用户名: 密码: 验证码:
阴非离子型Gemini表面活性剂合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以马来酸酐、脂肪醇聚氧乙烯醚(AEO-3,AEO-5,AEO-7)、1,2-乙二醇,1,3-丙二醇,1,4-丁二醇、亚硫酸氢钠为原料,以自制的碳基固体酸为催化剂合成了系列阴-非离子型Gemini表面活性剂,并对各反应条件进行优化,利用红外光谱、~1H NMR等分析手段对各中间产物及目标产物进行结构表征,结果表明与目标产物相符。
     表面性能研究结果表明:9种阴-非离子型Gemini表面活性剂在水溶液中胶束化过程是一个自发过程,主要来自熵驱动,温度升高不利于胶束化进行,且熵变对吉布斯自由能变的贡献有下降趋势,焓变的贡献也有增大趋势,在水溶液中胶束化存在焓熵补偿现象,补偿温度Tc均在307±2K范围,基本不随阴-非离子型Gemini表面活性剂的分子结构的改变而变化,随着Spacer或EO的增加形成胶束的能力与稳定性均提高,随着温度升高形成胶束的能力与稳定性均下降,Log cmc与Spacer length呈现出了很好的线性关系。
     界面性能研究结果表明:9种阴-非离子型Gemini表面活性剂的最小烷烃碳数(nmin),分别为:ANG3-Ⅳ-3,ANG5-Ⅳ-5,ANG7-Ⅳ-7的nmin分别为:10,13,13;ANG3-Ⅲ-3,ANG5-Ⅲ-5,ANG7-Ⅲ-7的nmin分别为:11,12,13;ANG3-Ⅱ-3,ANG5-Ⅱ-5,ANG7-Ⅱ-7的nmin分别为:10,11,11,与大庆采油一厂原油的45℃下油水界面张力,结果表明:部分ANG5-X-5,ANG7-X-7可以使大庆油水达到超低界面张力(10-3mN/m),与烷基苯磺酸盐复配体系界面性能结果表明:在ANG7-Ⅳ-7与C16-8MXS的复配比为2:1~3:1时,两者具有很好的复配作用,能够使大庆油水达到超低界面张力数量级(10~(-3)mN/m),而在复配比为4:1~5:1时,复配体系能够使油水界面张力达到10~(-4)mN/m数量级。
     泡沫性能研究结果表明:9种阴-非离子型Gemini表面活性剂起泡性能随着乙氧基(EO)结构单元增加,起泡性能逐渐增加,t1/2随着乙氧基(EO)结构单元增加逐渐增大,随着联接基链长的增加其起泡性能逐渐增大,t1/2随着联接基链长的增加而增加,随着盐浓度增加起泡性能先增加后降低,分别存在一个最佳盐浓度,NaCl最佳浓度为2%,CaCl_2最佳浓度为1g/L,t1/2随着浓度增加先增加后降低;随着温度增加其起泡性能先增加后减小,在50℃时达到最大,t1/2随着温度升高逐渐降低;随着醇浓度增加其起泡性能先增加后降低,并存在一个最佳醇浓度,乙醇为4mL/100mL,异丙醇为3mL/100mL,正丁醇为1mL/100mL,t1/2随着醇浓度增加先增加后降低。
     乳化性能研究结果表明:9种阴-非离子型Gemini表面活性剂随疏水基及联接基碳数的增加,乳化性能变好;随着ANG7-Ⅳ-7与烷基苯磺酸盐(C16-8MXS)的复配比增大其乳化性能先增强后降低,在复配比为3:1时达到最大。考察了盐浓度对乳化性能的影响,结果表明:随着氯化钠浓度增加其乳化性能先小幅增加,后逐渐降低,在氯化钠浓度为2%时其乳化性能达到最大。考察了碱及碱浓度对乳化性能的影响,结果表明:随着NaOH,Na_2CO_3浓度增加,乳状液稳定性先增加后降低,在NaOH,Na_2CO_3浓度分别为2%和3%时,乳化性能达到最大,继续增加盐浓度乳状液稳定性变差。
     增溶性能研究结果表明:9种阴-非离子型Gemini表面活性剂的增溶能力受增溶物的极性及结构影响显著,对苯、液体石蜡及正辛醇的增溶能力大小为:苯>液体石蜡和正辛醇,随着联结基碳数增加其对苯的增溶能力先降低后升高,在联结基为1,3-丙二醇时增溶能力最差。
     吸附性能研究结果表明:9种阴-非离子型Gemini表面活性剂吸附量与温度之间关系,结果表明:吸附量随温度的升高,逐渐减小,考察加入盐浓度对油砂表面吸附量的影响,结果表明:随着盐浓度增加其吸附量逐渐增加,加入Na2SO4的吸附量先增大后趋于平稳,总体吸附量要高于NaCl,在盐浓度为1g/L时达到平稳,考察碱浓度对吸附性能的影响,结果表明:表面活性剂ANG7-Ⅳ-7的浓度增加其在油砂表面吸附量逐渐增大,在活性剂浓度为2g/L时达到最大,继续增大浓度吸附量不再增加。
     钙皂分散能力研究结果表明:9种阴-非离子型Gemini表面活性剂的钙皂分散指数远小于传统表面活性剂SDBS,这说明其具有较好的钙皂分散力,钙皂分散性能随该系列表面活性剂联结基碳数的增大而变好,随着联结基碳数增加其钙皂分散能力变好。
     驱油性能研究结果表明:9种阴-非离子型Gemini表面活性剂驱岩心驱替实验表明,阴-非离子型Gemini表面活性剂可在水驱基础上提高原油采收率5%左右,随着氧乙烯结构单元的增加其表面活性剂驱提高原油采收率也越明显,对于相同氧乙烯结构单元的阴-非离子型Gemini表面活性剂,随着联结基碳数增加其表面活性剂驱提高原油采收率也越明显;三元驱岩心驱替实验表明,无论ANG7-Ⅳ-7弱碱或强碱三元复合驱体系,平均提高原油采收率均在20%左右,与目前用驱油用的烷基苯磺酸盐相当,与烷基苯磺酸盐复配使用也具有较好的驱油效率。
Base on maleic anhydride, fatty alcohol polyoxyethylene ether(AEO-3,AEO-5,AEO-7)1,2-ethylene glycol,1,3–propanediol1,4–butanediol and sodium bisulfite as materials.and with carbon based solid acid as catalyst synthesis of a series of anionic-nonionic GeminiSurfactants. And each of the reaction conditions were optimized structural characterizationresults show that the intermediate target products and finally products was confirmed by IRand1H NMR.
