用户名: 密码: 验证码:
铋基极性陶瓷中的非铁电性起源压电效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料是一类可实现机械能和电能相互转换的功能材料,在滤波器、驱动器、谐振器、传感器、蜂鸣器和超声换能器等各种电子元器件中有着广泛地应用。常见的压电材料主要为压电单晶和多晶(陶瓷)材料。在压电材料中,压电陶瓷由于制备简单,生产成本较低,在实际应用中占据着十分重要的地位。传统的压电陶瓷也称为铁电陶瓷。普通陶瓷通常是各向同性的,结构上具有球面对称的特征,故不具有压电效应。但对含有铁电相的陶瓷而言,通过施加直流电场使铁电陶瓷的自发极化方向在电场作用下重新取向,陶瓷总体会出现沿外电场方向的宏观剩余极化。此时陶瓷就具有了压电性。铁电陶瓷在一定条件下表现出电滞回线,其物理基础是可翻转的自发极化。
     在目前应用的压电材料中,锆钛酸铅(PZT)因其优异的压电性能以及组分的可调节性而获得了最广泛地应用,并一直占据着压电材料的主要市场。但是,PZT的制备需要使用大量的含铅氧化物作为原料,在生产、使用及废弃后处理过程中都会对环境造成严重影响。近几年来,随着人们环保意识的增强以及可持续发展的需求,环境友好型压电材料逐渐成为世界各国研究的重点。
     在取代PZT方面,目前压电材料的研究主要集中在以下两个方面,一是压电材料的少铅或无铅化;二是探索研发新的压电材料。压电材料的少铅或无铅化主要是通过对传统的无铅压电材料如钛酸钡、铌酸盐、钛酸铋钠等进行掺杂、取代、改进制备工艺等来实现,以期改进后的特性能满足在某一些特定领域取代PZT的要求。但总的说来,目前无铅压电陶瓷的性能与PZT相比还有较大差距。而探索研发制备新的压电材料主要包括合成新的铁电压电材料和制备基于挠曲电效应的压电材料。其中基于挠曲电效应的压电材料的研究正逐渐成为热点,相关研究文章也在逐年增多。
     近几年我们通过传统的制备工艺制备了一类在烧结完成后不需电场极化就具有压电性的非铁电性起源压电陶瓷(在相关文章里我们命名为flexoelectric-type polar ceramics)。与传统的铁电性压电陶瓷不同,这类陶瓷的宏观对称性需用低于6mm点群的三斜晶系来描述,而且并不要求烧结和降温过程中陶瓷内部必须含有铁电相,即排除了该极性来源于铁电性的可能性。即使陶瓷中含有铁电相,在远高于该铁电相居里温度的温度以上,也能观察到压电谐振信号。从材料构成的角度讲,该类非铁电性起源压电陶瓷是一种混相结构,其中必然存在丰富的异质界面。在充分调研挠曲电效应的基础上,我们认为该类陶瓷的压电性最有可能起源于界面处的挠曲电效应。与Cross报道的挠曲电效应研究不同,非铁电性起源压电陶瓷的压电性起源更可能类似于Lubomirsky报道的准非晶薄膜中由温度梯度引起的挠曲电极化。此外,和那些与挠曲电相关的低维薄膜极性材料相比,非铁电性起源压电陶瓷是一类块体极性材料。
     由于我们认为非铁电性起源压电陶瓷的压电性起源和挠曲电效应有关,因此在绪论里作者对当前挠曲电效应的一些具有代表性的研究进行了回顾。同时,为了给出更直观的对比,作者先对传统压电材料(仅限无机材料)进行了概述,文中主要回顾了压电单晶和多晶、压电薄膜和极性玻璃陶瓷的一些特点。在回顾传统极性材料和挠曲电效应研究的基础上,绪论里作者对本论文研究的非铁电性起源压电陶瓷的发现及研究现状进行了概述。
     在本论文中,作者对非铁电性起源压电陶瓷的发现、制备和研究进展都做了详细地介绍。目前的研究表明由钙钛矿结构或类钙钛矿结构和软铋矿结构构成的组分在具有自然极性的非铁电性起源压电陶瓷中占有非常重要的地位。本论文主要选取Na0.5Bi0.5TiO3基非铁电性起源压电陶瓷,SrTiO3基非铁电性起源压电陶瓷和Sr2Bi4Ti5O18基非铁电性起源压电陶瓷作为研究对象,并在不同的章节分别介绍了它们的结构和物性。此外,文中还简单介绍了一类不含Bi12TiO20相的非铁电压电陶瓷,主要给出了其压电物性研究。
     非铁电性起源压电陶瓷的发现源于研究传统Na0.5Bi0.5TiO3基无铅压电陶瓷过程中的一次失误,而最初的研究也是主要围绕Na2O-Bi2O3-TiO2体系的非铁电性起源压电陶瓷展开的。论文第三章主要研究了通过传统的制备工艺制备的Na0.5Bi0.5TiO3基非铁电性起源压电陶瓷。第三章的研究分为两个部分。一是研究了如下组分:Na0.5Bio.5TiO3+xBi2O3(x=0.05,0.1,0.15,0.25,0.4,0.5,0.75,1)(简写为NBT-xB, x=0.05,0.1,0.15,0.25,0.4,0.5,0.75,1)。通过XRD确定了其物相结构均为Na0.5Bi0.5TiO3相和Bi12Ti020相。通过Agilent4294A阻抗分析仪和d33测试仪研究了其压电谐振响应。研究发现,随着x值的增大,其压电响应呈现逐渐增强的趋势;当x大于等于0.5时,d33max可达7~8pC/N。这说明可通过组分优化来提高非铁电性起源压电陶瓷的压电性。文中研究了不同x值的NBT-xB陶瓷的XPS图谱的变化规律,并对NBT-xB非铁电性起源压电陶瓷的压电性起源的可能做了描述。文中还通过XPS研究了不同烧结温度对NBT-0.4B样品压电性的影响。通过分析我们认为对于x值较小的组分,其压电性主要起源于界面中畸变了的Ti06八面体的部分有序排列,而且由于氧化铋添加量较少,使得陶瓷中最终生成的非晶相含量也较少。综合起来这些组分表现出的压电性则较小;而对于x值较大的组分而言,其压电性主要起源于界面中畸变了的Ti06八面体和BiO5多面体的部分有序排列,而且由于氧化铋添加量较多,使得陶瓷中最终生成的非晶相含量也较多。综合起来这些组分表现出较强的压电响应。二是对12(Na0.5Bio.5)1-x(Sr,Ba,Ca)xTiO3-Bi12TiO20(其中x=0.06,0.2,0.3,0.5,0.8,1)组分进行了简单研究,肯定了这类陶瓷的广泛存在性。
     虽然Na0.5Bi0.5TiO3基非铁电性起源压电陶瓷的研究表明其反常压电性并不来源于铁电相,但铁电相的存在是否是构成该类陶瓷所必须的要素的问题仍然是一个疑问。而且研究这类非铁电性起源压电陶瓷压电性的起源时,铁电相的存在也会产生很多干扰。为了解决这个问题,在第四章我们选择12SrTiO3-Bi12TiO20的组分作为主要研究对象。论文第四章研究的组分如下:12(Na0.5Bi0.5)1-XSrxTiO3-Bi12TiO20(x=0.2,0.3,0.5,1).作者首先通过XRD确定了这些组分的物相结构均为含SrTiO3的钙钛矿相和Bi12TiO20相,并研究了它们的压电物性。然后选取了12SrTiO3-Bi12TiO20的组分(简写为ST-BT)为主要研究对象。实现结果表明,非铁电性起源压电陶瓷压电性的起源不依赖于陶瓷中是否含有铁电相,肯定了ST-BT铁电性起源压电陶瓷是研究非铁电性起源压电陶瓷压电性起源的理想材料。通过X射线光电子能谱、拉曼散射和正电子湮没的研究,我们认为ST-BT非铁电性起源压电陶瓷的极性起源和陶瓷中大量缺陷的产生有着密切的关联。通过电场极化研究和差热分析,我们认为Bi12TiO20相在形成这类非铁电性起源压电陶瓷的过程中起到了非常重要的作用。参照准非晶薄膜的研究,作者认为ST-BT非铁电性起源压电陶瓷压电性的起源极有可能源于界面非晶相中畸变了的Ti06八面体和Bi05多面体的部分取向,并简要分析了挠曲电极化的物理机制。
     在第五章作者主要介绍了一类含铋层状结构的非铁电性起源压电陶瓷。其中选取了传统制备工艺制备的Sr2Bi4Ti5O18基非铁电性起源压电陶瓷为主要研究对象,研究组分如下:Sr2Bi4Ti5O18+2Bi2O3。文中通过XRD、SEM、XPS和介电压电测量对该压电陶瓷进行了研究。通过分析作者认为该类陶瓷的自然极性起源和前面报道的Na0.5Bi0.5TiO3基非铁电性起源压电陶瓷和SrTiO3基非铁电性起源压电陶瓷的类似,应该和陶瓷中大量缺陷的产生有关。此外,SrTiO3组分中Bi12TiO20相在自然极性起源中可能起到更重要的作用。
     在第五章中还简单介绍了一类生成物中不含有Bi12TiO20相但依然能在未极化的条件下表现出压电性的非铁电性起源压电陶瓷。文中主要对Bi4Ti3O12+BiA1O3组分的压电性进行了介绍.研究发现其宏观对称性和Nao.5Bi0.5TiO3基非铁电性起源压电陶瓷和SrTiO3基非铁电性起源压电陶瓷的类似属于三斜晶系。目前对这类陶瓷的极性起源还没有更深地认识,有待于进一步的详细研究。
     本论文的主要目的是介绍我们在该领域的研究工作,阐述我们对这类压电陶瓷的理解和认识。同时希望有兴趣的读者能参与到这个方向的研究中来。毕竟无论是从纯粹的科学研究(如重新认识极性的起源)的角度还是从未来的应用价值(如高温应用)的角度,这类材料都为我们提供了新的思路。
Piezoelectric materials is a kind of functional materials which can realize the energy transformation between mechanical energy and the electrical energy, and have been widely used in filters, motors, vibrators, sensors, buzzers and ultrasonic transducers. The common piezoelectric materials mainly contain piezoelectric single crystals and piezoelectric poly cry stals(also called piezoelectric ceramics). In particular, piezoelectric ceramics play an important role in application because of their relatively simple fabrication process and relatively low cost. Traditional piezoelectric ceramics are referred to as ferroelectric ceramics. The common ceramics are isotropic because of their spherical symmetry, and then does not exhibit piezoelectricity. However, for the ceramics containing ferroelectric phases, it can exhibit piezoelectricity by reorienting the spontaneous polarization along the applied electric field because the isotropic macroscopic symmetry was broken after a poling process. Ferroelectric ceramics can present hysteresis loop under some condition because of the reversion of spontaneous polarization.
