface Crystallized Glass with Lithium-Niobate[J]. JAppl Phys 1995,77 (5),2208-2210.
    [105]. Ding, Y.,Miura, Y.Osaka, A., Polar-Oriented Crystallization of Fresnoite (Ba2TiSi2O8) on Glass-Surface Due to Ultrasonic Treatment with Suspensions[J]. J Am Ceram Soc 1994, 77 (11),2905-2910.
    [106]. Ding, Y.,Osaka, A.,Miura, Y., Stimulated Surface Crystallization of Lithium-Niobate on Tellurite Glass Due to Ultrasonic Treatment[J]. JNon-Cryst Solids 1994,178,103-108.
    [107]. Ding, Y.,Osaka, A.,Miura, Y., Surface Crystallization of Lead Titanate from Glass Enhanced by Ultrasonic Treatment with Suspension[J]. J Non-Cryst Solids 1994,776 (2-3), 200-207.
    [108]. Ding, Y.,Osaka, A.,Miura, Y., Enhanced Surface Crystallization of Beta-Barium Borate on Glass Due to Ultrasonic Treatment[J]. J Am Ceram Soc 1994,77 (3),749-752.
    [109]. Kosaka, S.,Takahashi, Y.,Benino, Y., et al., Crystallization of langasite-type phases in gallium germanate glasses and optical properties of crystallized glasses[J]. Opt Mater 2006, 25(10),1129-1135.
    [110]. Keding, R.,Russel, C., Oriented glass-ceramics containing fresnoite prepared by electrochemical nucleation of a BaO-TiO2-SiO2-B2O3 melt[J]. J Non-Cryst Solids 2000, 278 (1-3),7-12.
    [111]. Keding, R.,Russel, C., Electrochemical nucleation for the preparation of oriented glass ceramics[J]. J Non-Cryst Solids 1997,219,136-141.
    [112]. Shyu, J. J.,Chen, Y. H., Effect of electric field on the crystallization of lead titanate in a glass[J]. J Mater Sci 2004,39 (1),159-163.
    [113]. Pernice, P.,Aronne, A.,Sigaev, V. N., et al., Crystallization behavior of potassium niobium silicate glasses[J]. J Am Ceram Soc 1999,82 (12),3447-3452.
    [114]. Pernice, P.,Esposito, S.,Aronne, A., et al., Structure and crystallization behavior of glasses in the BaO-B2O3-A12O3 system[J]. J Non-Cryst Solids 1999,258 (1-3),1-10.
    [115]. Toyohara, N.,Benino, Y.,Fujiwara, T., et al., Improvement of second-order optical nonlinearity in transparent Ba2TiGe2O8 crystallized glasses prepared in high magnetic field[J]. Aicam 2005 2006,11-12,193-196.
    [116]. Fujiwara, T., Takahashi, M., Ikushima, A.J., Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation[J]. Appl Phys Lett 1997,71, 1032-1034.
    [117]. Matsumoto, S.,Fujiwara, T.,Ohama, M., et al., Crystallization of GeO2-SiO2 glass by poling with ArF-laser excitation[J]. Opt Lett 1999,24 (20),1404-1406.
    [118]. Tanaka, H.,Honma, T.,Benino, Y, et al., YAG laser-induced beta-BaB2O4 crystalline dot formation in Sm2O3-BaO-B2O3 glasses[J]. J Phys Chem Solids 2003,64 (7), 1179-1184.
    [119]. Sugita, H.,Honma, T.,Benino, Y, et al., Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization[J]. Solid State Commun 2007,143 (6-7),280-284.
    [120]. Sato, M.,Honma, T.,Benino, Y., et al., Line patterning of (Sr,Ba)Nb2O6 crystals in borate glasses by transition metal atom heat processing[J]. J Solid State Chem 2007,180 (9), 2541-2549.
    [121]. Oikawa, T.,Honma, T.,Komatsu, T., Laser-induced crystal growth of nonlinear optical Ba3Ti3O6(BO3)(2) on glass surface[J]. Cryst Res Technol 2008,43 (12),1253-1257.
    [122]. Komatsu, T.,Koshiba, K.,Honma, T., Preferential growth orientation of laser-patterned LiNbO3 crystals in lithium niobium silicate glass[J]. J Solid State Chem 2011,184 (2), 411-418.
    [123]. Kioka, K.,Honma, T.,Komatsu, T., Fabrication of (K, Na)NbO3 glass-ceramics and crystal line patterning on glass surface[J]. Opt Mater 2011,33 (8),1203-1209.