     The surface performance results show that:9kinds of anionic-nonionic Geminisurfactants’micellization in solution is a spontaneous process mainly from the entropy-driven,and with the temperature increased micellization make against. And the entropy change of theGibbs free energy change contribution downward trend, Enthalpy change contributionincreasing trend, micellization in solution exist enthalpy-entropy compensation phenomenonand compensation temperature Tc is307±2K, do not change to change of the molecularstructure of anionic-nonionic Gemini surfactants, and with the spacer or EO increased themicellization capacity and stability was enhanced. and with temperature increased, themicellization capacity and stability was declined. between Log cmc and spacer length have agood linear relationship.
     The interface result show that:9kinds of anionic-nonionic-Gemini surfactants have anminrespectively. ANG3-Ⅳ-3,ANG5-Ⅳ-5,ANG7-Ⅳ-7is10,13,13; ANG3-Ⅲ-3,ANG5-Ⅲ-5,ANG7-Ⅲ-7is11,12,13;ANG3-Ⅱ-3,ANG5-Ⅱ-5,ANG7-Ⅱ-7is10,11,11. Someof ANG5-X-5,ANG7-X-7can make daqing oil-water to achieve ultra-low interfacial tension(10~(-3)mN/m) at45℃. With alkyl benzene sulfonate complex system interface performanceresults show that: the ANG7-Ⅳ-7and C16-8MXS complex ratio at2:1~3:1, they have a goodcomplex performance. Make daqing oil-water to achieve ultra-low interfacial tension (10~(-3)mN/m) at45℃. And when complex ratio at4:1~5:1, the interfacial tension was reduce to10~(-4)mN/m.
     Foaming performance results show that with the structural unit of ethoxy (EO) increasedthe foaming ability and the stability of foam(t1/2)increased too. With spacer length increasethe foaming ability was Strengthen. T1/2was increased; with the salt concentration increased,the foaming ability show increases at first and then decreases. Have an optimal saltconcentration. The optimal NaCl concentration is2%. The optimal CaCl2concentration is1g/L. With the salt concentration increase, t1/2shown increases at first and then decreases. With temperature increases foaming ability show increases at first and then decreases,maximum at50℃, t1/2decreases with the temperature increases. With the concentration ofalcohol increase, the foaming ability show increases at first and then decreases.
     The emulsifying properties results show that: With the surfactants’hydrophobic group orthe carbon number of the spacer increases, the surfactants emulsifying properties turned good.With alkyl benzene sulfonate complex system emulsifying properties performance resultsshow that: with the ANG7-Ⅳ-7and C16-8MXS complex ratio increased emulsifyingproperties show increases at first and then decreases. The best complex ratio is3:1, the resultsof the effects of salt concentration on the emulsifying properties show that: with theconcentration of salt increased, emulsifying properties show increases at first and thendecreases, the optimal concentration of NaCl is2%; research on alkali and alkaliconcentration to the emulsifying properties the results show that: with the concentration of theNaOH,Na_2CO_3increased, emulsifying properties shown increased at first and then decreases.the optimal concentration of NaCl and Na_2CO_3is2%and3%respectively.
     The solubilization results show that: the effect of solubilization capacity by polarity andstructure significantly for the9kinds of anionic-nonionic-Gemini surfactants. Therelationship of solubilization for benzene, liquid paraffin and n-octanol is benzene>iquidparaffin and n-octanol. Of benzene solubilization ability with ethoxy increase in the numberwith the EO increase the ability of solubilization for benzene increase too. But with thecarbon number of spacer increased, the ability of solubilization for benzene decrease first andthen increased.
     The adsorption performance results show that with temperature increase adsorptiongradually decreases, with the concentration of salt increase the absorption increase too. Theeffect of add Na_2SO_4has great influence on absorption then add NaCl, the optimalconcentration of salt is1g/L, and investigate the effect of add alkali on the absorption resultsshow that with the concentration of ANG7-Ⅳ-7increase the adsorption gradually increasingin the oil sands surface, maximum is2g/L, continue to increase the concentration of ANG7-Ⅳ-7the adsorption no longer increases.