     Up to now, lead zirconate titanate(PZT) is the most widely used of all piezoelectric material due to their excellent piezoelectric properties and their adjusting ingredients, and dominate the market for piezoelectric materials. However, these Pb-based material using plenty of PbO as raw material in fabrication process will bring hazard to the environment in their fabrication, application and disposal process. In recent year, owning to the improvement of environmental consciousness and the demands of sustainable development, environment-friendly piezoelectric materials have caught much attention in many countries.
     Overall, there are two routes to settle the problem of Pb hazard of PZT. The first route is to replace PZT with the lead-free or lead less piezoelectric materials, and the second one is to explore new piezoelectric materials. For the first route, doping,substitution and improving the fabrication technique will be used to improve the piezoelectric properties of the candidate piezoelectric materials, such as BaTiO3,(K,Na)NbO3, sodium bismuth titanate, in the hope that the improved properties can meet the requirement in particular field where PZT always had been used. Unfortunately, there is still a large gap in the piezoelectric properties between the candidate piezoelectric materials and PZT. For the second route, the exploration of new piezoelectric materials mainly contains exploration of new piezoelectric materials and fabrication of the flexoelectric-based piezoelectric materials. In particular, the flexoelectric-based piezoelectric materials has become the focus in recent years, and the amount of the published articles related to this field has increased gradually year by year.
     Recently, we reported a new kind of piezoelectric ceramics named as non-ferroelectric piezoelectric ceramics(also named as flexoelectric-type polar ceramics in our published articles). These ceramics were fabricated by traditional solid state reaction method and could present piezoelectricity after sintered in furnace without any electric field poling process. The macroscopic symmetry of these ceramics should only be described as triclinic system, which is freshly different from that of ferroelectric ceramics (described as6mm point group). Moreover, ferroelectric phases would be not the essential element for fabrication of these ceramics. Even if these ceramics contain ferroelectric phases, piezoelectric response will be detected far above the Curie temperature of the ferroelectric phases. From the perspective of constituents, these ceramics are made up of heterogeneous phases, and then large amount of heterogeneous interface will exist. Base on our knowledge about the research on flexoelectric effect, we proposed that the unusual piezoelectricity in non-ferroelectric piezoelectric ceramics may rely on the flexoelectric effect at heterogeneous interface. Moreover, the flexoelectric effect in non-ferroelectric piezoelectric ceramics would be similar to that originating from the temperature gradient in quasi-amorphous films reported by lubomirsky, which are different from that reported by Cross. In addition, compared with those reported flexoelectric-related low-dimensional films, non-ferroelectric piezoelectric ceramics are bulk polar materials.
     Since we considered the importance of the flexoelectric effect in determining the unusual piezoelectricity in non-ferroelectric piezoelectric ceramics, an overview of the representative flexoelectric effect research in recent years was carried out in the introduction of this dissertation. Meanwhile, to give a distinct comparison, an overview of traditional piezoelectric materials was also conducted where represented the features of piezoelectric single crystals and polycrystals, piezoelectric films and polar glass-ceramics. Based on these reviews, the introduction gave an general overview of the discovery of non-ferroelectric piezoelectric ceramics and the achievement at present.
     In the text of this dissertation, a more detailed review of the discovery, fabrication and research achievement was undertaken. Currently, the samples containing perovskite phase and Bi12TiO20phase predominate the research of non-ferroelectric piezoelectric ceramics. In this dissertation, Na0.5Bi0.5TiO3-based, SrTiO3-based and Sr2Bi4Ti5O18-based non-ferroelectric piezoelectric ceramics were chosen as the study subjects, and their properties were presented in different chapters respectively. Besides, another kind of non-ferroelectric piezoelectric ceramics was introduced in this dissertation. These ceramics did not contain Bi12TiO20phase, and the dissertation only gave a brief review of their piezoelectric properties.
     The discovery of non-ferroelectric piezoelectric materials was attribute to a mistake made in the process of fabricating traditional Na0.5Bi0.5TiO3-based lead-free piezoelectric materials, and the initial research on this field had been set focus on Na2O-Bi2O3-TiO2system to explore new non-ferroelectric piezoelectric materials. Chapter3gave details of properties of Na0.5Bi0.5TiO3-based non-ferroelectric piezoelectric materials prepared by traditional solid state reaction method. Overall, this chapter can be divided into two components. The first component was set focus on the Nao.5Bio.5Ti03+xBi2O3(x=0.05,0.1,0.15,0.25,0.4,0.5,0.75,1)(abbreviated as NBT-xB,x=0.05,0.1,0.15,0.25,0.4,0.5,0.75,1) system. XRD analysis indicated that all of as-sintered ceramics contained two main crystalline phases:Nao.5Bio.5Ti03phase and Bi12Ti02o phase. The piezoelectric response was studied by an Agilent4294A impedance analyzer and a d33meter. It had been found that the piezoelectric response became stronger by increasing x values; for the samples with x values above0.5, the piezoelectric coefficient could reached7~8pC/N. This suggested that one could improve the piezoelectricity by optimizing constituent. Besides, Chapter3dealt with the XPS analysis of the NBT-xB samples, and discussed the underlying mechanism of the origin of piezoelectricity in these ceramics. Additionally, the influence of sintering temperature was also evaluated in virtue of the XPS analysis of NBT-0.4B compositions. On the basis of the analysis of experimental results and the inspiration of lubomirsky's research, we tried to give our probably plausible interpretations to illustrate the different origin of piezoelectricity in NBT-xB samples. For those compositions with smaller x values, their piezoelectricity might mainly originate from the partial alignment of distorted TiO6octahedra in amorphous phase at interface. Moreover, relatively low-level content of excess Bi2O3, would result in comparatively low-level content of amorphous phase. Combining these two points, then it was not surprised for the relatively weak piezoelectric response for those samples. For those compositions with larger x values, their piezoelectricity might mainly originate from the partial alignment of distorted TiO6octahedra and BiOs polyhedra in amorphous phase at interface. Besides, relatively high-level content of excess Bi2O3would result in comparatively high-level content of amorphous phase. Then, on the contrary, these samples exhibited relatively strong piezoelectric response. The second component mainly referred to the exploration of non-ferroelectric piezoelectric materials and the12(Nao.5Bio.5)1-x(Sr,Ba,Ca)xTi03-Bi12Ti02o (x=0.06,0.2,0.3,0.5,0.8,1) compositions were chosen as study subject. This study confirmed that the anomalous piezoelectricity found in Na0.5Bi0.5TiO3-based non-ferroelectric piezoelectric materials would be not an isolated case.