    [124]. Ihara, R.,Honma, T.,Benino, Y, et al., Writing of two-dimensional crystal curved lines at the surface of Sm2O3-Bi2O3-B2O3 glass by samarium atom heat processing[J]. Solid State Commun 2005,136 (5),273-277.
    [125]. Honma, T.,Komatsu, T., Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning[J]. Opt Express 2010,18 (8),8019-8024.
    [126]. Honma, T.,Ihara, R.,Benino, Y, et al., Writing of crystal line patterns in glass by laser irradiation[J]. JNon-Cryst Solids 2008,354 (2-9),468-471.
    [127]. Honma, T.,Benino, Y.Fujiwara, T., et al., Spatially selected crystallization in glass by YAG laser irradiation[J]. JNon-Cryst Solids 2004,345,127-131.
    [128]. Hirose, K.,Honma, T.,Benino, Y., et al., Glass-ceramics with LiFePO4 crystals and crystal line patterning in glass by YAG laser irradiation[J]. Solid State Ionics 2007,178 (11-12),801-807.
    [129]. Honma, T.,Benino, Y.,Fujiwara, T., et al., Line patterning with large refractive index changes in the deep inside of glass by nanosecond pulsed YAG laser irradiation[J]. Solid State Commun 2005,755 (3),193-196.
    [130]. Ashcroft, N. W., Mermin, N.D.,, Solid state physics[M]. Holt Rinehart and Winstom: New York,1976.
    [131]. Brabec, T.,Krausz, F., Intense few-cycle laser fields:Frontiers of nonlinear optics[J]. RevMod Phys 2000,72 (2),545-591.
    [132]. Schaffer, C. B.,Brodeur, A.,Mazur, E., Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Meas Sci Technol 2001,72(11),1784-1794.
    [133]. Chan, J. W.,Huser, T. R.,Risbud, S. H., et al., Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses[J]. Appl Phys a-Mater 2003,76 (3),367-372.
    [134]. Chan, J. W.,Huser, T.,Risbud, S., et al., Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Opt Lett 2001,26(21),1726-1728.
    [135]. Poumellec, B.,Lancry, M.,Chahid-Erraji, A., et al., Modification thresholds in femtosecond laser processing of pure silica:review of dependencies on laser parameters [Invited][J]. Opt Mater Express 2011,7 (4),766-782.
    [136]. Lancry, M.,Poumellec, B.,Chahid-Erraji, A., et al., Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses[J]. Opt Mater Express 2011,1 (4),711-723.
    [137]. Bricchi, E.,Klappauf, B. G.,Kazansky, P. G., Form birefringence and negative index change created by femtosecond direct writing in transparent materials[J]. Opt Lett 2004,29 (1),119-121.
    [138]. Shimotsuma, Y.,Kazansky, P. G.,Qiu, J. R., et al., Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters 2003,91 (24).
    [139]. Canning, J.,Lancry, M.,Cook, K., et al., Anatomy of a femtosecond laser processed silica waveguide [Invited][J]. Opt Mater Express 2011,1 (5),998-1008.
    [140]. Bhardwaj, V. R.,Corkum, P. B.,Rayner, D. M., et al., Stress in femtosecond-laser-written waveguides in fused silica[J]. Opt Lett 2004,29 (12),1312-1314.
    [141]. Poumellec, B.,Sudrie, L.,Franco, M., et al., Femtosecond laser irradiation stress induced in pure silica[J]. Opt Express 2003,11 (9),1070-1079.
    [142]. Zhong, M. J.,Du, Y. Y.,Ma, H. L., et al., Crystalline phase distribution of Dy-2(MoO4)(3) in glass induced by 250 kHz femtosecond laser irradiation[J]. Opt Mater Express 2012,2 (8), 1156-1164.
    [143]. Shimizu, M.,Sakakura, M.,Kanehira, S., et al., Formation mechanism of element distribution in glass under femtosecond laser irradiation[J]. Opt Lett 2011,36 (11), 2161-2163.
    [144]. Miura, K., Shimizu, M., Salakura, M., Kurita, T., Shimotsuma, Y, Hirao, K. In Formation Mechanism and Applications of Laser Induced Elemental Distribution in Glasse[C]s, PIERS Proceedings, Moscow, Russia, August 19-23; Moscow, Russia,2012.