     The lime soap dispersion performance results show that9kinds ofanionic-nonionic-Gemini surfactants’ lime soap dispersion is much smaller than traditionalsurfactants SDBS, this results indicates that this series of surfactant have a good washingability. With the length of the carbon of alkyl chain and the spacer length increase the abilityof lime soap dispersion turned good.
     Oil flooding performance results show that this series of anionic-nonionic-Geminisurfactants in enhanced oil recovery by more than11%on the basis of water flooding. Andwith the EO and spacer length increase the surfactant flooding enhance oil recovery turned more obvious. ASP flooding results show that ANG7-Ⅳ-7have a good a recovery by morethan20%in strong base or weak base system. And ANG7-Ⅳ-7have a good complex withalkyl benzene sulfonate in enhance oil recovery
引文
[1]王业飞,赵福麟.由AES合成脂肪醇聚氧乙烯醚磺酸钠的研究[J].精细石油化工,1996(05):22–25.
    [2]张永明,朱红,夏建华,等.磺酸盐型Gemini表面活性剂的合成及在三次采油中的应用研究[J].北京交通大学学报,2007(03):100–104.
    [3]赖璐,梅平,段明峰,等. Gemini表面活性剂的合成、表征及性能测定——油田化学专业综合实验[J].大学化学,2011(03):62–64.
    [4]胡乐,张丹,王希军. Gemini表面活性剂降低油水界面张力性能的研究[J].广东化工,2011(01):51–52.
    [5]孙立劝,陈启斌,刘洪来. Gemini表面活性剂18-3-18与磷脂DPPC在气液界面的混合性质[J].华东理工大学学报(自然科学版),2012(03):323.
    [6]李移乐,任海晶,李俊莉. Gemini表面活性剂在驱油体系中的应用进展[J].广东化工,2011(12):64–65.
    [7] Wu H, Du X, Lu Y, et al. Synthesis and Viscoelastic Behavior of an Anionic GeminiSurfactant in Aqueous Solution[J]. Zeitschrift für Physikalische Chemie, OldenbourgWissenschaftsverlag GmbH Novosibirsk, Germany,2010,224(9):1355–1362.
    [8]朱森,程发,郑宝江,等. Gemini阴离子表面活性剂水溶液的聚集性质[J].物理化学学报,2004(10):1245–1248.
    [9]王龙飞.阳离子型双子表面活性剂的合成与性能评价[J].价值工程,2012(16):325–326.
    [10]董阳阳,赵田红,余辉.阴离子型双子表面活性剂的合成及性能评价[J].应用化工,2011(11):1980–1982.
    [11]袁丹丹,于涛,丁伟,等.两性离子型Gemini表面活性剂的合成进展[J].化学试剂,2011(05):433–437.
    [12]杨颖,李明远,林梅钦,等.非离子型Gemini表面活性剂的表面活性与固液界面吸附特性研究[J].中国石油大学学报(自然科学版),2006(03):123–125.
    [13]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(1)——从长链烷基二甲基胺及其盐酸盐和环氧氯丙烷合成双烷基双季铵盐阳离子[J].日用化学工业,2001(03):27–30.
    [14] Kim T-S, Kida T, Nakatsuji Y, et al. Surface-active properties of novel cationicsurfactants with two alkyl chains and two ammonio groups[J]. Journal of the AmericanOil Chemists’ Society,1996,73(7):907–911.
    [15] Kim T-S, Hirao T, Ikeda I. Preparation ofbis-quaternary ammonium salts fromepichlorohydrin[J]. Journal of the American Oil Chemists’ Society,1996,73(1):67–71.
    [16]沈之芹,李应成,翟晓东,等.羧酸盐Gemini表面活性剂合成及性能[J].化学世界,2012(02):111–114.
    [17]杨连枝,游毅.羧酸盐二聚表面活性剂的合成[J].合成化学,2005(05):494–495.
    [18]赖璐,梅平,郑延成,等.羟酸盐型Gemini表面活性剂的吸附性能研究[J].油田化学,2012(02):216–219.
    [19] Zana R, Benrraou M, Rueff R. Surfactants.1. Effect of the Spacer Chain Length onthe Critical Micelle Concentration and Micelle Ionization Degree[J].1991:1072–1075.
    [20] Binana-Limbelé W, Zana R, Platone E. Micellar properties of ethoxylated sodiumalkylcarboxylates[J]. Journal of Colloid and Interface Science,1988,124(2):647–651.
    [21] Zana R, Lévy H, Kwetkat K. Mixed Micellization of Dimeric (Gemini) Surfactants andConventional Surfactants. I. Mixtures of an Anionic Dimeric Surfactant and of theNonionic Surfactants C12E5and C12E8[J]. Journal of Colloid and Interface Science,1998,197(2):370–376.
    [22]史俊,夏小春.2,3-双月桂酸酯基酒石酸钠的合成与表面性能研究[J].化学试剂,2006(08):483–484.
    [23]赵少静,程发,陈宇,等. Gemini表面活性剂的合成及性能[J].天津大学学报,2012(01):81–86.
    [24]刘学鹏,丰杰,徐志成,等.以聚氧乙烯醚为连接基的烷基苯磺酸钠Gemini表面活性剂的合成和表面活性[J].石油学报(石油加工),2010(06):883–888.
