用户名: 密码: 验证码:
新型金属有机羧酸骨架晶体材料的设计合成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文依据晶体工程学原理,从金属有机骨架晶体材料的功能性出发,主要研究这类化合物的合成、拓扑结构和多功能性质,旨在探索金属有机骨架晶体材料的结构多样性;并在结构研究的基础上,开发新型次级结构单元以及具有新颖拓扑结构的金属有机骨架晶体材料的设计合成与性质应用。本论文选择不同构型的有机羧酸配体合成出十一种金属有机骨架晶体材料,对其进行了单晶结构解析,并研究了金属中心和开放骨架结构赋予这些材料在光学、磁学、储存以及吸附分离方面的性能。
     第一章为绪论,概述了金属有机骨架材料的相关术语、合成研究与发展,金属有机骨架材料的分类、金属有机骨架晶体材料以及稀土元素构筑的金属有机骨架晶体材料。在第二章中,我们利用半刚性的多齿有机羧酸配体——1,3,5-环己三酸与稀土金属元素合成了七个三维具有开放骨架结构的金属有机骨架晶体材料,由于稀土元素在光学和磁学方面的特殊性能,所获得的金属有机骨架材料不仅具有较好的吸附和储存性质,而且拥有金属中心赋予的独特的光学和磁学性能。在第三章中,基于结构与拓扑学的分析,我们以1,4-反丁烯二酸作为有机羧酸配体合成金属有机骨架材料的研究为基础,选择(1,4-反丁烯二酸+乙酸)和(1,4-反丁烯二酸+1,3,5-均苯三酸)同时参与构筑骨架结构,分别采用中温扩散法和溶剂热反应法,设计合成了两个新颖的双羧酸配体构筑的金属有机骨架晶体材料。在第四章中,为了考察含有C=C键的半刚性羧酸配体对金属有机骨架晶体材料结构的影响,选择了1,2,3-丙烯三酸为有机配体,采用中温溶剂挥发的方法与过渡金属元素合成了具有三维结构的金属有机羧酸骨架晶体材料。
     本论文详细地阐述了上述金属有机骨架晶体材料的合成条件和方法、结构特点、光学、磁学以及储存和吸附分离性质。在丰富金属金属有机骨架材料合成化学和结构化学的同时,为该材料的定向合成和性质开发积累了有价值的实验事实。
Recent ten years, metal-organic frameworks (MOFs), a kind of functional molecular material, have attracted much attention for their flexible tailoring, various topologies and promising application in ion-exchange, adsorption, molecular recognization, catalysts along with optics, electrics, magnetism and enantioselective separation. Metal-organic frameworks with rigid open frameworks, zeolite-like materials, possess not only porous phases similar to inorganic zeolites but also better performance in gas adsorption and storage than traditional zeolites. Along with the design and preparation of MOFs of larger channels and cavities, much attention has turned to synthesize metal-organic frameworks with the promising applications in optics, electric, magnetism, enantioselective separation and catalysis by selecting functional metal ions and organic ligands with specific groups.
     According to the principle of molecular engineering, we have focused our study on the synthesis, structures and multifunctional properties of MOFs with charming topologies. In this dissertation, we have prepared 15 new MOFs by using different organic carboxylate ligands, and analyzed their topology structures as well as explored their multifunctional properties. These results will be introduced from the following three issues:
     (1) New materials with rare earth element are of great interests due to their many research groups have choosen rare earth elements as metal centers to assemble metal organic frameworks and a number of novel frameworks have been synthesized. However, it is really difficult to obtain open frameworks with permanent porosities for their high-coordination number and flexible coordination geometry compared with traditional metals, especially under hydrothermal conditions. Considering the functions of metal-organic frameworks and the synthesis conditions, we designed and synthesized six metal-organic frameworks based on rare earths by choosing multidentate organic carboxylate ligand, H3CTC, and using mild solvent vapor conditions. We also investigated their topology, gas storage, adsorption, optical and magnetic properties coming from rare earth metal centers. For six compounds, compound 1 shows Tb3+ characteristic emission in the range of 460 ~ 660 nm; compound 1-5 are equivalent to the adsorption of about fifteen water molecular or seven methanol molecules per unit cell; compound 7 could separate methane and carbon dioxide after removing all of the free moleculars in its channel; the compound 1 and 7 exhibit the antiferromagnetic interaction between the Tb3+/Yb3+ ions.
     (2) Normally, the metal-organic frameworks (MOFs) are constructed by transition metals / rare earth metals and multidentate ligands containing oxygen or nitrogen atoms. The metal-organic frameworks consisting of the ligands containing oxygen atoms, such as fumaric acid, and the ligands containing nitrogen atoms have attracted much attention. But the reports about the metal-organic frameworks, consisting of fumaric acid and another organic carboxylate ligand togther, are rare. Basing on the research of the metal-organic frameworks contaning fumaric acid, we designed and synthesized two kind of metal-organic di-boxylate frameworks under the mild solvent vapor condition and solvothermal condition respectively, by choosing (fumaric acid + acetic acid) and (fumaric acid + 1, 3, 5- benzenetriboxylate acid) as organic carboxylate ligands. We analyzed their structures and topologies, and characterized their powder XRD curves, and IR spectrum and fluorenscen properties.
     (3) In order to obtain large pores and caves, much attention is attracted to synthesizing the metal-organic frameworks by developing the organic ligands. And the ligands contining aromatic and unsaturated groups are the one of the best choice. But the research of the metal-organic frameworks constructed by flexible carboxylate ligands containing unsaturated groups is less than rigid or aromatic carboxylate ligands. We synthesized 3-D metal-organic frameworks with 1, 2, 3-propylenetriboxylate acid as organic ligand under the mild temperature condition. And we characterized their crystal structures, powder XRD curves, IR and fluorescence pretrum.
引文
[1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710-712.
    [2] F. Schuth, W. Schmidt, Adv. Mater., 2002, 14, 629-638.
    [3] J. Ying, C. Mehnert, M. Wong, Angew. Chem. Int. Ed., 1999, 38, 56.
    [4] T. Maschmeyer, F. Rey, G. Sankar, J. Thomas. Nature, 1995, 378, 159.