    [145]. Fan, C. X. Contribution to nano or micro crystallization induction in silica-based glasses by femtosecond laser irradiation[D]. Universite de Paris Sud 11 & East China University of Science and Technology 2012.
    [146]. Liu, Q. M., He, X., Sui, X.T., Lu, B.Q., Zhao, X.J., Thermally indeced nanocrystallization in SrO-TiO2-SiO2 glasses tracking by the Maker fringe patterns analysis[J]. J Optoelectron Adv M 2012,14,905-909.
    [147]. Khodja, H.,Berthoumieux, E.,Daudin, L., et al., The Pierre Sue Laboratory nuclear microprobe as a multi-disciplinary analysis tool[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 2001,181 (1-4), 83-86.
    [148]. Rodriguez, V.,Talaga, D.,Adamietz, F., et al., Hyper-Raman macro-and micro-spectroscopy in materials:Towards high quality signals and good spatial resolution[J]. Chem Phys Lett 2006,431 (1-3),190-194.
    [149]. Baudin, T., Analyse EBSD-Principe et cartographies d' orientation. In Essais mitallographiques des metaux et alliages[C], Techniques de l'ingenieur:Paris,2013.
    [150]. Schwartz, A. J., Kumar, M., Adams, B.L., Field, D.P, Electron backscatter diffraction in materials science[M], Springer:New York,2009.
    [151]. Wang, H. C.,Liu, Q. M.,Cheng, J. S., Field-assisted Isothermal Oriented Crystallization of SrO-TiO(2)-SiO(2) Polar Glass-Ceramics[J]. Adv Mat Res 2009,66,49-52.
    [152]. Moore, P. B., Louisnathan, John, Fresnoite:Unusal Titanium Coordination[J]. Science 1967,156,1361-1362.
    [153]. Takahashi, Y.,Benino, Y.Fujiwara, T., et al., Formation mechanism of ferroelastic Ba2TiGe2O8 and second order optical non-linearity in transparent crystallized glasses[J]. J Non-Cryst Solids 2003,316 (2-3),320-330.
    [154]. Hoche, T.,Neumann, W.,Esmaeilzadeh, S., et al., The crystal structure of Sr2TiSi2O8[J]. J Solid State Chem 2002,166(1),15-23.
    [155]. Takahashi, Y.,Benino, Y.,Fujiwara, T., et al., Large second-order optical nonlinearities of fresnoite-type crystals in transparent surface-crystallized glasses[J]. JAppl Phys 2004,95 (7), 3503-3508.
    [156]. Gu, S. X.,Hu, H. P.,Guo, H. T., et al., Second-harmonic generation in transparent surface crystallized GeS2-Ga2S3-CdS chalcogenide glasses[J]. Opt Commun 2008,281 (9), 2651-2655.
    [157]. Malakho, A.,Dussauze, M.,Fargin, E., et al., Effect of sodium to barium substitution on the space charge implementation in thermally poled glasses for nonlinear optical applications[J]. J Solid State Chem 2009,182 (5),1156-1163.
    [158]. Schaufele, R. F., Weber, M. J., Raman scattering by lithium niobate[J]. Physics Review 1966,152,705-708.
    [159]. Awada, C.,Jonin, C.,Kessi, F., et al., Polarized second harmonic response of square, hexagonal and random arrays of gold metallic nanocylinders[J]. Opt Mater 2011,33 (9), 1440-1444.
    [160]. Awada, C.,Kessi, F.,Jonin, C., et al., On- and off-axis second harmonic generation from an array of gold metallic nanocylinders[J]. JAppl Phys 2011,110 (2).
    [161]. Kurtz, S. K., Perry, T. T., A powder technique for the evaluation of nonliear optical materials[J]. JAppl Phys 1968,39,3798-3813.
    [162]. Scheel, H. J., Capper, P., Crystal Growth Technology:from fundamentals and simulation to large-scale production[M]. Wiley-VCH:2008.
    [163]. Gutzow, I.,Dobreva, A.,Russel, C., et al., Kinetics of vitrification under hydrostatic pressure and under tangential stress[J]. JNon-Cryst Solids 1997,215 (2-3),313-319.
    [164]. Yonesaki, Y.,Miura, K.,Araki, R., et al, Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser[J]. J Non-Cryst Solids 2005,351 (10-11),885-892.
    [165]. Yang, W. J.,Kazansky, P. G.,Svirko, Y. P., Non-reciprocal ultrafast laser writing[J]. Nat Photonics 2008,2 (2),99-104.