    [25]刘祥.固体超强酸催化合成十二烷基二苯醚磺酸盐[J].四川化工,2004(02):10–13.
    [26]郭丽梅,武首香,熊开琴.双子双酯硫酸钠的合成及性能[J].日用化学工业,2006(01):15–17.
    [27]贾卫红,宋湛谦,饶小平,等.松香基磺酸盐Gemini表面活性剂的合成及性能[J].石油化工,2009(06):651–655.
    [28]于涛,胡龙江,丁伟.新型表面活性剂——双烷基双磺酸钠基二苯甲烷的合成与性能[J].大庆石油学院学报,2004(01):35–37.
    [29]许虎君.烷基二苯醚二磺酸钠的合成、聚集体系及应用性能研究[D].南京理工大学,2005.
    [30] Du X, Lu Y, Li L, et al. Synthesis and unusual properties of novel alkylbenzenesulfonate gemini surfactants[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2006,290(1-3):132–137.
    [31] Cai M, Zhang M, Ma P. Synthesis and Applications of Alkylbenzene Sulfonate GeminiSurfactants[J]. Journal of Dispersion Science and Technology, Taylor&Francis,2010,31(12):1633–1637.
    [32] Song B, Zhao J, Wang B, et al. Synthesis and self-assembly of new light-sensitiveGemini surfactants containing an azobenzene group[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,352(1-3):24–30.
    [33] Song B, Hu Y, Song Y, et al. Alkyl chain length-dependent viscoelastic properties inaqueous wormlike micellar solutions of anionic gemini surfactants with an azobenzenespacer.[J]. Journal of colloid and interface science,2010,341(1):94–100.
    [34]郑帼,宗育娟.磷酸酯Gemini表面活性剂的结构与性能[J].纺织学报,2007(12):58–61.
    [35]姜小明,赵濉,宫清涛.新型易降解的季铵盐型Gemini表面活性剂的合成[J].合成化学,2012(01):49–51.
    [36]吴晓娜,邹文生,赵剑曦. Gemini表面活性剂乙烷基-,ω-双十四烷基二甲基溴化铵产生的高稳定泡沫(英文)[J].物理化学学报,2012(05):1213–1217.
    [37]宋冰蕾,商士斌,宋湛谦.油烷基Gemini表面活性剂的流变性能研究[J].林产化学与工业,2012(01):25–28.
    [38]黄涛,游毅.多疏水链阳离子二聚表面活性剂的合成[J].合成化学,2005(05):480–482.
    [39]徐群,徐孙见,邢凤兰.含酯基非对称Gemini季铵盐表面活性剂的合成及表征[J].化学世界,2008(03):158–160.
    [40]王军,栾立辉,杨许召,等.季铵盐双子表面活性剂的合成和表面活性[J].精细化工,2009(01):14–17.
    [41]南楠,陈功,杨继萍.以壬基酚为基非离子双子表面活性剂的合成及其表面性能[J].应用化工,2007(04):321–324.
    [42] Su S-K, Lin L-H, Lai Y-C. Synthesis and emulsification properties of novel modifiedpolyoxyethylenated stearylamine surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414(null):26–32.
    [43]祁健,黎钢,杨芳,等. Mannich反应合成壬基酚聚氧乙烯醚Gemini表面活性剂[J].高校化学工程学报,2010(05):830–835.
    [44]任艳美,吕彤.新型Gemini非离子表面活性剂的合成及性能研究[J].天津工业大学学报,2011(01):61–65.
    [45]于君明,陈洪龄,韦亚兵.新型双子两性表面活性剂的合成及性能[J].南京工业大学学报(自然科学版),2005(05):62–66.
    [46] Jahan N, Paul N, Petropolis C J, et al. Synthesis of surfactants based on pentaerythritol.I. Cationic and zwitterionic gemini surfactants.[J]. The Journal of organic chemistry,American Chemical Society,2009,74(20):7762–73.
    [47]杨青,曹丹红,方波.一种新型双联两性表面活性剂的合成与性能[J].高校化学工程学报,2009(01):110–115.
    [48]冯玉军,解站峰.羧酸类甜菜碱型双子表面活性剂及制备方法:中国,200810044746.7[P].2009.
    [49] Xue C, Zhu H, Zhang T, et al. Synthesis and properties of novel alkylbetainezwitterionic gemini surfactants derived from cyanuric chloride[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2011,375(1-3):141–146.
    [50]丁伟,景慧,梁宝,等.双子表面活性剂的合成及其表面活性[J].合成化学,2011(03):373–375.
    [51]王碧,李洪岩.乙撑双(二甲基)季铵盐基双月桂酸甲酯的合成及性能研究[J].日用化学工业,2011(04):244–246.
    [52]王高雄,陈祚领.新型Gemini磷酸酯两性表面活性剂的合成及应用[J].香料香精化妆品,2009(05):26–28.
    [53]于涛,袁丹丹,丁伟,等.新型孪尾Gemini两性离子表面活性剂应用性能[J].应用化学,2012(10):1182–1188.
    [54]袁丹丹.孪尾系列Gemini两性离子表面活性剂的合成与性能[D].东北石油大学,2012.
    [55]魏继军.新型Gemini两性离子表面活性剂的合成与性能研究[D].东北石油大学,2011.
    [56] Nyuta K, Yoshimura T, Esumi K. Surface tension and micellization properties ofheterogemini surfactants containing quaternary ammonium salt and sulfobetainemoiety.[J]. Journal of colloid and interface science,2006,301(1):267–73.