     Although the study of Na0.5Bi0.5TiO3-based non-ferroelectric piezoelectric ceramics suggested that the anomalous piezoelectricity did not originate from ferroelectric phases, whether the ferroelectric phase was the essential element or the key factor to fabricate these unusual ceramics was still a question. Moreover, the ferroelectric phase sensitive to ambient environment would bring interferences to the study of virtual piezoelectricity coming from the amorphous. In chapter4, we chose12SrTiO3-Bi12TiO20composition as the main study subject to solve this problem. In chapter4, the compositions chosen as study subject were as follow:12(Nao.5Bio.5)1-xSrxTi03-Bi12Ti02o(x=0.2,0.3,0.5,1). We identified their main crystalline phases as a perovskite phase and a Bi12TiO20phase and studied their piezoelectric properties. Then, we chosen the12SrTi03-Bi12Ti02o (abbreviated as ST-BT) composition as the main study subject. The study of ST-BT ceramics indicated that the ferroelectric phase was not the essential element to fabricate these unusual ceramics and confirmed that ST-BT ceramics would be an appropriate candidate in the study of non-ferroelectric piezoelectricity. By combination of XPS, raman spectroscopy and positron annihilation, we proposed that the origin of polarity in non-ferroelectric piezoelectric ceramics had a close relationship with the large amount of defects generating in the sintering process. By electric poling study and DSC analysis, we proposed that Bi12TiO210could have an important role in these non-ferroelectric piezoelectric ceramics. Inspired the research achievement of quasi-amorphous films, we proposed that the piezoelectricity in ST-BT ceramics originate from the partial alignment of distorted TiO6octahedra and BiO5polyhedra in amorphous phase at interface. At last, a probable flexoelectric-related polarization mechanism was briefly discussed where the comparison between quasi-amorphous films and non-ferroelectric piezoelectric ceramics was mentioned.
     In chapter5, a kind of non-ferroelectric piezoelectric ceramics containing Aurivillius compounds was mentioned. Sr2Bi4Ti5O18-based non-ferroelectric piezoelectric ceramics prepared by solid state reaction method was chosen as the main study subject. These ceramics fabricated by using a nominal composition formula: Sr2Bi4Ti5O18+2Bi2O3were studied by XRD, SEM, XPS, dielectric and piezoelectric measurement. Based on these analysis, we suggested that the origin of Sr2Bi4Ti5O18-based non-ferroelectric piezoelectric ceramics was similar to that of Nao.5Bio.5Ti03-based and SrTiO3-based non-ferroelectric piezoelectric ceramics, which correlated with the generation of large amount of defects. In addition, Bi12TiO20might play a more important role in generating the anomalous piezoelectricity in Sr2Bi4Ti5O18-based non-ferroelectric piezoelectric ceramics
     In chapter5another kind of piezoelectric ceramics were also mentioned. The main crystalline phase of these ceramics did not contain Bi12TiO20phase, but these ceramics also could exhibit piezoelectricity before applying an electric poling process. Chapter5only gave an overview of the piezoelectricity of Bi4Ti3012+BiA103composition. It was found that the macroscopic symmetry of these ceramics should be described as triclinic system, which is similar to that of Na0.5Bi0.5TiO3-based and SrTiO3-based non-ferroelectric piezoelectric ceramics. The mechanism of origin of the piezoelectricity in these ceramics was still unclear, and more works needed to be done.
     The basic purpose of this dissertation is to present our works in this new field, and expound our acquaintance and understanding of these non-ferroelectric piezoelectric ceramics. Moreover, we wish people who take interest in these ceramics can participate in the research of this field. After all, these unusual ceramics provide us a freshly new way to review the development of piezoelectric materials either from the perspective of pure scientific research(for example, rethinking the intrinsic origin of polarity) or from the perspective of potential utilization value(for example, the potential value in high temperature application).
引文
[1]Zuo-Guang. Ye, Ed., Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Boca Raton:CRC Press LLC,2008.
    [2]张福学,王丽坤 主编,现代压电学.下册.北京:科学出版社,2002.
    [3]J.范兰德拉特,压电陶瓷.北京:科学出版社,1981.
    [4]G. H. Haertling, Ferroelectric Ceramics:History and Technology, Journal of the American Ceramic Society, vol.82, no.4, pp.797-818,1999.
    [5]张沛霖,钟维烈,压电材料与器件物理.济南:山东科学技术出版社,1997.
    [6]Nader Jalili, Piezoelectric-Based Vibration Control. New York: Springer Science+Business Media,2010.
    [7]S. Priya and S. Nahm, Eds., Lead-Free Piezoeletrics. New York: Springer Science+Business Media,2011.
    [8]T. R. Shrout and S. J. Zhang, Lead-free piezoelectric ceramics-alternatives for PZT, Journal of Electroceramics, vol.19, pp.111-124,2007.
    [9]J. F. Scott, Leading the Way to Lead-Free, ChemPhysChem, vol.11, pp. 341-343,2010.
    [10]Y. LU and Y. Li, A review on lead-free piezoelectric ceramics studies in china, Journal of Advanced DielectricsDielectrics, vol.1, no.3, pp.269-288,2011.
    [11]Z. Joel, A. A. Belik, E. Takayama-muromachi, and Z. Ye, Bismuth Aluminate: A New High-Tc Lead-Free Piezo-/ferroelectric, Chemistry of Material., vol. 19, no.26, pp.6385-6390,2007.
    [12]候育冬,崔磊,王赛,王超,朱满康,严辉,BiAlO3基高温无铅压电陶瓷的研究进展,无机材料学报,vol.25,no.3,pp.225-229,2010.
    [13]J. Zhang, Z. Gao, X. Yin, Z. Zhang, Y. Sun, and X. Tao, Investigation of the dielectric, elastic, and piezoelectric properties of Cs2TeMo3O12 crystals, APPLIED PHYSICS LETTERS, vol.101, no.6, pp.062901-062904,2012.
    [14]J. Fousek, L. E. Cross, and D. B. Litvin, Possible piezoelectric composites based on the flexoelectric effect, Materials Letters, vol.39, pp.287-291,1999.
    [15]N. D. Sharma, R. Maranganti, and P. Sharma, On the possibility of piezoelectric nanocomposites without using piezoelectric materials, Journal of the Mechanics and Physics of Solids, vol.55, no.11, pp.2328-2350, Nov. 2007.
    [16]W. Ma and L. E. Cross, Large flexoelectric polarization in ceramic lead magnesium niobate, Applied Physics Letters, vol.79, no.26, pp.4420-^4422, 2001.
    [17]W. Ma and L. E. Cross, Observation of the flexoelectric effect in relaxor PbMg1/3Nb2/3O3 ceramic, Applied Physics Letters, vol.78, no.19, pp. 2920-2921,2001.
    [18]W. Ma and L. E. Cross, Flexoelectric polarization of barium strontium titanate in the paraelectric state, Applied Physics Letters, vol.81, no.18, pp.3440-3442, 2002.
    [19]W. Ma and L. E. Cross, Strain-gradient-induced electric polarization in lead zirconate titanate ceramics, Applied Physics Letters, vol.82, no.19, pp. 3293-3295,2003.
    [20]W. Ma and L. E. Cross, Flexoelectric effect in ceramic lead zirconate titanate, Applied Physics Letters, vol.86, p.072905,2005.
    [21]W. Ma and L. E. Cross, Flexoelectricity of barium titanate, Applied Physics Letters, vol.88, p.232902,2006.
    [22]Chu Baojin, Zhu Wenyi, Li Nan, and Cross L. Eric, Flexure mode flexoelectric piezoelectric composites, Journal of Applied Physics, vol.106, p.104109, 2009.
    [23]S. Chandratre and P. Sharma, Coaxing graphene to be piezoelectric, Applied Physics Letters, vol.100, p.023114,2012.
    [24]T. D. Nguyen, S. Mao, Y.-W. Yeh, P. K. Purohit, and M. C. McAlpine, Nanoscale Flexoelectricity., Advanced materials, vol.25, no.7, pp.946-974, Jan.2013.
    [25]符春林,铁电薄膜材料及其应用.北京:科学出版社,2009.
    [26]张福学,王丽坤主编,现代压电学.北京:科学出版社,2002.