    [166]. Halliyal, A.,Safari, A.,Bhalla, A. S., et al., Grain-Oriented Glass-Ceramics for Piezoelectric Devices[J]. J Am Ceram Soc 1984,67 (5),331-335.
    [167]. Yang, P.,Burns, G. R.,Guo, J. P., et al., Femtosecond laser-pulse-induced birefringence in optically isotropic glass[J]. JAppl Phys 2004,95 (10),5280-5283.
    [168]. Farrow, L. A.,Vogel, E. M., Raman spectra of phosphate and silicate glasses doped with the cations Ti, Nb and Bi[J]. J Non-Cryst Solids 1992,143 (0),59-64.
    [169]. Gabelica-Robert, M.,Tarte, P., Vibrational spectrum of fresnoite (Ba2TiOSi2O7) and isostructural compounds[J], Phys Chem Miner 1981,7 (1),26-30.
    [170]. Serbena, F. C.,Zanotto, E. D., Internal residual stresses in glass-ceramics:A review[J]. J Non-Cryst Solids 2012,358 (6-7),975-984.
    [171]. Le Pare, R.,Levelut, C.,Pelous, J., et al., Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour [J]. J Phys-Condens Mat 2009,21 (7).
    [172]. Davidge, R. W.,Green, T. J., The strength of two-phase ceramic/glass materials[J]. J Mater Sci 1968,5 (6),629-634.
    [173]. Miura, K., Shimizu, M., Salakura, M., Kurita, T., Shimotsuma, Y., Hirao, K., Formation Mechanism and Applications of Laser Induced Elemental Distribution in Glasses[J]. PIERS Proceedings 2012.
    [174]. Petrov, P. K.,Jvanov, Z. G.,Gevorgyan, S. S., X-ray study of SrTiO3 thin films in multilayer structures[J]. Materials Science and Engineering:A 2000,288 (2),231-234.
    [175]. Hoche, T.,Russel, C.,Neumann, W., Incommensurate modulations in Ba2TiSi2O8, Sr2TiSi2O8, and Ba2TiGe2O8[J]. Solid State Commun 1999,110 (12),651-656.
    [176]. Halliyal, A.,Bhalla, A. S.,Cross, L. E., et al, Dielectric, piezoelectric and pyroelectric properties of Sr2TiSi2O8 polar glass-ceramic:A new polar material[J]. J Mater Sci 1985,20 (10),3745-3749.
    [177]. Shimizu, M.,Sakakura, M.,Nishi, M., et al., Control of element distribution in glass with femtosecond laser [J]. Laser-Based Micro- and Nanopackaging and Assembly Vi 2012,8244.
    [178]. Vigouroux, H.,Fargin, E.,Gomez, S., et al., Synthesis and Multiscale Evaluation of LiNbO3-Containing Silicate Glass-Ceramics with Efficient Isotropic SHG Response[J]. Adv Funct Mater 2012,22 (19),3985-3993.
    [179]. Shimizu, M.,Sakakura, M.,Ohnishi, M., et al., Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates[J]. Opt Express 2012,20 (2),934-940.
    [180]. Eaton, S.,Zhang, H.,Herman, P., et al., Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Opt. Express 2005,13 (12), 4708-4716.
    [181]. Eaton, S. M.,Zhang, H.,Ng, M. L., et al., Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides[J]. Opt. Express 2008,16(13),9443-9458.
    [182]. Qiu, J. R., Femtosecond laser-induced microstructures in glasses and applications in micro-optics[J]. Chem Rec 2004,4 (1),50-58.
    [183]. Takahashi, Y.,Yamazaki, Y.,Jhara, R., et al., Parasitic amorphous on single-domain crystal:Structural observations of silicate glass-ceramics[J].Sci Rep-Uk 2013,3.
    [184]. Zhong, M.,Du, Y.,Ma, H., et al., Crystalline phase distribution of Dy2(MoO4)3 in glass induced by 250 kHz femtosecond laser irradiation[J]. Opt. Mater. Express 2012,2 (8), 1156-1164.
    [185]. Maury, N.,Cambier, F.,Gonon, M., Bulk crystallisation of (001) oriented fresnoite Sr2TiSi2O8 in glass-ceramics of the Sr-Ti-Si-K-B-O system[J]. J Non-Cryst Solids 2011, 357(3),1079-1084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700