    [57] Yoshimura T, Ichinokawa T, Kaji M, et al. Synthesis and surface-active properties ofsulfobetaine-type zwitterionic gemini surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,273(1-3):208–212.
    [58] Carpena P, Aguiar J, Bernaola-Galván P, et al. Problems Associated with theTreatment of Conductivity Concentration Data in Surfactant Solutions: Simulationsand Experiments[J]. Langmuir, American Chemical Society,2002,18(16):6054–6058.
    [59] Wang Y, Huang X, Li Y, et al. Aggregation properties of zwitterionic surfactants withdifferent ionic headgroups, hydrophobic chain length and inter-charge spacers[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,333(1-3):108–114.
    [60] López-Díaz D, García-Mateos I, Velázquez M M. Surface properties of mixedmonolayers of sulfobetaines and ionic surfactants.[J]. Journal of colloid and interfacescience,2006,299(2):858–66.
    [61] Wydro P, Paluch M. A study of the interaction of dodecyl sulfobetaine with cationicand anionic surfactant in mixed micelles and monolayers at the air/water interface.[J].Journal of colloid and interface science,2005,286(1):387–91.
    [62] Parris N, Pierce C, Linfield W M. Soap based detergent formulation: XXIV.Sulfobetaine derivatives of fatty amides[J]. Journal of the American Oil Chemists’Society,1977,54(7):294–296.
    [63]曲广淼,程杰成,冯耀,等.新型Gemini两性离子表面活性剂的合成与表征[J].中国皮革,2011(07):43–46.
    [64] Grossmann M, Faber R. Dispering and wetting agents for use in organic biocides: US,3919429[P].1975.
    [65] Baumann H P. Ettingen Organic compounds: US,5470355[P].1995.
    [66]徐念,黎钢,户帅帅,等.二-(2-羟基-5-长链烷基苯基)-甲烷的合成[J].有机化学,2008(10):1780–1784.
    [67]刘荣,黎钢,徐念,等.壬基酚聚氧乙烯醚双子表面活性剂的合成[J].石油化工,2008(10):1039–1044.
    [68]张彬,黎钢,杨芳,等.二聚壬基酚聚氧乙烯醚硫酸钠的合成及其溶液性质[J].石油化工高等学校学报,2009(04):13–17.
    [69]杨芳,黎钢,刘荣,等.壬基酚聚氧乙烯醚型Gemini季铵盐表面活性剂的合成及其表面性质的研究[J].化学学报,2009(08):723–728.
    [70]杨扬,郑宝江,程发.磺酸盐型双基表面活性剂的合成与表面性能[J].化学工业与工程,2006(05):428–431.
    [71]陈功,黄鹏程,马云容,等.一种双子表面活性剂的合成[J].精细化工,2001(08):440–442.
    [72]朱宗利.甲基偶联双(烷基酚)的合成和初步应用[D].江南大学,2012.
    [73]朱宗利,何志强,张杰,等.甲基偶联双(烷基酚磺酸钠)型Gemini表面活性剂的合成及性能[J].中国洗涤用品工业,2012(04):59–62.
    [74] Tokiwa F, Ohki K. Micellar properties of a series of sodium dodecylpolyoxyethylenesulfates from hydrodynamics data[J]. J. Phys. Chem., American Chemical Society,1967,71(5):1343–1348.
    [75]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003.
    [76] Stewart N J. Preparation of surfactants: US,4,764,307[P].1988.
    [77] Gale W W, Saunders R K, Ashcraft T L. Oil recovery method using a surfactant: US,3977471[P].1976.
    [78]王业飞,赵福麟.非离子-阴离子型表面活性剂的耐盐性能[J].油田化学,1999(04):336–340.
    [79]杨秀全,徐长卿,黄海.一类新型多功能性表面活性剂──烷基醚羧酸及其盐[J].日用化学工业,1998(01):28–35.
    [80] Hato M, Shinoda K. Krafft points of calcium and sodium dodecylpoly(oxyethylene)sulfates and their mixtures[J]. The Journal of Physical Chemistry, American ChemicalSociety,1973,77(3):378–381.
    [81] Minero C, Pramauro E, Pelizzetti E, et al. Micellar properties of sodiumdodecylpoly(oxyethylene) sulfates[J]. The Journal of Physical Chemistry, AmericanChemical Society,1986,90(8):1620–1625.
    [82] Varadaraj R, Bock J, Geissler P, et al. Influence of ethoxylate distribution on interfacialproperties of linear and branched ethoxylate surfactants[J]. Journal of Colloid andInterface Science,1991,147(2):396–402.
    [83] Borchardt J K. A novel surfactant for oilfield applications[C]//InternationalSymposium on Oilfield Chemistry. Houston, Texas:1997:18–21.
    [84] Araki Masuyama, Tomoko Kawano, Yun-Peng Zhu, Toshiyuki Kida Y N. Elasticityindex for the connecting groupsof double-chain amphiphiles bearing two hydrophilicgroups[J]. Chemistry Letters,1993,22:2053–2056.
    [85] Dahanayake M, Cohen A W, Rosen M J. Relationship of structure to properties ofsurfactants.13. Surface and thermodynamic properties of some oxyethylenated sulfatesand sulfonates[J]. The Journal of Physical Chemistry, American Chemical Society,1986,90(11):2413–2418.