    [27]L. H. Wang, M. L. Zhao, C. L. Wang, J. Wang, W. J. Kuai, and X. T. Tao, Piezoelectricity and local structural distortions in (Na0.5Bi0.5)1-xSrxTiO3-Bi12TiO20 flexoelectric-type polar ceramics, Applied Physics Letters, vol.101, no.6, p.062903,2012.
    [28]王春雷,李吉超,赵明磊,压电铁电物理.北京:科学出版社,2009.
    [29]SHaul Katzir, The Beginnings of Piezoelectricit-A Study in Mundane Physics. Dordrecht: Springer, 2006.
    [30]李远,周志刚,秦自楷,压电与铁电材料的测量.北京:科学出版社,1984.
    [31]许煜寰,铁电与压电材料.北京:科学出版社,1978.
    [32]Hirotsugu Ogi, Toshinobu Ohmori, N. Nakamura, and M. Hirao, Elastic, anelastic, and piezoelectric coefficients of a-quartz determined by resonance ultrasound spectroscopy, Applied Physics Letters, vol.100, p.053511,2006.
    [33]He Huijing, Liu Jinxi, and Yang Jiashi, Vibrations of an AT-Cut Quartz Mesa Resonator, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.58, no.10, pp.2050-2055,2011.
    [34]P. C. Y. Lee and W. S. Lin, Piezoelectrically forced vibrations of rectangular SC-cut quartz plates, Journal of Applied Physics, vol.83, no.12, pp. 7822-7833,1998.
    [35]B. L. Bradshaw, Understanding piezoelectric quartz crystals,.2000.
    [36]A. J. Slobodnik and J. C. Sethares, Elastic,Piezoelectric,and Dielectric Constants of Bi12GeO20, Journal of Applied Physics, vol.247, no.1, pp. 247-248,1972.
    [37]W.Wardzynski, H.Szymczak, M.T.Borowiec, and K.Pataj, Light-induced charge transfer processes in Mn-doped Bi12GeO20 and Bi12SiC20 single crystals, Journal of Physics and Chemistry of Solids, vol.46, no.10, pp.1117-1129, 1985.
    [38]D.G.Papazoglou, A.G.Apostolidis, and E.D.Vanidhis, Measurement of the electro-optic coefficient of Bi12GeO20 (BGO), Bi12TiO20 (BTO) crystals, Synthesis Metals, vol.83, pp.281-285,1996.
    [39]P.Hennessey and K.Vedam, Piezo-and thermo-optical properties of Bi12GeO20 111. The dispersion theories and models, Journal of the Optical Society of America, vol.69, no.2, pp.352-356,1977.
    [40]K.Vedam and P.Hennessey, Piezo-and thermo-optical properties II. Refractive index, Journal of the Optical Society of America, vol.65, no.4, pp.442-445,1975.
    [41]Albert A.Balman, The growth and properties of piezoelectric bismuth germanium oxide Bi12GeO20, Journal of Crystal Growth, vol.1, pp.37-40, 1967.
    [42]J. Zelenka, The Polarizing Effect In Bi12GeO20 Crystals, Czechoslovak Journal of Physics, Section B, vol.30, pp.458-462,1980.
    [43]M. Onoe, A. W.Warner, and A. A.Ballman, Elastic and Piezoelectric characteristics of bismuth germanium oxide Bi12GeO20, IEEE Transactions on Sonics and Ultrasonics, vol. SU-14, no.4, pp.165-167,1967.
    [44]赵明磊,王矜奉,袁多荣,王增梅,王春雷,and王渊旭,Ca3NbGa3Si2O14晶体的介电和压电特性,物理学报,vol.53,no.4364-4367,2004.
    [45]吉小军,韩韬,施文康,张国伟,LGS压电晶体及其声表面波特性的理论分析,压电与声光,vol.26,no.2,pp.135-138,2004.
    [46]H.Fritze, H.L.Tuller, H.Seh, and G.Borchardt, High temperature nanobalance sensor based on langasite, Sensors And Actuators B, vol.76, pp.103-107, 2001.
    [47]S.-E. Park and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, Journal of Applied Physics, vol.82, no.4, pp.1804-1811,1997.
    [48]K. Dorr, O. Bilani-Zeneli, A. Herklotz, A. D. Rata, K. Boldyreva, J.-W. Kim, M. C. Dekker, K. Nenkov, L. Schultz, and M. Reibold, A model system for strain effects:epitaxial magnetic films on a piezoelectric substrate, The European Physical Journal B, vol.71, no.3, pp.361-366, Sep.2009.
    [49]W. Ma, A study of flexoelectric coupling associated internal electric field and stress in thin film ferroelectrics, Physica Status Solidi (B), vol.245, no.4, pp. 761-768, Apr.2008.
    [50]O. Tikhomirov, H. Jiang, and J. Levy, Direct observation of local ferroelectric phase transitions in BaxSr1-xTiO3 thin films, Applied Physics Letters, vol.77, no.13, pp.2048-2050,2000.
    [51]Jia Chunlin, M. Shaobo, K. Ubran, I. Vrejoin, M. Alexe, and D. Hesse, Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films.pdf, Nature, vol.7, pp.57-61,2007.
    [52]J. Junquera and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature, vol.422, pp.506-509,2003.
    [53]G.Catalan, L.J.Sinnamon, and J.M.Gregg,-The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films, Journal of Physics: Condensed Matter, vol.16, pp.2253-2264,2004.
    [54]B. Xiao, V. Avrutin, H. Liu, E. Rowe, J. Leach, X. Gu, U. Ozgur, H. Morkoc, W. Chang, L. M. B. Alldredge, S. W. Kirchoefer, and J. M. Pond, Effect of large strain on dielectric and ferroelectric properties of Ba0.5Sr0.5TiO3 thin films, Applied Physics Letters, vol.95, p.012907,2009.
    [55]Y. Zheng, B. Wang, and C. H. Woo, Effects of strain gradient on charge offsets and pyroelectric properties of ferroelectric thin films, Applied Physics Letters, vol.89, no.6, p.062904,2006.
    [56]H. Zhou, J. Hong, Y. Zhang, F. Li, Y. Pei, and D. Fang, External uniform electric field removing the flexoelectric effect in epitaxial ferroelectric thin films, Europhysics Letters, vol.99, no.4, p.47003, Aug.2012.
    [57]D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. a Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Ferroelectricity in ultrathin perovskite films., Science, vol.304, no.5677, pp.1650-1653, Jun.2004.
    [58]Q. Y. Qiu, V. Nagarajan, and S. P. Alpay, Film thickness versus misfit strain phase diagrams for epitaxial PbTiO3 ultrathin ferroelectric films, Physical Review B, vol.78, p.064117,2008.
    [59]I. Ponomareva, a. K. Tagantsev, and L. Bellaiche, Finite-temperature flexoelectricity in ferroelectric thin films from first principles, Physical Review B, vol.85, no.10, p.104101, Mar.2012.
    [60]H. Zhou, J. Hong, Y. Zhang, F. Li, Y. Pei, and D. Fang, Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films, Physica B:Physics of Condensed Matter, vol.407, no.17, pp.3377-3381, 2012.
    [61]H. T. Chen and a. K. Soh, Influence of flexoelectric effects on multiferroic nanocomposite thin bilayer films, Journal of Applied Physics, vol.112, no.7, p. 074104,2012.
    [62]Y.Lin and C.L.Chen,-Interface effects on highly epitaxial ferroelectric thin films, Journal of Materials Science, vol.44, pp.5274-5287,2009.
    [63]O. Kalenci, C. E.Murray, and I.C.Noyan, Local strain distributions in silicon-on-insulator/stressor-film composites, Journal of Applied Physics, vol. 104, p.063503,2008.
    [64]A. N. Morozovska, E. A. Eliseev, G. S. Svechnikov, and S. V. Kalinin, Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3 films, Physical Review B, vol.84, no.4, p.045402, Jul.2011.
    [65]I.A.Luk' yanchuk, A.Schilling, J.M.Gregg, G.Catalan, and J.F.Scott, Origin of ferroelastic domains in free-standing single-crystal ferroelectric films, Physical Review B, vol.79, p.144111,2009.
    [66]N. D. Sharma, C. M. Landis, and P. Sharma, Piezoelectric thin-film superlattices without using piezoelectric materials, Journal of Applied Physics, vol.108, p.024304,2010.
    [67]A. N. Morozovska, E. a. Eliseev, S. L. Bravina, A. Y. Borisevich, and S. V. Kalinin, Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO3 films, Journal of Applied Physics, vol.112, no.6, p.064111,2012.
    [68]H.-X. Cao, V. C. Lo, and Z.-Y. Li, Simulation of flexoelectricity effect on imprint behavior of ferroelectric thin films, Solid State Communications, vol. 138, pp.404-408,2006.