    [5] T. Sun, J. Y. Ying, Nature, 1997, 389, 704-706.
    [6] W. H. Baur, Nature Materials, 2003, 2, 17-18.
    [7] G. Wirnsberger, P. Yang, B. J. Scott, B. F. Chmelka, G. D. Stucky, Spectro-chim. Acta A, 2001, 57, 2049.
    [8] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature, 2005, 436, 238-241.
    [9] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jin, K. Kim, Nature, 2000, 404, 982.
    [10] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319-330.
    [11] J. L. C. Rowsell, O. M. Yaghi, Micro. Meso. Mater., 2004, 73, 3-14.
    [12] A. F. Wells, Three Dimensional Nets and Polyhedra, New York, 1977.
    [13] A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford Univ. Press, 1983.
    [14] O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature, 2003, 423, 705-714.
    [15] S. R. Batten. R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460-1494.
    [16] S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, J. Chem. Soc., Dalton Trans., 1999, 2977-2986.
    [17] M. J. Plater, M. R. St. J. Foreman, T. Gelbrich, M. B. Hursthouse, J. Chem.Soc., Dalton Trans., 2000, 1995-2000.
    [18] J. L. C. Rowsell, O. M. Yaghi, Micro. Meso. Mater., 2004, 73, 3-14.
    [19] D. P. Graddon, An Introduction to Coordination Chemistry, Pergamon Press, 1997, 4127.
    [20] H. J. Bruser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem., 1977, 16, 2704.
    [21] G. M. Schmidt, J. Pure Appl. Chem., 1971, 27, 647.
    [22] B. F. Hoskins, R. Robson, J. Am. Chem. Soc., 1989, 111, 5962.
    [23] M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc., 1994, 116, 1151.
    [24] G. B. Gardner, D. Venkataraman, J. S. Moore, S. Lee, Nature, 1995, 374, 792.
    [25] O. M. Yaghi, G. Li, H. Li, Nature, 1995, 378, 703.
    [26] B. Fleischer, A. M. Shachter, Inorg. Chem., 1991, 30, 3763.
    [27] A. Neels, B. M. Neels, H. Stoeckli-Evans, A. Clearfield, D. M. Poojary, Inorg. Chem., 1997, 36, 3402.
    [28] Q. M. Wang, G. C. Guo, T. C. W. Mak, Chem. Commun., 1999, 1849.
    [29] M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, M. Schroder, J. Am. Chem. Soc., 2000, 122, 4044.
    [30] Z. F. Chen, R. G. Xiong, J. Zheng, J. L. Zuo, X. Z. You, C. M. Che, H. K. Fun, J. Chem. Soc., Dalton Tran., 2000, 4010.
    [31] Y. Zhao, M. Hong, D. Sun, R. Cao, J. Chem. Soc, Dalton Trans., 2002, 1354.
    [32] O. Moers, A. Blaschette, P. G. Jones, Z. Fur, Anorg. Allg. Chem., 2003, 629, 989
    [33] R. Murugavel, K. Bahet, G. Anantharaman, Inorg. Chem., 2001, 40, 6870
    [34] M. J. Platers, R. A. Howie, A. J. Robert, Chem. Commun., 1997, 30, 893.
    [35] A. Aukauloo, X. Ottenwqaelder, R. Ruiz, Y. Journaux, Y. Pei, E. Riviere, B. Cervera, M. C. Munoz, Eur, J. Inorg. Chem., 1999, 209.
    [36] A. Aukauloo, X. Ottenwqaelder, R. Ruiz, Y. Journaux, Y. Pei, E. Riviere, B. Cervera, M. C. Munoz, Eur, J. Inorg. Chem., 1999, 209.
    [37] T. Soma, T. Iwamoto, Acta Crystallogr., 1996, C52, 1200.
    [38] F. Robinson, M. J. Zaworotko, Chem. Commun., 1995, 2413
    [39] O. M. Yaghi, H. L. Li, J. Am. Chem. Soc., 1996, 118, 295.
    [40] H. Gudbjartson, K. Biradha, K. M. Poirier, M. J. Zaworotko, J. Am. Chem. Soc., 1999, 121, 2599.
    [41] M. Munakata, L. P. Wu, T. Kuroda-Sowa, Advances in inorganic chemistry, 1999, 46, 175.
    [42] N. W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res., 2005, 38, 176-182.
    [43] S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science, 1999, 283, 1148-1150.
    [44] H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276.
    [45] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 1999, 283, 1148.
    [46] M. Eddaoudi, J. Kim, N. Rsi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469.
    [47] H. K. Chae, D. Y. Siberio-perez, J. Kim. Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature, 2004, 427, 323-527.
    [48] A. C. Sudik, A. P. C?té, A. G. Wong-Foy, M. O’Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed., 2006, 45, 2528.
    [49] Y. Q. Tian, C. X. Cai, Y. Ji, X. Z. You, S. M. Peng, G. H. Lee, Angew. Chem. Int. Ed., 2002, 41, 1384.
    [50] Q. Fang, G. Zhu, M. Xue, J. Sun, Y. Wei, S. Qiu, R. Xu, Angew. Chem. Int. Ed., 2005, 44, 3845.
    [51] X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed., 2006, 45, 1557.
    [52] K. S. Park, Z. Ni, A. P. C?té, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, PNAS, 2006, 103, 10186.
    [53] G. Férey, C. M.-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science, 2005, 309, 2040.
    [54] C. T . Dziobkowski, T. J . Wrobleski, D. B. Brown, Inorg. Chem. 1980, 20, 671.
    [55] R. D. Cannon, R. P. White, Chemical and Physical Properties of Trinuclear Bridged Metal Complexes, London, 1987, Vol. 36.
    [56] C. M.-Draznieks, J. M. Newsam, A. M. Gorman, C. M. Freeman, G. Férey, Angew. Chem. Int. Ed., 2000, 39, 2270.
    [57] C. M.-Draznieks, G. Férey, C. Sch?n, Z. Cancarevic, M. Jansen, Chem. Eur. J., 2002, 8, 4102.
    [58] C. M.-Draznieks, S. Girard, G. Férey, J. Am. Chem. Soc., 2002, 124, 15326.