    [86]赵国玺,朱德民.十二烷基聚氧乙烯醚硫酸钠的表面活性研究[J].日用化学工业,1996(03):1–3.
    [87]李学刚,赵国玺.氧乙烯基对胶团化过程热力学函数的影响[J].物理化学学报,1992(06):18–23.
    [88]夏良树,聂长明,郑裕显,等.均质脂肪醇聚氧乙烯醚羧酸盐的合成及性能研究[J].日用化学工业,2002(02):12–14.
    [89]王业飞,黄建滨.氧乙烯化十二醇醚丙撑磺酸钠合成及表面活性[J].物理化学学报,2001(06):488–490.
    [90]贾金英,闫杰,安悦,等.琥珀酸酯磺酸盐Gemini表面活性剂的合成及表面活性[J].应用化学,2011(10):1184–1188.
    [91]张永明,朱红,夏建华,等.磺酸盐型Gemini表面活性剂的合成及在三次采油中的应用研究[J].北京交通大学学报,2007(03):100–104.
    [92] Chen H, Han L, Luo P, et al. The ultralow interfacial tensions between crude oils andgemini surfactant solutions.[J]. Journal of colloid and interface science,2005,285(2):872–4.
    [93]谭中良,韩冬.阴离子孪连表面活性剂的合成及其表/界面活性研究[J].化学通报,2006(07):493–497.
    [94]韩玉贵.耐温抗盐驱油用化学剂研究进展[J].西南石油大学学报(自然科学版),2011(03):149–153.
    [95]郭东红,辛浩川,崔晓东,等.新型耐温耐盐表面活性剂驱油体系的研究[J].精细石油化工进展,2003(10):1–3.
    [96]孙正贵,张健,朱红.新型Gemini表面活性剂-石油磺酸盐复合驱油剂的研究[J].精细与专用化学品,2006(S1):65–67.
    [97]吴文祥,殷庆国,刘春德.磺基甜菜碱SB系列复配表面活性剂界面特性研究[J].油气地质与采收率,2009(06):67–69.
    [98] Yen T F, Farmanian P A. Native petroleum surfactants: US,4,411,816[P].1983.
    [99]黄丹,朱文峰,蒋学,等.阴离子-非离子Gemini表面活性剂的合成与性能[J].精细化工,2009(06):533–536.
    [100]王任芳,李克华,雷庆虹.阴离子-非离子两性表面活性剂的合成[J].长江大学学报(自科版),2006(01):32–33.
    [101]沙鸥,张卫东,陈永福,等.烷基酚磺酸聚醚磺酸盐驱油剂的合成及表征[J].精细化工,2007(11):1069–1073.
    [102]沈之芹,李应成,沙鸥,等.高活性阴离子-非离子双子表面活性剂合成及性能[J].精细石油化工进展,2011(09):25–29.
    [103]李立勇,周忠,崔正刚,等.脂肪醇聚氧乙烯醚磺酸盐耐温耐盐性研究[J].精细石油化工进展,2008(01):4–7.
    [104]张永民,牛金平,李秋小.脂肪醇聚氧乙烯醚磺酸钠的性能研究[J].化学研究与应用,2009(07):964–968.
    [105]杨晓鹏,郭东红,辛浩川,等.脂肪醇/烷基酚聚氧乙烯醚磺酸盐的合成工艺[J].精细石油化工,2009(05):8–11.
    [106]李娜,刘海涛,付欣,等.二壬基酚聚氧丙烯醚磺酸盐-碱-桩西原油的动态界面张力研究[J].西安石油大学学报(自然科学版),2010(01):77–80.
    [107]荣新明,贺卫东,李光辉,等.辛基酚聚氧乙烯醚磷酸酯的合成及评价[J].西安石油大学学报(自然科学版),2010(01):71–76.
    [108]王业飞,赵福麟.丙烷磺内酯法合成非离子-磺酸盐型表面活性剂的动力学研究[J].石油大学学报(自然科学版),2000(02):70–72.
    [109]石明理,丁兆云,王仲妮.多氧乙烯脂肪醇醚磺酸盐的合成和表面活性[J].高等学校化学学报,1991(10):1341–1343.
    [110] Shupe R, Maddox J. Surfactant oil recovery process usable in high temperature, highsalinity formations: US,4,077,471[P].1978.
    [111] Shupe R. Surfactant oil recovery process usable in high temperature formations: US,4,018,278[P].1977.
    [112] Kalfoglou G. Surfactant waterflooding oil recovery method: US,4,231,427[P].1980.
    [113] Schievelbein V. Surfactant waterflooding oil recovery method: US,4,307,782[P].1981.
    [114] Kalpakci B, Arf T. Method of enhanced oil recovery using a stabilized polymercombination in chemical flood: US,4,825,950[P].1989.
    [115] Shupe R D, Maddox J. Emulsion oil recovery process usable in high temperature, highsalinity formations: US,4,269,271[P].1981.
    [116] JG Savins. Oil recovery by waterflooding with thickened surfactant solutions: US,4,181,178[P].1980.
    [117]常致成.脂肪醇醚磺酸盐在三次采油中的应用[J].精细石油化工,1994(03):47–49.
    [118]韩巨岩,王文涛,崔昌亿,等.烷基苯基聚氧乙烯醚磺酸盐[J].日用化学工业,1998(06):62–64.