    [69]L. W. Chang, M. Mcmillen, F. D. Morrison, J. F. Scott, and J. M. Gregg, Size effects on thin film ferroelectrics: Experiments on isolated single crystal sheets, Applied Physics Letters, vol.93, p.132904,2008.
    [70]G. Akcay, S. Zhong, B. S. Allimi, S. P. Alpay, and J. V Mantese, Strain induced internal potentials of compositionally graded epitaxial ferroelectric thin films, Applied Physics Letters, vol.91, p.012904,2007.
    [71]P.-E. Janolin, Strain on ferroelectric thin films, Journal of Materials Science, vol.44, no.19, pp.5025-5048, Jun.2009.
    [72]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, Substrate-suppressed phase transition in nano-crystalline BaTiO3 thin films, Europhysics Letters, vol.60, no.5, pp.782-787,2002.
    [73]Y. L. Li and L. Q. Chen, Temperature-strain phase diagram for BaTiO3 thin films, Applied Physics Letters, vol.88, no.7, p.072905,2006.
    [74]西北轻工业学院,玻璃工艺学.北京:中国轻工业出版社,2000.
    [75]赵云才,肖汉宁,何芳魁,玻璃陶瓷材料发展的回顾与展望,中国陶瓷,vol.37,no.3,pp.40-43,2001.
    [76]陈国华,刘心宇,氧化铋对微晶玻璃的相转变和性能的影响,材料科学与工艺,vol.12,no.5,pp.501-505,2004.
    [77]谢为民,方承平,极性微晶玻璃的恒温定向析晶,硅酸盐学报,vol.25,no.1,pp.115-118,1997.
    [78]张文俊,陈国华,孙乾坤,新型铁电玻璃陶瓷的研究进展,电子元件与材料,vol.29,no.3,pp.82-85,2010.
    [79]陈国华,低温共烧玻璃陶瓷材料的制备及性能、机理研究,中南大学,2008.
    [80]朱才镇,微晶玻璃的分子动力学研究,深圳大学,2007.
    [81]南雪丽,微晶玻璃的研制,兰州理工大学,2006.
    [82]E. E. Y. Ⅲ, M.Wheeler, A.Halliyal, A. S. Bhalla, and R. E. Newnham, Piezoelectric properties and microstructure of glass-ceramics in the BaO-SrO-SiO2-TiO2 sysytem, in Applications of Ferroelectrics.1986 Sixth IEEE International Symposium on,1986, pp.406-409.
    [83]L. E. C. A.Halliyal, A.S.Bhalla, R.E. Newnham, Ba2TiGe2O8 and Ba2TiSi2o8 pyroelectric glass-ceramics, Journal of Materials Science, vol.16, pp. 1023-1028,1981.
    [84]A.Halliyal, A.S.Bhalla, L.E.Cross, and R.E.Newnham, Dielectric, piezoelectric and pyroelectric properties of Sr2TiSi2O8 polar glass-ceramic-a new polar material, Journal of Materials Science, vol.20, pp.3745-3749,1985.
    [85]C. A. Randall, D. E. Mccauley, and D. P. Cann, Finite size effects in a BaTiO3 ferroelectric glass ceramic, Ferroelectrics, vol.206-207, pp.325-335,1998.
    [86]A.Halliyal, A.Safari, A.S.Bhalla, R.E.Newnham, and L.E.Cross, Grain-Oriented Glass-Ceramics for Piezoelectric Devices, Journal of the American Ceramic Society, vol.67, no.5, pp.331-335, May 1984.
    [87]D. Mccauley, R. E. Newnham, and C. A. Randall, Intrinsic Size Effects in a Barium Titanate Glass-Ceramic, Journal of the American Ceramic Society, vol. 81, no.4, pp.979-987,1998.
    [88]A.Halliyal, A.S.Bhalla, R.E.Newnham, and L.E.Cross, Piezoelectric properties oflithium borosilicate glass ceramics, Journal of Applied Physics, vol.53, no.4, pp.2871-2874,1982.
    [89]X. Wang, Zhang Yong, Z. Yuan, Tao Ma, C. Deng, and X. Dai, Phase Development and Dielectric Properties of Barium Strontium Titanate Based Glass Ceramics, Ferroelectrics, vol.419, pp.53-58,2011.
    [90]A.Halliyal, A.S.Bhalla, R.E.Newnham, and L.E.Cross,-Piezoelectric and elastic properties of barium germanium titanate and lithium borosilicate glass-ceramics, in 1981 Ultrasonics Symposium,1981, no.493, pp.315-318.
    [91]M Patschger, Wolfgang Wisniewski, and Christian Russel, Piezoelectric glass-ceramics produced via oriented growth of Sr2TiSi2Og fresnoite---thermal annealing of surface modified quenched glasses, CrystEngComm, vol.14, pp. 7368-7373,2012.
    [92]A.Halliyal, A.S.Bhalla, and R.E.Newnham, Polar glass ceramics—A new family of electroceramic materials Tailoring the piezoelectric and pyroelectric properties, Materials Research Bulletin, vol.18, no.8, pp. 1007-1019,1983.
    [93]R.Y.Ting, A.halliyal, and A.S.Bhalla, Polar glass ceramics for sonar transducers, Applied Physics Letters, vol.44, no.9, pp.852-854,1984.
    [94]G. J. Gardopee, R. E. Newnham, A. G. Halliyal, and A. S. Shalla, Pyroelectric glass-ceramics, Applied Physics Letters, vol.36, no.10, pp. 817-818,1980.
    [95]W. Xie, Z. Ding, and P. Zhang, Pyroelectric Properties of Diphasic Polar Glass-Ceramics at Low Temperatures, Journal of the American Ceramic Society, vol.79, no.12, pp.3336-3338,1996.
    [96]A.Halliyal, A.S.Bhalla, R.E.Newnham, L.E.Cross, and T.R.Gururaja, Study of the piezoelectric properties of Ba2Ge2TiOg glass-ceramic and single crystals, Journal of Materials Science, vol.17, pp.295-300,1982.
    [97]M. J. Davisw, P. Vullo, I. Mitra, P. Blaum, K.-A. Gudgel, N. J. Donnelly, and C. A. Randall, Ferroelectric and Nonferroelectric (Polar) Piezoelectric Glass-Ceramics, Journal of the American Ceramic Society, vol.91, no.9, pp. 2878-2885,2008.
    [98]单小宏,刘咏,定向排列玻璃陶瓷的研究进展,粉末冶金材料科学与工程,vol.9,no.3,pp.238-242,2004.
    [99]E. P. Gorzkowski, M.-J. Pan, B. Bender, and C. C. M. Wu, Glass-ceramics of barium strontium titanate for high energy density capacitors, Journal of Electroceramics, vol.18, no.3-4, pp.269-276, May 2007.
    [100]J. Huang, Y. Zhang, T. Ma, H. Li, and L. Zhang, Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics, Applied Physics Letters, vol.96, p.042902,2010.
    [101]J. Luo, Q. Tang, Q. Zhang, J. Zhu, D. Han, and J. Du, Preparation of Bulk Na2O-BaO-PbO-Nb2O5-SiO2 Glass-Ceramic Dielectrics for Energy Storage Sources, in Symposium 14: Advanced Engineering Ceramics and Composites, 2011, vol.202024.
    [102]S. Sindhu, S. Sanghi, A. Agarwal, V. Seth, and N. Kishore, Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO-Bi2O3·B2O3(M=Ba, Sr) glasses, Materials Chemistry and Physics, vol.90, no.1, pp.83-89, Mar.2005.
    [103]A. Malakho, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals, Journal of Applied Physics, vol.100, p. 063103,2006.
    [104]R. T. Hart, K. M. Ok, P. S. Halasyamani, and J. W. Zwanziger, Powder second-harmonic generation study of (K2O)15(Nb2O5)15(TeO2)70 glass ceramic, Applied Physics Letters, vol.85, no.6, pp.9-10,2004.
    [105]M.V.Shankar and K.B.R.Varma, Crystallization, dielectric and optical studies on strontium tetraborate glasses containing bismuth titanate, Materials Research Bulletin, vol.33, no.12, pp.1769-1782,1998.
    [106]G. Senthil Murugan, K. B. R. Varma, Y. Takahashi, and T. Komatsu, Nonlinear-optic and ferroelectric behavior of lithium borate-strontium bismuth tantalate glass-ceramic composite, Applied Physics Letters, vol.78, no.25, pp.4019-4021,2001.