    [59] C. M.-Draznieks, J. Dutour, G. Férey, Angew. Chem. Int. Ed., 2004, 43, 6290.
    [60] C. Serre, F. Millange, S. Surblé, G. Férey, Angew. Chem. Int. Ed., 2004, 43, 6285.
    [61] G. Férey, C. Serre, Caroline M.-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, Angew. Chem. Int. Ed., 2004, 43, 6296.
    [62] Polymorph Predictor is available in the Cerius2 Program suite from Accelrys, San Diego, USA and Cambridge, UK.
    [63]杜淼,卜显和,无机化学学报, 2003, 19, 1.
    [64] J. Hulliger, Angew. Chem. Int. Ed,. 1994, 33, 143.
    [65] B. Olenyuk, A. Fechtenkotter, P. J. Stang, J. Chem. Soc., Dalton Trans., 1998, 1707.
    [66] D. M. I. Goodgame, S. Menzer, A. T. Ross, D. J. Williams, Chem. Commun., 1994, 2605.
    [67] B. F. Abrahams, S. R. Batten, M. J. Grannas, H. Hamit, B. F. Hoskins, R. Robson, Angew. Chem. Int. Ed., 1999, 38, 1475.
    [68] X. H. Bu, W. Chen, S. L. Lu, R. H. Zhang, D. Z. Liao, W. M. Bu, M. Shionoya, F. Brisse, J. Ribas, Angew. Chem. Int. Ed., 2001, 40, 3201.
    [69] S. Lopez, M. Kaharaman, M. Harmata, S. W. Keller, Inorg. Chem., 1997, 36, 6138.
    [70] K. A. Hirsch, S. R. Wilson, J. S. Moore, Inorg. Chem., 1997, 36, 2961.
    [71] M. C. Hong, Y. J. Zhao, W. P. Su, R. Cao, M. Fujita, Z. Y. Zhou, A. S. C. Chan, Angew. Chem. Int. Ed., 2000, 39, 2468.
    [72] M. C. Hong, Y. J. Zhao, W. P. Su, R. Cao, M. Fujita, Z. Y. Zhou, A. S. C. Chan, J. Am. Chem. Soc., 2000, 122, 4819.
    [73] J. F. Ma, J. F. Liu, X. Yan, H. Q. Jia, Y. H. Lin, J. Chem. Soc., Dalton Trans.2000, 2403.
    [74] O. S. Jung, S. H. Park, K. M. Kim, H. G. Jang, Inorg. Chem., 1998, 37, 5781.
    [75] A. J. Blake, N. R. Brooks, N. R. Champness, P. A. Cooke, A. M. Deveson, D. Fenske, P. Hubberstey, W. S. Li, M. Schroder, J. Chem. Soc., Dalton Trans., 1999, 2103.
    [76] O. M. Yaghi, C. E. Davis, G. M. Li, H. L. Li, J. Am. Chem. Soc., 1997, 119, 2861.
    [77] O. M. Yaghi, G. Li, H. Li, Chem. Mater., 1997, 9, 1074.
    [78] Software packages SMART, and SAINT, Siemens Analytical X-ray Instruments inc., Madison, WI, 1996.
    [79]张琳萍,侯红卫,樊耀亭,程凤宏,无机化学学报, 2000, 16, 1.
    [80] C. Oldham, Comprehensive Coordination Chemistry, Vol.3. G. Wilkinson, R. D. Gillard, J. A. McCleverty, Oxford: Pergamon Press, 1987, ch.l5, 435.
    [81] W Chen, J Y Wang, C Chen, Inorg. Chem., 2003, 42, 944.
    [82] R. P. Catalina, S. Joaquín, H. M. Maria, Inorg. Chem., 2000, 39, 1363.
    [83]王雪蓓,王继业,宋会花,化学通报, 2005, w041, 1.
    [84] O. R. Evans, W. B. Lin, Acc. Chem. Res., 2002, 35, 511.
    [85] O. R. Evans, Z. Y. Wang, W. B. Lin, Chem. Commun., 1999, 1903.
    [86] W. B. Lin, L. Ma, O. R. Evans, Chem. Commun., 2000, 2263.
    [87] R. G. Xiong, J. L. Zuo, X. Z. You, B. F. Abrahams, Z. P. Bai, C. M. Che, H. K. Fun, Chem. Commun., 2000, 2061.
    [88] W. Lin, O. R. Evans, R. G. Xiong, Z. Y. Wang, J. Am. Chem. Soc., 1998, 120, 13272.
    [89] S. Hu, J. C. Chen, M. L. Tong, B. Wang, Y. X. Yan, S. R. Batten, Angew. Chem. Int. Ed., 2005, 44, 5471.
    [90] O. Ohmori, M. Kawano, M. Fujita, Angew. Chem. Int. Ed., 2005, 44, 1962.
    [91] L. R. MacGillivray, S. Subramanian, M. J. Zaworotko, Chem. Commun., 1994, 1325.
    [92] O. M. Yaghi, H. Li, J. Am. Chem. Soc., 1995, 117, 10401.
    [93] O. M. Yaghi, G. Li, Angew. Chem. Int. Ed., 1995, 34, 207.
    [94] O. M. Yaghi, H. Li, T. L. Groy, Inorg. Chem., 1997, 36, 4292.
    [95] P. Losier, M. J. Zaworotko, Angew. Chem. Int. Ed. Engl., 1996, 35, 2779.
    [96] X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, C. W. Hu, Angew. Chem. Int. Ed., 2004, 43, 5036.
    [97] O. Kahn, Molecular Magnetism, New York: VCH, 1993.
    [98] T. Mallah, S. Thiebaut, M. Verdaguer, Science, 1993, 262, 1554.
    [99] W. R. Entley, O. S. Girolami, Science, 1995, 268, 397.
    [100] S. Feriay, T. Mallah, R. Ouahes, Nature, 1995, 378, 701.
    [101] E. Dujardin, S. Feriay, X. Phan, J. Am. Chem. Soc., 1998, 120, 11347.
    [102] X. H. Bu, W. Chen, M. Du, B. Kumar, W. Z. Wang, R. H. Zhang, Inorg. Chem., 2002, 41, 437.