    [119] Schievelbein V. High conformance oil recovery process: US,4,184,549[P].1980.
    [120] Gale W, Puerto M, Ashcraft T. Propoxylated ethoxylated surfactants and method ofrecovering oil therewith: US,4,293,428[P].1981.
    [121] Michels A., Djojosoeparto R., Haas H, et al. Enhanced Waterflooding Design WithDilute Surfactant Concentrations for North Sea Conditions[C]//SPE ReservoirEngineering. Society of Petroleum Engineers,1996:189–195.
    [122] Maerker J., Gale W. Surfactant Flood Process Design for Loudon[C]//SPE ReservoirEngineering. Society of Petroleum Engineers,1992:36–44.
    [123] Jayanti S, Britton L N, Dwarakanath V, et al. Laboratory Evaluation ofCustom-Designed Surfactants To Remediate NAPL Source Zones[J]. EnvironmentalScience&Technology, American Chemical Society,2002,36(24):5491–5497.
    [124] Wu Y, Shule P, Blanco M, et al. A Study of Branched Alcohol Propoxylate SulfateSurfactants for Improved Oil Recovery[C]//SPE Annual Technical Conference andExhibition. Dallas, Texas: Society of Petroleum Engineers,2005.
    [125] Levitt D B, Jackson A C, Heinson C, et al. Identification and Evaluation ofHigh-Performance EOR Surfactants[C]//SPE/DOE Symposium on Improved OilRecovery. Tulsa, Oklahoma, USA: Society of Petroleum Engineers,2006:22–26.
    [126]王业飞,焦翠,赵福麟.羧甲基化的非离子型表面活性剂与石油磺酸盐的复配试验[J].石油大学学报(自然科学版),1996(04):52–55.
    [127]李宜坤,赵福麟,王业飞.以丙酮作溶剂合成烷基酚聚氧乙烯醚羧酸盐[J].石油学报(石油加工),2003(02):33–38.
    [128]靳志强,王涵慧,俞稼镛. Guerbet十四醇聚氧乙烯醚硫酸钠的合成与表面活性[J].精细化工,2002(08):435–439.
    [129]李明忠,赵国景,张乔良,等.耐盐稠油降黏剂的研制[J].精细化工,2004(05):380–382.
    [130]马文辉,梁梦兰,袁红,等.稠油低温乳化降粘剂BL-1的研制及应用[J].油田化学,2002(02):134–136.
    [131]秦冰.稠油乳化降粘剂结构与性能关系的研究[D].中国石油化工科学研院,2001.
    [132] Liu Q, Dong M, Yue X, et al. Synergy of alkali and surfactant in emulsification ofheavy oil in brine[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2006,273(1-3):219–228.
    [133] Liu Q, Dong M, Ma S. Alkaline/Surfactant Flood Potential in Western Canadian HeavyOil Reservoirs[C]//SPE/DOE Symposium on Improved Oil Recovery. Tulsa,Oklahoma, USA: Society of Petroleum Engineers,2006:22–26.
    [134]金瑞娣,毛晓宇,李建华. Gemini型乙二酰胺琥珀酸己酯磺酸钠的合成研究[J].化学试剂,2009(09):727–730.
    [135]杨青,曹丹红,方波.一种新型双联两性表面活性剂的合成与性能[J].高校化学工程学报,2009(01):110–115.
    [136]陶磊,朱文峰,蒋学,等.羧化不对称聚氧乙烯醚马来酸双酯表面活性剂的合成及性能[J].现代化工,2010(3):57–60.
    [137]姚志钢,李干佐,胡艾希.双子表面活性剂-二元醇双琥珀酸双酯磺酸钠(GMI-01)的合成与性能研究[J].精细化工,2003(11):654–659.
    [138]魏巍.双子表面活性剂的合成研究[D].浙江大学,2006.
    [139] Aoudia M, Al-Maamari R S, Nabipour M, et al. Laboratory Study of Alkyl EtherSulfonates for Improved Oil Recovery in High-Salinity Carbonate Reservoirs: A CaseStudy[J]. Energy&Fuels, American Chemical Society,2010,24(6):3655–3660.
    [140] Liu Z, Peng F, Liu X. Synthesis and Interfacial Activity of Alkyl PolyoxypropyleneSulfonate for Chemical Combination Flooding[J]. Advanced Materials Research,2012,550-553:3–9.
    [141]沈平平,俞稼镛.大幅度提高石油采收率的基础研究[M].北京:石油工业出版社,2001.
    [142]彭朴.采油用表面活性剂[M].北京:化学工业出版社,2002.
    [143] Schmitt K. Two-tailed surfactants having one aromatic containing tail and their use inchemical waterflooding: US,4,517,128[P].1985.
    [144] Hurd B. Oil recovery by surfactant-alcohol waterflooding: US,4,629,000[P].1986.
    [145] Luan H, Wu W, Cheng J, et al. Synthesis, Characterization and Surface Activity ofAlkyl m-Xylene Sulfonate Isomers[J]. Journal of Surfactants and Detergents,2012,15(5):631–636.
    [146]丁伟,李安军,于涛,等.烷基芳基磺酸盐结构对原油-表面活性剂-碱体系油-水界面张力的影响[J].石油学报(石油加工),2010(01):36–40.