    [107]P.A.Tick, N.F.Borrelli, and I. M. R., The relationship between structure and transparency in glass-ceramic materials, Optical Materials, vol.15, pp.81-91, 2000.
    [108]H.Jain, Transparent Ferroelectric Glass-Ceramics, Ferroelectrics, vol.306, pp. 111-127,2004.
    [109]J. Luo, J. Du, Q. Tang, and C. Mao, Lead Sodium Niobate Glass-Ceramic Dielectrics and Internal Electrode Structure for High Energy Storage Density Capacitors, IEEE Transactions on Electron Devices, vol.55, no.12, pp. 3549-3554, Dec.2008.
    [110]P.Prapitpongwanich, R. Harizanova, and K.Pengpat, Nanocrystallization of ferroelectric lithium niobate in LiNbO3-SiO2 Glasses, Materials Letters, vol.63, pp.1027-1029,2009.
    [111]J. Stelzer, R. Berardi, and C. Zannoni, Flexoelectric effects in liquid crystals formed by pear-shaped molecules. A computer simulation study, Chemical Physics Letters, vol.299, pp.9-16,1999.
    [112]X. Hongyu, Y. Wenjiang, Z. Zhidong, and X. Li, Flexoelectric-Induced Voltage Shift in Hybrid Aligned Nematic Liquid Crystal Cell, Communacations in Theoretical Physics, vol.56, no.5, pp.939-942,2011.
    [113]G. P. Alexander and J. M. Yeomans, Flexoelectric Blue Phases, Physical Review Letters, vol.99, p.067801,2007.
    [114]L.E.Cross,-Flexoelectric effects Charge separation in insulating solids subjected to elastic strain gradients, Journal of Materials Science, vol.41, pp. 53-63,2006.
    [115]J. Y. Fu, W. Zhu, N. Li, N. B. Smith, and L. E. Cross, Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites, Applied Physics Letters, vol.91, no.18, p.182910,2007.
    [116]R. Maranganti, N. D. Sharma, and P. Sharma, Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects:Green's function solutions and embedded inclusions, Physical Review B, vol.74, no.1, p.014110,2006.
    [117]D. Lee and T. W. Noh, Giant flexoelectric effect through interfacial strain relaxation, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol.370, pp.4944-4957,2012.
    [118]A. K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics, Physical Review B, vol.34, no.8, pp.5883-5889,1986.
    [119]C. Kelchner, S. Plimpton, and J. Hamilton, Dislocation nucleation and defect structure during surface indentation, Physical Review B, vol.58, no.17, pp. 11085-11088, Nov.1998.
    [120]C. R. Robinson, K. W. White, and P. Sharma, Elucidating the mechanism for indentation size-effect in dielectrics, Applied Physics Letters, vol.101, p. 122901,2012.
    [121]M. Busche and K. Hsia, Fracture and domain switching by indentation in barium titanate single crystals, Scripta Materialia, vol.44, no.2, pp.207-212, Feb.2001.
    [122]K. E. Aifantis and A. H. W. Ngan, Modeling dislocation—grain boundary interactions through gradient plasticity and nanoindentation, Materials Science and Engineering: A, vol.459, no.1-2, pp.251-261, Jun.2007.
    [123]V. Koval, M. J. Reece, and A. J. Bushby, Relaxation Processes in Dielectric and Electromechanical Response of PZT Thin Films Under Nanoindentation, Ferroelectrics, vol.318, pp.55-61,2005.
    [124]M. Gharbi, Z. H. Sun, P. Sharma, K. White, S. El-borgi, and A. S. A, Flexoelectric properties of ferroelectrics and the nanoindentation size-effect, InternationalJournal of Solids and Structures, vol.48, no.2, pp.249-256, 2011.
    [125]S. Baskaran, S. Thiruvannamalai, H. Heo, H. J. Lee, S. M. Francis, N. Ramachandran, and J. Y. Fu, Converse piezoelectric responses in nonpiezoelectric materials implemented via asymmetric configurations of electrodes, Journal of Applied Physics, vol.108, p.064116,2010.
    [126]W. Zhu, J. Y. Fu, N. Li, and L. Cross, Piezoelectric composite based on the enhanced flexoelectric effects, Applied Physics Letters, vol.89, p.192904, 2006.
    [127]P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott, Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals, Physical Review Letters, vol.99, no.16, p.167601,2007.
    [128]K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Enhancement of ferroelectricity in strained BaTiO3 thin films., Science, vol. 306, no.5698, pp.1005-1009, Nov.2004.
    [129]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films, Journal of Physics: Condensed Matter, vol.16, pp. 2253-2264,2004.
    [130]G. Catalan, B. Noheda, J. Mcaneney, L. J. Sinnamon, and J. M. Gregg, Strain gradients in epitaxial ferroelectrics, Physical Review B, vol.72, p.020102, 2005.
    [131]a. Gruverman, B. J. Rodriguez, a. I. Kingon, R. J. Nemanich, a. K. Tagantsev, J. S. Cross, and M. Tsukada, Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors, Applied Physics Letters, vol.83, no.4, pp. 728-730,2003.
    [132]A. Y. Borisevich, E. A. Eliseev, A. N. Morozovska, C.-J. Cheng, J.-Y. Lin, Y. H. Chu, D. Kan, I. Takeuchi, V. Nagarajan, and S. V Kalinin, Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction, Nature communications, vol.3, p.775, Jan.2012.
    [133]D. Lee, A. Yoon, S. Y. Jang, J.-G. Yoon, J.-S. Chung, M. Kim, J. F. Scott, and T. W. Noh, Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films, Physical Review Letters, vol.107, no.5, p.057602, Jul.2011.
    [134]Z. Wang, X. X. Zhang, X. Wang, W. Yue, J. Li, J. Miao, and W. Zhu, Giant Flexoelectric Polarization in a Micromachined Ferroelectric Diaphragm, Advanced Functional Materials, vol.23, pp.124-132,2013.
    [135]V. Lyahovitskaya, I. Zon, Y. Feldman, S. R. Cohen, A. K. Tagantsev, and I. Lubomirsky,-Pyroelectricity in Highly Stressed Quasi-Amorphous Thin Films, Advanced Materials, vol.15, no.21, pp.1826-1828, Nov.2003.
    [136]V. Lyahovitskaya, Y. Feldman, I. Zon, E. Wachtel, K. Gartsman, A. Tagantsev, and I. Lubomirsky, Formation and thermal stability of quasi-amorphous thin films, Physical Review B, vol.71, no.9, p.094205, Mar.2005.
    [137]A. I. Frenkel, Y. Feldman, V. Lyahovitskaya, E. Wachtel, and I. Lubomirsky, Microscopic origin of polarity in quasiamorphous BaTiO3, Physical Review B, vol.71, p.024116,2005.
    [138]A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, Origin of Polarity in Amorphous SrTiO3, Physical Review Letters, vol.99, p.215502,2007.
    [139]D. Ehre, H. Cohen, V. Lyahovitskaya, A. Tagantsev, and I. Lubomirsky, Structural Transformations during Formation of Quasi-Amorphous BaTiO3, Advanced Functional Materials, vol.17, pp.1204-1208,2007.
    [140]D. Ehre, V. Lyahovitskaya, and I. Lubomirsky, The influence of the Ti/Ba ratio on the formation of pyroelectric and piezoelectric quasi-amorphous films, Journal of Materials Research, vol.22, no.10, pp.2742-2746,2007.
    [141]D. Ehre, H. Cohen, V. Lyahovitskaya, and I. Lubomirsky, X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3, Physical Review B, vol.77, p.184106,2008.
    [142]E. Wachtel and I. Lubomirsky, Quasi-amorphous inorganic thin films: non-crystalline polar phases., Advanced materials, vol.22, no.23, pp. 2485-2493,2010.
    [143]V. Shelukhin, D. Ehre, E. Lavert, E. Wachtel, Y. Feldman, A. Tagantsev, and I. Lubomirsky, Structural Determinants of the Sign of the Pyroelectric Effect in Quasi-Amorphous SrTiO3 Films, Advanced Functional Materials, vol.21, no. 8, pp.1403-1410, Apr.2011.
    [144]D. Ehre, V. Lyahovitskaya, A. Tagantsev, and I. Lubomirsky, Amorphous Piezo- and Pyroelectric Phases of BaZrO3 and SrTiO3, Advanced Materials, vol. 19, pp.1515-1517,2007.
    [145]J.L.Wang, A.Pancotti, P.Jegou, G.Niu, B.Gautier, Y.Y.Mi, L.Tortech, S.Yin, B.Vilquin, and N.Barrentt, Ferroelectricity in a quasiamorphous ultrathin BaTiO3 film, Physical Review B, vol.84, p.205426,2011.