    [103] X. H. Bu, W. Weng, J. R. Li, R. H. Zhang, Inorg. Chem., 2002, 41, 413.
    [104] P. Lemaux, H. Bahri, G. Simonneaux, Chem. Commun., 1991, 1350.
    [105] Y. Kurado, Y. Kato, T. Higashioji, J. Am. Chem. Soc., 1995, 117, 10950.
    [106] S. Zhang, T. L. Brown, Y. Du, J. Am. Chem. Soc., 1993, 115, 6705.
    [107] K. Tang, S. L. Zheng, X. Lin, J. Chem. Soc., Dalton Trans., 1997, 3585.
    [108] J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4670.
    [109] N. L.Rosi, J. Eckert, M. Eddaoudi, D. V. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science, 2003, 300, 1127.
    [110] T. Duren, L. Sarkisov, O. M. Yaghi, R. Q. Snurr, Langmuir, 2004, 20, 2683-2689.
    [111] L. Pan, M. B. Sander, X. Y. Huang, J. Li, M. Smith, E. Bittner, B. Brockrath, J. K. Johnson, J. Am. Chem. Soc., 2004, 126, 1308.
    [112] H. Chun, D. N. Dybtsev, H. Kim, K. Kim Chem. Eur. J., 2005, 11, 3521.
    [113] M. Dincǎ, A. F. Yu, J. R. Long, J. Am. Chem. Soc., 2006, 128, 8904.
    [114] X. Lin, J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey, M. Schr?der, Angew. Chem. Int. Ed., 2006, 45, 7358.
    [115] B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. B. Lin, Angew. Chem. Int. Ed., 2005, 44, 72.
    [116] B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi,Angew. Chem. Int. Ed., 2005, 44, 4745.
    [117] A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
    [118] J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304.
    [119] S. Ma, D. Sun, M. W. Ambrogio, J. A. Fillinger, S. Parkin, H.-C. Zhou, J. Am. Chem. Soc., 2007, 129, 1858.
    [120] S. Ma, J. Eckert, P. M. Forster, J. W. Yoon, Y. K. Hwang, J.–S. Chang, C. D. Collier, J. B. Parise, H.-C. Zhou, J. Am. Chem. Soc., 2008, 130, 15896.
    [121] S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc., 2008, 130, 1012.
    [122]林国强,陈耀全等著,手性合成—不对称反应及其应用,北京:科学出版社,2000.
    [123] K. Inoue, H. Imai, P. S. Ghalsasi, K. Kikuchi, M. Ohab, H. Okawa, J. V. Yakhmi, Angew. Chem. Int. Ed., 2001, 40, 4242.
    [124] S. J. Lee, W. Lin, J. Am. Chem. Soc., 2002, 124, 1554.
    [125] C. Parlsen. B. B. Amabilino. J. Veciana, Angew. Chem. Int. Ed., 2002, 41, 586.
    [126] K. Inoue, K. Kikuchi, M. Ohba, H. Okawa, Angew. Chem. Int. Ed., 2003, 42 4810.
    [127] Y. Cui, O. W. Evans, H. L. Ngo, P. S. White, W. Lin, Angew. Chem. Int. Ed., 2002, 41, 1159.
    [128] O. R. Evans, H. L. Ngo, W. Lin, J. Am. Chem. Soc., 2001, 123, 10395.
    [129] C. Wu, A. Hu, L. Zhang, .W. Lin, J. Am. Chem. Soc., 2005, 127, 8940.
    [130] C. Wu, W. Lin, Angew. Chem. Int. Ed., 2005, 44, 1958.
    [131] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 982.
    [132] X. Shi, G. S. Zhu, S. L. Qiu, K. L. Huang, J. H. Yu, R. R. Xu, Angew. Chem. Int. Ed., 2004, 43, 6482.
    [133] R. W. Boyd, Nonlinear Optics, Academic Press, New York, 1992.
    [134] Y. R. Shen, The Principles of Nonliear Optics, Wiley, New York, 1984.
    [135] N. P. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991.
    [136] J. Zyss, Molecular Nonlienear Optics: Material, Physics, and Devices, Academic Press, New York, 1993.
    [137] W. E. Moerner, S. M. Silence, Chem. Rev., 1994, 94, 127.
    [138] D. M. Burland, R. D. Miller, C. A. Walsh, Chem. Rev., 1994, 94, 31.
    [139] T. J. Marks, M. A. Ratner, Angew. Chem., Int. Ed., 1995, 34, 155.
    [140] D. E. Bossi, R. W. Ade, Laser Focus World, 1992, 28, 135.
    [141] T. V. Higgins, Laser Focus World, 1992, 28, 125.
    [142] F. Agulló-López, J. M. Cabrera, F. Agulló-Rueda, Electrooptics: Phenomena, Materials and Applications; Academic Press: New York, 1994.
    [143] G. J. Ashwell, P. D. Jackson, W. A. Crossland, Nature, 1994, 368, 438.
    [144] T. L. Penner, H. R. Matschmann, N. J. Armstrong, M. C. Ezenyilimba, D. J. Williams, Nature, 1994, 367, 49.
    [145] W. Lin, G. K. Wong, T. J. Marks, J. Am. Chem. Soc., 1996, 118, 8034.
    [146] H. E. Katz, W. L. Wilson, G. Scheller, J. Am. Chem. Soc., 1994, 116, 6636.
    [147] R. G. Xiong, X. Xue, H. Zhao, X. Z. You, B. F. Abrahams, Z. L. Xue, Angew. Chem. Int. Ed., 2002, 41, 3800.
    [148] O. R. Evans, R. G. Xiong, Z. Y. Wang, G.. K. Wong, W. B. Lin, Angew. Chem. Int. Ed., 2004, 38, 536.
    [149] O. R. Evans, W. B. Lin, Acc. Chem. Res., 2002, 35, 511.
    [150] J. Perles, M. Iglesias, M.-A. Martin-Luengo, M. A. Monge, C. Ruiz-Valero, N. Snejko, Chem. Mater., 2005, 17, 5837.
    [151] G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science, 2002, 298, 1762.
    [152] K. Barthelet, J. Marrot, G. Férey, D. Riou, Chem. Commun., 2004, 520.
    [153] N. L. Rosi, M. Eddaoudi, J. Kim, M. O’Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed., 2002, 39, 284.
    [154] K. Barthelet, J. Marrot, D. Riou, G. Férey, Angew. Chem. Int. Ed., 2002, 41, 281.
    [155] K. Barthelet, K. Adil, F. Millange, C. Serre, D. Riou, G. Férey, J. Mater. Chem., 2003, 12, 2208.
    [156] K. Barthelet, D. Riou, G. Férey, Chem. Commun., 2002, 1492.
    [157] K. Barthelet, D. Riou, M. Nogues, G. Férey, Inorg. Chem., 2003, 42, 1739.
    [158] F. Millange, C. Serre, G. Férey, Chem. Commun., 2002, 822.
    [159] C. Serre, F. Millange,C. Thouvenot, M. Noguès, G. Marsolier, D. Lou?r, G. Férey, J. Am. Chem. Soc., 2002, 124, 13519.
    [160] K. R. Dunbar, J. Solid State Chem. 2001, 159, 251-252.
    [161] E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, V. Laukhin, Nature, 2000, 408, 447-449.
    [162] B. Moulton, J. J. Lu, R. Hajndl, S. Harkkharan, M. J. Zaworotko, Angew. Chem. Int. Ed., 2002, 41, 2821-2824.
    [163] J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. CortEs, L. Lezama, T. Rojo, Coord. Chem. Rev., 1999, 193–195, 1027.
    [164] R. CortEs, L. Lezama, J. L. Pizarro,M. I. Arriortua, X. Solans, T. Rojo, Angew. Chem. Int. Ed., 1994, 33, 2488.
    [165] T. F. Liu, D. Fu, S. Gao, Y. Z. Zhang, H. L. Sun, G. Su, Y.J. Liu, J. Am. hem. Soc., 2003, 125, 13976.
    [166] E. Q. Gao, S. Q. Bai, Z. M.Wang, C. H. Yan, J. Am. Chem. Soc., 2003, 125, 4984.
    [167] C. M. Liu, S. Gao, D. Q. Zhang, Y. H. Huang, R. G. Xiong, Z. L. Liu, F. C. Jiang, D. B. Zhu, Angew. Chem. Int. Ed., 2003, 43, 990.
    [168] X-Y. Wang, L. Wang, Z-M. Wang, S. Gao, J. Am. Chem. Soc., 2006, 128, 674.
    [169] T. M. Reineke, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed., 1999, 38, 2590-2594.
    [170] T. Devic, C. Serre, N. Audebrand, J. Marrot, G. Ferey, J. Am. Chem. Soc., 2005, 127, 12788.
    [171] Hayakawa, T.; Furuhashi, K.; Nogami, M. J. Phys. Chem. B., 2004, 108, 11301.
    [172] Serre, C.; Millange, F.; Marrot, J.; Ferey, G. Chem. Mater., 2002, 14, 2409.
    [173] Ma, L.; Evans, O. R.; Foxman, B. M.; Lin W. Inorg. Chem., 1999, 38, 5837.
    [174] de Zea Bermudez, V.; Ostrovskii, D.; Goncalves, M. C.; Lavoryk, S.; Carlos, L. D.; Sa Ferreira, R. A. J. Phys. Chem. B., 2005, 109, 7110.
    [175] B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, J. Am. Chem.Soc., 2004, 126, 15394.
    [176] T. M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley, O. M. Yaghi, J. Am. Chem. Soc., 1999, 121, 1651.
    [177] G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, T. S. Jones, J. Am. Chem. Soc., 2005, 127, 524.
    [178] C. Benelli, D. Gatteschi, Chem. Rev., 2002, 102, 2369.
    [179] H. H. Zhao, M. J. Bazile, J. R. Galane-Mascaros, K. R. Dunbar, Angew. Chem. Int. Ed., 2003, 42, 1015.
    [180] J. R. Galáne-Mascarós, K. R. Dunbar, Angew. Chem. Int. Ed., 2003, 42, 2289.
    [181] B.-Q. Ma, S. Gao, G. Su, G.-X. Xu, Angew. Chem. Int. Ed. Engl., 2001, 40, 434.
    [182] H. Z. Kou, S. Gao, B. W. Sun, J. Zhang, Chem. Mater., 2001, 13, 1432.
    [183] H. Z. Kou, S. Gao, X. Jin, Inorg. Chem., 2001, 40, 6295.
    [184] S. Gao, G. Su, T. Yi, B. Q. Ma, Phys. Rev. B, 2001, 62, 054431.
    [1] General reviewers on porous MOFs: Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature, 2003, 423, 705. Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. Engl., 2004, 43, 2334. Lin, W. B. J. Solid State Chem., 2005, 178, 2486. Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res., 2005, 38, 273. Férey, G. Chem. Soc. ReV., 2008, 37, 191.
    [2] General reviewers on MOFs for hydrogen storage: Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int. Ed., 2005, 44, 4670. Lin, X.; Jia, J. H.; Hubberstey, P.; Schr?der, M.; Champness, N. R. Cryst. Eng. Comm., 2007, 9, 438. Thomas, K. M. Catal. Today, 2007, 120, 389. Collins, D.; Zhou, H. J. Mater. Chem., 2007, 17, 3154. Hirscher, M.; Panella, B. Scr. Mater., 2007, 56, 809. Morris, R. E.; Wheatley, P. S. Angew. Chem., Int. Ed., 2008, 47, 4966.
    [3] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 1999, 283, 1148.
    [4] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469.
    [5] X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed., 2006, 45, 1557.
    [6] Y. Q. Tian, C. X. Cai, Y. Ji, X. Z. You, S. M. Peng, G. H. Lee, Angew. Chem. Int. Ed., 2002, 41, 1384.
    [7] K. S. Park, Z. Ni, A. P. C?té, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, PNAS, 2006, 103, 10186.
    [8] Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov, R. Luebke, M. Eddaoudi, Angew. Chem., Int. Ed., 2007, 46, 3278.