    [146]S. R. Patil and R. Melnik, Defects-enhanced flexoelectricity in nanostructures, Procedia Engineering, vol.1, pp.105-108, Jul.2009.
    [147]I. Naumov, A. M. Bratkovsky, and V. Ranjan, Unusual Flexoelectric Effect in Two-Dimensional Noncentrosymmetric sp2-Bonded Crystals, Physical Review Letters, vol.102, p.217601,2009.
    [148]S. V. Kalinin and V. Meunier, Electronic flexoelectricity in low-dimensional systems, Physical Review B, vol.77, p.033403,2008.
    [149]R. Resta, Towards a Bulk Theory of Flexoelectricity, Physical Review Letters, vol.105, no.12, p.127601, Sep.2010.
    [150]D. Lee, S. M. Yang, J.-G. Yoon, and T. W. Noh, Flexoelectric rectification of charge transport in strain-graded dielectrics, Nano letters, vol.12, pp. 6436-6440,2012.
    [151]S. Hu and H. Tzou, Signal analysis of flexoelectric transducers on rings, Proceedings of the 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, vol.2, pp.106-111, Dec.2010.
    [152]S. Ahn and J. Kim, Origin of Polar Domains in Ferroelectric Relaxor of Perovskite Oxides, Journal of the Korean Physical Society, vol.42, pp. S1009-S1011,2003.
    [153]G.Catalan, A.Lubk, A.H.G.Vlooswijk, E.Snoeck, C.Magen, A.Janssens, G.Rispens, G.Rijnders, D.H.A.Blank, and B.Noheda, Flexoelectric rotation of polarization in ferroelectric thin films, Nature materials, vol.10, pp.963-967, 2011.
    [154]R. Tararam, I. K. Bdikin, N. Panwar, J. a. Varela, P. R. Bueno, and a. L. Kholkin, Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics, Journal of Applied Physics, vol.110, no.5, p.052019,2011.
    [155]J. Hong, G. Catalan, J. F. Scott, and E. Artacho, The flexoelectricity of barium and strontium titanates from first principles, Journal of physics. Condensed matter, vol.22, p.112201,2010.
    [156]M. L. Zhao, L. H. Wang, C. L. Wang, J. L. Zhang, Z. G. Gai, C. M. Wang, and J. C. Li, Interface-induced piezoelectricity in an unpoled Nao.sBio sTiO3-based composite ceramic, Applied Physics Letters, vol.95, p.022904,2009.
    [157]基泰尔,固体物理导论(第八版)(中文版).北京:化学工业出版社;材料科学与工程出版中心,2005.
    [158]黄惠忠,表面化学分析.上海:华东理工大学出版社,2007.
    [159]殷之文,电介质物理学 第二版.北京:科学出版社,2003.
    [160]朱自莹,顾仁傲,陆天虹,拉曼光谱在化学中的应用.沈阳:东北大学出版社,1997.
    [161]D. Schutz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, and K. Reichmann, Lone-Pair-Induced Covalency as the Cause of Temperatureand Field-Induced Instabilities in Bismuth Sodium Titanate, Advanced Functional Materials, vol. 22, no.11, pp.2285-2294,2012.
    [162]陈敏,肖定全,孙勇,吴浪,赁敦敏,朱建国,钛酸铋钠基无铅压电陶瓷研究近期进展,功能材料,vol.38,no.8,pp.1229-1233,2007.
    [163]Y. Hidaka, S. Tsukada, and S. Kojima, Aging of Dielectric Properties in Nao.s Bi0.5TiO3 Ceramics," Ferroelectrics, vol.376, no.1, pp.134-139, Dec.2008.
    [164]E.-M. Anton, W. Jo, D. Damjanovic, and J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics, Journal of Applied Physics, vol.110, no.9, p.094108,2011.
    [165]B.Parija, T.Badapanda, V.Senthil, S.K.Rout, and S.Panigrahi, Diffuse phase transition, piezoelectric and optical study of Bio sNao 5TiO3 ceramic, Bulletin of Materials Science, vol.35, no.2, pp.197-202,2012.
    [166]M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrenberg, and H. Fuess, Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics, Journal of Applied Crystallography, vol.43, no.6, pp. 1314-1321, Oct.2010.
    [167]W. Ge, H. Liu, X. Zhao, W. Zhong, X. Pan, T. He, D. Lin, H. Xu, X. Jiang, and H. Luo, Growth, optical and electrical properties of pure and Mn-doped Na0.5Bi0.5Ti03 lead-free piezoelectric crystals, Journal of Alloys and Compounds, vol.462, no.1-2, pp.256-261, Aug.2008.
    [168]J. Kreisel, A. M. Glazer, P. Bouvier, and G. Lucazeau, High-pressure Raman study of a relaxor ferroelectric The Na0.5Bi0.5TiO3 perovskite, Physical Review B, vol.63, no.17, p.174106,2001.
    [169]R. Zuo, S. Su, Y. Wu, J. Fu, M. Wang, and L. Li, Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bio.5Nao.5)Ti03 ceramics, Materials Chemistry and Physics, vol.110, pp. 311-315,2008.
    [170]I. Levin and I. M. Reaney, Nano-and Mesoscale Structure of Na0.5Bi0.5TiO3: A TEM Perspective, Advanced Functional Materials, vol.22, no.16, pp. 3445-3452, Aug.2012.
    [171]S.-T. Zhang, Alain Brice Kounga, Emil Aulbach, Torsten Granzow, Wook Jo, Hans-Joachim Kleebe, and J. Rodel, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I.Structure and room temperature properties, Journal of Applied Electrochemistry, vol.103, no.3, p. 034107,2008.
    [172]S.T. Zhang, Alain Brice Koungal, Emil Aulbachl, Wook Jol, Torsten Granzowl, Helmut Ehrenberg, and J. Rodel 1, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. 11. Temperature dependent properties, Journal of Applied Physics, vol.103, no. 3, p.034108,2008.
    [173]盖志刚,钛酸铋钠无铅压电陶瓷与高温铋层无铅压电陶瓷探索,山东大学,2008.
    [174]Lars Gunnar Sillen, X-ray studies on oxides and oxyhalides of trivalent bismuth(Inaugural dissertation), Stockholm,1940.
    [175]L. Wiehl, A. Friedrich, E. Haussiihl, W. Morgenroth, A. Grzechnik, K. Friese, B. Winkler, K. Refson, and V. Milman, Structural compression and vibrational properties of Bi12SiO20 sillenite from experiment and theory, Journal of physics. Condensed matter, vol.22, p.505401,2010.
    [176]V. I. Burkov, V. S. Gorelik, A. V Egorysheva, and Y. F. Kargin, Laser Raman Spectroscopy of Crytals With the Structure of Sillenite Crystal and Atomic Structure of Sillenite-Type Compounds, Journal of Russian Laser Research, vol.22, no.3, pp.243-267,2001.
    [177]S. Stepanov, N. Korneev, A. Gerwens, and K. Buse, Self-diffraction from free surface relief gratings in a photorefractive Bi12TiO20 crystal, Applied Physics Letters, vol.72, no.8, pp.879-881,1998.
    [178]S.Lanfred, J.F.Carvalho, and A.C.Hernandes, Electric and dielectric properties of Bi12TiO20 single crystals, Journal of Applied Physics, vol.88, no.1, pp. 283-287,2000.
    [179]S. Miyazawa and Takuzo Tabata, Bi2O3-TiO2 binary phase diagram study for TSSG pulling of Bi12TiO20 single crystals, Journal of Crystal Growth, vol.191, pp.512-516,1998.
    [180]V.A.Isupov, Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 Perovskites and Their Solid Solutions and ferroelectric properties, Ferroelectrics, vol.315, pp. 123-147,2005.
    [181]H.Schweppe and P.Quadflieg, Electromechanical Properties of Bismuth Silicon Oxide, IEEE Transactions on Sonics and Ultrasonics, vol. Su-21, no.1, pp. 56-57,1974.
    [182]M. L. Zhao, L. H. Wang, C. L. Wang, J. L. Zhang, Z. G. Gai, C. M. Wang, and J. C. Li, Amorphous phases and piezoelectricity in (Na0.5Bi0.5)0.94Ba0.06TiO3-Bi12TiO20 flexoelectric-type nanocomposite ceramics, Scripta Materialia, vol. 63, no.2, pp.207-210,2010.
    [183]A.D.Morrison, Some properties of Bi12TiO20 and the system Bi2O3-TiO2, Ferroelectrics, vol.2, pp.59-62,1971.