    [9] (a) B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4745. (b) B. Chen, C. Liang, J. Yang, D. S.Contreras, Y. L. Clancy, E. Lobkovsky, O. M. Yaghi, S. Dai, Angew. Chem., Int. Ed., 2006, 45, 1390. (c) B. Chen, S. Ma, F. Zapata, E. Lobkovsky, J. Yang, Inorg. Chem., 2006, 45, 5718. (d) B. Chen, S. Ma, F. Zapata, F. Fronczek, E. Lobkovsky, H. Zhou, Inorg. Chem., 2007, 46, 1233. (e) B. Chen, S. Ma, E. J. Hurtado, E. Lobkovsky, C. Liang, H. Zhu, S. Dai, Inorg. Chem., 2007, 46, 8705. (f) B. Chen, S. Ma, E. Hurtado, E. Lobkovsky, H. Zhou, H. Inorg. Chem., 2007, 46, 8490.
    [10] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334.
    [11] A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
    [12] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 982.
    [13] H. Li, M. O’Keeffe, O. M. Yaghi, Nature, 1999, 402, 276.
    [14] J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304.
    [15] D. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed., 2004, 43, 5033.
    [16] L. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J. K. Johnson, J. Am. Chem. Soc., 2004, 126, 1308.
    [17] J. Lee, D. H. Olson, L. Pan, T. J. Emge, J. Li, Adv. Funct. Mater., 2007, 17, 1255.
    [18] (a) S. Ma, H. Zhou, J. Am. Chem. Soc., 2006, 128, 11734. (b) S. Ma, D. Sun, X.–S. Wang, H. Zhou, Angew. Chem., Int. Ed., 2007, 47, 2458. (c) S. Ma, J. Eckert, P. M. Forster, J. W. Yoon, Y. K. Hwang, J.–S. Chang, C. D. Collier, J. B. Parise, H.-C. Zhou, J. Am. Chem. Soc., 2008, 130, 15896. (d) S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc., 2008, 130, 1012.
    [19] J. Zhang, X. Chen, J. Am. Chem. Soc., 2008, 130, 6010.
    [20] (a) Q. Fang, G. Zhu, Z. Jin, M. Xue, X. Wei, D. Wang, S. Qiu, Angew. Chem. Int. Ed., 2006, 45, 6126. (b) Q. Fang, G. Zhu, Z. Jin, Y. Ji, J. Ye, M. Xue, H. Yang, Y. Wang, S Qiu, Angew. Chem. Int. Ed., 2007, 46, 6638. (c) M. Xue, G. Zhu, Y. Li, X. Zhao, Z. Jin, E. Kang, S. Qiu, Crys. Growth & Des., 2008, 8, 2478.
    [21] X. Wang, S. Ma, K. Rauch, J. Simmons, D. Yuan, X. Wang, T. Yildrim, W. Cole,J. López, A. Meijere, H. Zhou, Chem. Mater., 2008, 20, 3145.
    [22] H. Chun, H. Jung, G. Koo, H. Jeong, D.–K. Kim, Inorg. Chem., 2008, 47, 5355.
    [23] L. Ma, J. Y. Lee, J. Li, W. Lin, Inorg. Chem., 2008, 47, 3955.
    [24] F. X. Llabrés i Xamena, A. Corma, H. Garcia, J. Phys. Chem. C, 2007, 111, 80.
    [25] M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garcia, Chem. Eur. J., 2008, 8, 5106.
    [26] D. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed., 2004, 43, 5033.
    [27] W. Lin, O. R. Evans, R. Xiong, Z. Wang, J. Am. Chem. Soc., 1998, 120, 13272.
    [28] G. Tian, G. Zhu, X. Yang, Q. Fang, M. Xue, J. Sun, Y. Wei, S. Qiu, Chem. Commun., 2005, 1396.
    [29] T. Qevic, C. Serre, N. Audebrand, J. Marror, G. Férey, J. Am. Chem. Soc., 2005, 127, 12788.
    [30] Q. Fang, G. Zhu, M. Xue, J. Zhang, J. Sun, X. Guo, S. Qiu, S. Xu, P. Wang, D. Wang, Y. Wei, Chem. Eur. J., 2006, 12, 3754.
    [31] Reinke, T. M.; Eddaoudi, M; Fehr, M.; Kelley, D.; Yaghi, O.M. J. Am. Chem. Soc., 1999, 121, 1651.
    [32] K.–L. Wong, G. -L. Law, Y.–Y. Yang, W.–T. Wong, Adv. Mater., 2006, 18, 1051.
    [33] X. Guo, G. Zhu, Q. Fang, M. Xue, G. Tian, J. Sun, X. Li, S. Qiu, Inorg. Chem., 2004, 44, 3850.
    [34] G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, T. S. Jones, J. Am. Chem. Soc., 2005, 127, 524.
    [35] T. M. Reineke, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed., 1999, 38, 2590.
    [36] B. Ma, D. Zhang, S. Gao, T. Jin, C. Yan, G. Xu, Angew. Chem. Int. Ed., 2002, 39, 3644.
    [37] X. Guo, G. Zhu, F. Sun, Z. Li, X. Zhao, X. Li, H. Wang, S. Qiu, Inorg Chem., 2005, 45, 2581.
    [38] C. Qin, X. Wang, E. Wang, Z. Su, Inorg. Chem., 2005, 44, 7122.
    [39] J. Perles, M. Iglesias, M.-A. Martin-Luengo, M. A. Monge, C. Ruiz-Valero, N.Snejko, Chem. Mater., 2005, 17, 5837
    [40] C. Benelli, D. Gatteschi, Chem. Rev., 2002, 102, 2369.
    [41] Z. Li, G. Zhu, X. Guo, X. Zhao, Z. Jin, S. Qiu, Inorg. Chem., 2007, 46, 5174.
    [42] B. Chen, Y. Yang, F. Zapata, G. Lin. G. Qian, E. Lobkovsky, Adv. Mater., 2007, 19, 1693.
    [43] B. Zhai, L. Yi, H. Wang, B. Zhan, P. Chen, D. Liao, S. Yan, Inorg. Chem., 2006, 45, 8471.
    [44] A. Sonnauer, C. Nther, H. A. Hppe, J. Senker, N. Stock, Inorg. Chem., 2007, 46, 9968.
    [45] G. Wang, G. Han, Q. Ye, R. Xiong, T. Akutagawa, T. Nakamura, P. Chen, S. Huang, Dalton Trans., 2008, 2527.