    [184]A. Chen, Z. Yu, J. Scott, A. Loidl, R. Guo, A. S. Bhalla, and L. E. Cross, Dielectric polarization processes in Bi:SrTiO3, Journal of Physics and Chemistry of Solids, vol.61, pp.191-196,2000.
    [185]T.Sakudo and H.Unoki, Dielectric Properties of SrTiO3 at Low Temperatures, Physical review letters, vol.26, no.14, pp.851-853,1971.
    [186]V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, M. Savinov, P. Samoukhina, T. Ostapchuk, M. Avdeev, A. Kholkin, P. Vilarinho, and J. Pokorny, Broad-band dielectric spectroscopy of SrTiO3:Bi ceramics, Physical Review B, vol.69, p.144104,2004.
    [187]C. Filipic and A. Levstik, Critical behavior of ferroelectric SrTi18O3, Physical Review B, vol.73, no.9, p.092104, Mar.2006.
    [188]U. Bianchi, J. Dec, W. Kleemann, and J. Bednorz, Cluster and domain-state dynamics of ferroelectric Sr_(1-x)Ca_xTiO3 (x=0.007), Physical Review B, vol.51, no.14, pp.8737-8746, Apr.1995.
    [1891 F. La Mattina, J. G. Bednorz, S. F. Alvarado, A. Shengelaya, K. A. Miiller, and H. Keller, Controlled oxygen vacancies and space correlation with Cr3+in SrTiO3, Physical Review B, vol.80, p.075122,2009.
    [190]C. Ang and Z. Yu, Dielectric properties and complex defect in (Sri-xBi2/3X)Ti03 ceramics, Journal of Applied Physics, vol.71, no.9, pp.4451-4454,1992.
    [191]Y. Zhi, A. Chen, P. M. Vilarinho, and J. L. Baptistat, Dielectric Relaxation Behaviour of Bi:SrTiO3:Ⅰ. The Low Temperature Permittivity Peak, Journal of the European Ceramic Society, vol.2219, no.98, pp.1613-1619,1998.
    [192]Y. Zhi, A. Chen, P. M. Vilarinho, and J. L. Baptistat, Dielectric Relaxation Behaviour of Bi:SrTiO3:Ⅱ. Influence of Heat Treatment on Dielectric Properties, Journal of the European Ceramic Society, vol.2219, no.98, pp. 1621-1628,1998.
    [193]Y. Zhi, A. Chen, P. M. Vilarinho, and P. Q. Mantas, Dielectric Relaxation Behaviour of Bi:SrTi03:Ⅲ Dielectric properties in the temperature range of 300-600 K, Journal of the European Ceramic Society, vol.2219, no.98, pp. 1629-1635,1998.
    [194]C. Ang,Z. Yu, P.M. Vilarinho, and J. L. Baptista, Bi:SrTiO3:A quantum ferroelectric and a relaxor, Physical Review B, vol.57, no.13, pp.7403-7406, 1998.
    [195]S. Sarkar, X. Ren, and K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti(50-X)Ni(50+X)., Physical review letters, vol.95, no.20, p.205702,2005.
    [196]徐祖耀,马氏体相变与马氏体第二版.北京:科学出版社,1999.
    [197]T.Kakeshita, T.Fukuda, A.Saxena, and A.Planes, Disorder and Strain-Induced Complexity in Functional Materials. New York: Springer Science+Business Media,2012.
    [198]G.Schmidt, Diffuse ferroelectric phase transitions in cubically sabilized perovskites, Phase Transitions, vol.20, pp.127-162,1990.
    [199]Weinduo Yang, X-ray photoelectron spectroscopy and electrical properties studies of La2O3-doped strontium titanate ceramics prepared by sol-precipitation method, Journal of Materials Science, vol.34, pp.3533-3544, 1999.
    [200]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, Evidence for competing orderings in strontium titanate from hyper-Raman scattering spectroscopy, Europhysics Letters, vol.50, no.5, pp.688-694,2000.
    [201]T. Shigenari and K. Abe, Origin of the Ferroelectricity in SrTi18O3 Studied by Raman Scattering, Ferroelectrics, vol.369, no.1, pp.117-126, Oct.2008.
    [202]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, Infrared and Raman studies of the dead grain-boundary layers in SrTiO3 fine-grain ceramics, Journal of physics. Condensed matter, vol.19, p.196222,2007.
    [203]A. B. Shi, W. Z. Shen, and H. Wu, Phase transition temperature of SrTiO3 ultrathin films:An annealing study by ultraviolet Raman spectroscopy, Applied Physics Letters, vol.91, no.11, p.112910,2007.
    [204]A. F. Lima, S. A. S. Farias, and M. V Lalic, Structural,electronic, optical,and magneto-optical properties of Bi12MO2o (M=Ti, Ge, Si) sillenite crystals from first principles calculations, Journal of Applied Physics, vol.110, p. 083705,2011.
    [205]A. V Egorysheva, V. I. Burkov, V. S. Gorelik, and A. V Chervyakov, Raman Scattering in Sillenite-Type Crystals, Crystallography Reports, vol.46, no.3, pp.511-518,2001.
    [206]B. Mihailova, Raman spectroscopy study of sillenites. II. Effect of doping on Raman spectra of Bu2Ti02o, Journal of Physics and Chemistry of Solids, vol. 60, no.11, pp.1829-1834,1999.
    [207]D. A. Tenne, A. K. Farrar, C. M. Brooks, T. Heeg, J. Schubert, H. W. Jang, C. W. Bark, C. M. Folkman, C. B. Eom, and D. G. Schlom, Ferroelectricity in nonstoichiometric SrTiO3 films studied by ultraviolet Raman spectroscopy, Applied Physics Letters, vol.97, p.142901,2010.
    [208]D. A. Tenne and X. Xi, Raman Spectroscopy of Ferroelectric Thin Films and Superlattices, Journal of the American Ceramic Society, vol.91, no.6, pp. 1820-1834,2008.
    [209]L. J. Zhang, T. Wang, L. H. Wang, J. D. Liu, M. L. Zhao, and B. J. Ye, Structural defects and non-ferroelectric piezoelectricity in an unpoled SrTiO3-Bi12TiO20(ST-BT) composite ceramics, Scripta Materialia, vol.67, pp.61-64,2012.
    [210]张丽娟,王力海,刘建党,李强,成斌,张杰,安然,赵明磊,叶邦角,非铁电压电复合陶瓷SrTiO3-Bi12TiO20(ST-BT)的正电子湮没谱学研究,物理学报,vol.61,no.23,p.237805,2012.
    [211]T.M.Bruton, Study of the Liquidus in the System Bi2O3-TiO2, Journal of Solid State Chemistry, vol.9, pp.173-175,1974.
    [212]A. Rosyidah, D. Onggo, Khairurrijal, and Ismunandar, Atomic Simulations of Aurivillius Oxides:Bi3TiNbO9,Bi4Ti3O12, BaBi4Ti4O15 and Ba2Bi4iTi5O18 Doped with Pb,Al, Ga,In,Ta, Journal of the Chinese Chemical Society, vol.55, pp.115-120,2008.
    [213]T. Jardiel, A. C. Caballero, and M. Villegas, Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics, Journal Of The Ceramic Society Of Japan, vol. 116, no.4, pp.511-518,2008.
    [214]P. Ferrer, M. Alguero, J. E. Iglesias, and A. Castro, Processing and dielectric properties of Bi4Srn-3Tin03n+3 (n=3,4 and 5) ceramics obtained from mechanochemically activated precursors, Journal of the European Ceramic Society, vol.27, no.13-15, pp.3641-3645, Jan.2007.
    [215]范素华,张丰庆,车全德,于冉,田清波,烧结温度对Sr2Bi4Ti5O18铁电陶瓷性能的影响,材料热处理学报,vol.30,no.6,pp.5-8,2009.
    [216]C. Jovalekic, M. Pavlovic, P. Osmokrovic, and L. Atanasoska, "W8-X-ray photoelectron spectroscopy study of Bi4Ti3O12 ferroelectric ceramics," Applied Physics Letters, vol.72, no.9, pp.1051-1053,1998.
    [217]A. A.Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, and E. Takayama-Muromachi, High-Pressure Synthesis, Crystal Structures, and Properties of Perovskite-like BiA103 and Pyroxene-like BiGaO3, Chemistry of Materials, vol.18, pp.133-139,2006.
    [218]王力海,赵明磊,王春雷,张家良,盖志刚,王春明,李吉超,未极化Bi4Ti3O12-Bi2Al4O9-Bi2O3复合陶瓷的压电各向异性,压电与声光,vol.32,no.5,pp.841-844,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700