    [46] C. Daiguebonne, N. Kerbellec, O. Guillou, J. C. Bünzli, F. Gumy, L. Catala, T. Mallah, N. Audebrand, Y. Gérault, K. Bernot, G. Calvez, Inorg. Chem., 2008, 47, 3700.
    [47] Software packages SMART, and SAINT, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
    [48] SHELXTL, Version 5.1; Siemens Industrial Automation, Inc., 1997.
    [49] Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, G?ttingen University, Germany, 1997.
    [50] Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Refinement, G?ttingen University, Germany, 1997.
    [51] G. Liu, Z. Qiao, H. Wang, X. Chen, G. Yang, New J. Chem., 2002, 26, 791.
    [52] X. P. Yang, J. H. Rivers, W. J. McCarcy, M. Wiester, R. A. Jones, New J. Chem., 2008, 32, 793.
    [53] L. Y. Zhang, G. F. Liu, S. L. Zheng, B. H. Ye, X. M. Zhang, X. M. Chen, Eur. J. Inorg. Chem., 2003, 42, 2965.
    [54] J. C. Dai, X. T. Wu, Z. Y. Fu, C. P. Cui, S. M. Hu, W. X. Du, L. M. Wu, H. H. Zhang, R. Q. Sun, Inorg. Chem., 2002, 41, 1391.
    [55] B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P.Yan, Z. H. Jiang, J. Am. Chem. Soc., 2004, 126, 15394.
    [56] D. W. Breck, Zeolite Molecular Sieves; John Wiley & Sons: New York, 1974.
    [57] S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area, Porosity, 2nd ed.; Academic Press: London, U.K. 1982.
    [1] N. W. Ocking, O. Delgado-Friederichs, M. O’Keeffe, O. M. Yahgi, Acc. Chem. Res., 2005, 38, 176.
    [2] B. Moulton, M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.
    [3] S. R. Batten, R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460.
    [4] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, Acc. Chem. Res., 2005, 38,217.
    [5] X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, M. J. Rosseinsky, Science, 2004, 306, 1012.
    [6] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature, 2005, 436, 238.
    [7] A. Erxleben, Coord. Chem. Rev., 2003, 246, 203.
    [8] C. Janiak, Dalton Trans., 2003, 2781.
    [9] R. Vaidhyanathan, D. Bradshaw, J. N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky, Angew. Chem. Int. Ed., 2006, 45, 6495.
    [10] P. S. Mukherjee, T. K. Maji, G. Mostafa, J. Ribas, M. S. El Fallah, N. R. Chaudhuri, Inorg. Chem., 2001, 40, 928.
    [11] S. Konar, P. S. Mukherjee, E. Zangrando, F. Lloret, N. R. Chaudhuri, Angew. Chem., Int. Ed., 2002, 41, 1561.
    [12] A. Michaelides, S. Skoulika, M. G. Siskos, Chem. Commun., 2004, 2418.
    [13] H. Xie, Y. Zhang, K. Shou, J. Coor. Chem., 2003, 56, 1291.
    [14] E. Ying, Y. Zhang, H. Zhang, J. Coor. Chem., 2004, 57, 459.
    [15] Z. Li, Y. Zhang, J Coor. Chem., 2005, 58, 539.
    [16] G. Zhang, G. Yang, J. Ma, Cryst. Growth & Des., 2006, 6, 933.
    [17] T. J. Prior, D. Bradshaw, S. J. Teat, M. J. Rosseinsky, Chem. Commun., 2003, 500.
    [18] S. Horike, R. Matsuda, D. Tanaka, S. Matsubara, M. Mizuno, K. Endo, S. Kitagawa, Angew. Chem. Int. Ed., 2006, 45, 7226.
    [19] S. Horike, R. Matsuda, D. Tanaka, M. Mizuno, K. Endo, S. Kitagawa, J. Am. Chem. Soc., 2006, 128, 4222.
    [20] B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai, Angew. Chem. Int. Ed., 2006, 45, 1390.
    [21] L. Pan, H. M. Liu, X. G. Lei, X. Y. Huang, D. H. Olson, N. J. Turro, J. Li, Angew. Chem. Int. Ed., 2003, 42, 542.
    [22] M. H. Zeng, W. X. Zhang, X. Z. Sun, X. M. Chen, Angew. Chem. Int. Ed., 2005, 44, 2.
    [23] X. L. Wang, C. Qin, E. B. Wang, Z. M. Su, Chem. Eur. J., 2006, 12, 2680.
    [24] S. Dalai, P. S. Mukherjee, G. Rogez, T. Mallah, M. G. B. Drew, N. R. Chaudhuri, Eur. J. Inorg. Chem., 2002, 3292.
    [25] S. Konar, E. Zangrando, M. G. B. Drew, J. Ribas, N. R. Chaudhuri, Dalton. Trans., 2004, 260.
    [26] M. Du, X.–J. Jiang, X. Zhao, J. Ribas, Eur. J. Inorg. Chem., 2006, 6, 1245.
    [27] J. Yang, J.–F. Ma, Y. Liu, J.–C. Ma, S. R. Batten. Inorg. Chem., 2007, 46, 6542
    [28] J. Yang, J.-F. Ma, Y. Liu, J.–C. Ma, S. R. Batten., Cryst. Growth & Des., 2008, 8, 4383.
    [29] Software packages SMART, and SAINT, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
    [30] SHELXTL, Version 5.1; Siemens Industrial Automation, Inc., 1997.
    [31] Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, G?ttingen University, Germany, 1997.
    [32] Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Refinement, G?ttingen University, Germany, 1997.
    [33] X. Guo, G. Zhu, Q. Fang, M. Xue, G. Tian, J. Sun, X. Li, S. Qiu, Inorg. Chem., 2005, 44, 3850.
    [34] X. Guo, G. Zhu, F. Sun, Z. Li, X. Zhao, X. Li, H. Wang, S. Qiu, Inorg Chem., 2005, 45, 2581.
    [1] H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.
    [2] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 1999, 283, 1148-1150.
    [3]杜淼,卜显和,无机化学学报, 2003, 19, 1.
    [4] D. M. I. Goodgame, S. Menzer, A. T. Ross, D. J. Williams, Chem. Commun., 1994, 2605.
    [5] B. F. Abrahams, S. R. Batten, M. J. Grannas, H. Hamit, B. F. Hoskins, R. Robson, Angew. Chem. Int. Ed., 1999, 38, 1475.
    [6] X. H. Bu, W. Chen, S. L. Lu, R. H. Zhang, D. Z. Liao, W. M. Bu, M. Shionoya, F. Brisse, J. Ribas, Angew. Chem. Int. Ed., 2001, 40, 3201.
    [7] S. Lopez, M. Kaharaman, M. Harmata, S. W. Keller, Inorg. Chem., 1997, 36, 6138.
    [8] K. A. Hirsch, S. R. Wilson, J. S. Moore, Inorg. Chem., 1997, 36, 2961.
    [9] M. C. Hong, Y. J. Zhao, W. P. Su, R. Cao, M. Fujita, Z. Y. Zhou, A. S. C. Chan, Angew. Chem. Int. Ed., 2000, 39, 2468.
    [10] M. C. Hong, Y. J. Zhao, W. P. Su, R. Cao, M. Fujita, Z. Y. Zhou, A. S. C. Chan, J. Am. Chem. Soc., 2000, 122, 4819.
    [11] J. F. Ma, J. F. Liu, X. Yan, H. Q. Jia, Y. H. Lin, J. Chem. Soc., Dalton Trans., 2000, 2403.
    [12] General reviewers on porous MOFs: Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature, 2003, 423, 705. Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. Engl., 2004, 43, 2334. Lin, W. B. J. Solid State Chem., 2005, 178, 2486. Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res., 2005, 38, 273. Férey, G. Chem. Soc. ReV., 2008, 37, 191.
    [13] H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276.
    [14] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi,Science, 1999, 283, 1148.
    [15] M. Eddaoudi, J. Kim, N. Rsi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469.
    [16] H. K. Chae, D. Y. Siberio-perez, J. Kim. Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature, 2004, 427, 323-527.
    [17] K. S. Park, Z. Ni, A. P. C?té, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, PNAS, 2006, 103, 10186.
    [18] O. R. Evans, W. B. Lin, Acc. Chem. Res., 2002, 35, 511.
    [19] O. R. Evans, Z. Y. Wang, W. B. Lin, Chem. Commun., 1999, 1903.
    [20] W. B. Lin, L. Ma, O. R. Evans, Chem. Commun., 2000, 2263.
    [21] R. G. Xiong, J. L. Zuo, X. Z. You, B. F. Abrahams, Z. P. Bai, C. M. Che, H. K. Fun, Chem. Commun., 2000, 2061.
    [22] W. Lin, O. R. Evans, R. G. Xiong, Z. Y. Wang, J. Am. Chem. Soc., 1998, 120, 13272.
    [23] Q. Fang, G. Zhu, Z. Jin, M. Xue, X. Wei, D. Wang, S. Qiu, Angew. Chem. Int. Ed., 2006, 6126.
    [24] Q. Fang, G. Zhu, M. Xue, Q. Zhang, J .Sun, X. Guo, S. Qiu, S. Xu, P. Wang, D. Wang, Y. Wei, Eur. Chem. J.,2006, 12, 3754.
    [25] X. Guo, G. Zhu, F. Sun, Z. Li, X. Zhao, X. Li, H. Wang, S. Qiu, Inorg. Chem., 2006, 45, 2581.
    [26] X. Lin, J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey, M. Schr?der, Angew. Chem. Int. Ed., 2006, 45, 7358.
    [27] X. Guo, G. Zhu, Z. Li, Y. Chen, X. Li, S. Qiu, Inorg. Chem., 2006, 45, 4065.
    [28] P. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellv?g, Chem. Commun., 2006, 959.
    [29] B. Chen, X. Zhao, A. Putkham, K. Hong, E. Lobkvosky, E. Hurtado, A. Fletcher, K. Thomas, Chem. Commun., 2008, 1756.
    [30] R. Cheorghe, P. Cucos, M. Ahdruch, J.-P. Costes, B. Donnadiell, S. Shova, Eur. Chem. J., 2006, 12, 187.
    [31] G. Zhao, G. Yang, J. Ma, Cryst. Growth & Des., 2006, 6, 933.
    [32] J. Yang, J. Ma, Y. Liu, S. Li, G. Zheng, Eur. Chem. J., 2005, 2574.
    [33] P. S. Mukherjee, T. K. Maji, G. Mostafa, J. Ribas, M. S. El Fallah, N. R. Chaudhuri, N. R. Inorg. Chem., 2001, 40, 928.
    [34] S. Konar, P. S. Mukherjee, E. Zangrando, F. Lloret, N. R. Chaudhuri,. Angew. Chem., Int. Ed., 2002, 41, 1561.
    [35] S. Dalai, P. S. Mukherjee, G. Rogez, T. Mallah, M. G. B. Drew, N. R. Chaudhuri, Eur. J. Inorg. Chem., 2002, 3292.
    [36] A. Michaelides, S. Skoulika, M. G. Siskos, Chem. Commun., 2004, 2418.
    [37] S. Konar, E. Zangrando, M. G. B. Drew, J. Ribas, N. R. Chaudhuri, Dalton. Trans., 2004, 260.
    [38] C. Serre, J. Marrot, G. Férey, Inorg. Chem., 2005, 44, 654.
    [39] C. Robl, Z. Hentschel, Z. Anorg. Allg. Chem., 1991, 596, 149.
    [40] I. Panteburg, U. Ruschewitz, Z. Anorg. Allg. Chem., 2002, 628, 1697.
    [41] S. Skoulika, P. Dalla, M. G. Siskos, Y. Deligiannakis, A. Michaelides, Chem. Mater., 2003, 15, 4576.
    [42] N. Guillou, S. Pastre, C. Livage, G. Férey, Chem. Commun., 2002, 2358.
    [43] Software packages SMART, and SAINT, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
    [44] SHELXTL, Version 5.1; Siemens Industrial Automation, Inc., 1997.
    [45] Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, G?ttingen University, Germany, 1997.
    [46] Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Refinement, G?ttingen University, Germany, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700