    [147]栾和鑫,吴文祥,于涛,等.烷基芳基磺酸盐与功能性离子液体的协同作用对泡沫性能的影响[J].石油化工,2012(02):162–166.
    [148]曲广淼,程杰成,丁伟,等.系列十六烷基邻二甲苯磺酸盐异构体的合成与结构表征[J].石油学报(石油加工),2010(02):208–213.
    [149]丁伟,王瑞,于涛,等.2,5-二甲基十二烷基苯同分异构体的精细合成与表征[J].石油学报(石油加工),2007(03):75–79.
    [150]于涛,刘华沙,王超群,等.烷基芳基磺酸钠对烷烃的乳化性能[J].应用化学,2011(05):560–564.
    [151]于涛,童维,宿雅彬,等.结构及助剂对十五烷基芳基磺酸盐吸附性能的影响[J].应用化学,2010(04):466–469.
    [152]于涛,刘红娟,丁伟,等.高纯度多烷基苯磺酸盐水溶液的表面性质[J].应用化学,2008(09):1107–1109.
    [153]丁伟,任娅妮,史鹏,等.复配烷基苯磺酸盐在大庆油砂上的吸附[J].油田化学,2011(03):280–283.
    [154]丁伟,王会敏,罗石琼,等.烷基芳基磺酸盐分子量及其分布对微乳液结构参数及热力学函数的影响[J].应用化学,2012(07):844–851.
    [155]张志伟,丁伟,李钟,等.不同链长烷基芳基磺酸盐形成微乳液的性质[J].高等学校化学学报,2012(02):395–399.
    [156]杨洋,李安军,张春辉,等.十六烷基间二甲苯磺酸盐的界面性能分析[J].大庆石油学院学报,2008(05):55–57.
    [157]丁伟,张志伟,李钟,等.添加剂对2,4-二甲基-5-(1’-丁基)癸基苯磺酸钠在水溶液中形成胶束的影响[J].石油学报(石油加工),2012(04):691–695.
    [158]丁伟,宿雅彬,张春辉,等.支链异构十五烷基间二甲苯磺酸钠溶液表面性质及其溶剂行为[J].应用化学,2009(09):1023–1026.
    [159]于涛,李钟,丁伟,等.十四烷基芳基磺酸盐形成的分子有序组合体[J].物理化学学报,2010(02):317–323.
    [160]丁伟,高晓宇,曲广淼,等.烷基苯磺酸钠长链烷基中二甲苯基取代位置与起泡性的关系[J].石油学报(石油加工),2009(06):846–849.
    [161]任立国,余济伟,张晓丽,等.新型碳基固体酸催化剂在酯化反应中的催化性能研究[J].石油炼制与化工,2009,40(5):38–42.
    [162]冷冬梅,石采静,周长行.碳基固体酸催化剂上的酯化反应动力学研究[J].石油化工高等学校学报,2010,23(2):16–20.
    [163]王都,苏有勇,王华.碳基固体酸催化高酸值生物柴油原料降酸效果[J].农业工程学报,2009,25(11):274–277.
    [164]杨光,王雷波.碳基对甲苯磺酸催化剂在烷基化反应中的研究[J].当代化工,2010,39(1):55–58.
    [165]高文艺,张晓丽,任立国.环己酮和甘油在碳基固体酸催化剂上的缩合反应[J].香料香精化妆品,2011,6(3):17–21.
    [166]郭振良,刘春萍,张江.脂肪醇聚氧乙烯(15)醚磺基琥珀酸单酯二钠盐的合成及性能[J].精细石油化工,2003,3(2):7–9.
    [167]葛虹,傅鹏立,王军,等.脂肪醇聚氧乙烯-3-醚琥珀酸单磺酸盐泡沫性能研究[J].应用化工,2003,32(3):16–18.
    [168]张跃军,李喜敏,曲文超.脂肪醇聚氧乙烯(7)醚磺基琥珀酸单酯二钠盐的合成与性能研究[J].日用化学工业,2002,32(1):12–14.
    [169]金磊.固载磷钨酸催化合成1,4-丁二醇双琥珀酸十八醇双酯磺酸钠[D].江南大学,2009.
    [170]刘士荣,张雪梅,龚雁,等. SiO2负载磷钨酸催化合成1,4-丁二醇双琥珀酸十八醇双酯磺酸钠[J].化工进展,2010,29(2):269–280.
    [171]北原文雄,原一朗著,毛培坤译.表面活性剂分析和试验法[M].北京:轻工业出版社,1988:143–150.
    [172]李立.日用化工分析[M].北京:中国轻工业出版社,1999:21–22.
    [173]孙琳,蒲万芬,吴雅丽,等.表面活性剂高温乳化性能研究[J].油田化学,2011,28(3):275–279.
    [174]孙正贵,张健,夏建华,等.两种新型石油磺酸盐基复合驱油剂的研制[J].中国石油大学学报(自然科学版),2007(02):135–138.
    [175]娄平均,牛华,朱红军,等.新型吉米奇季铵盐在VES清洁压裂液中的应用研究[J].天然气与石油,2011(01):45–47.
    [176]张大椿,李远亮,唐善法,等.双子表面活性剂解除地层液相伤害可行性研究[J].油气地质与采收率,2010(04):108–110.
    [177]张科良,张宁生,屈撑囤.新型胶质液体泡沫的制备及其用于含油污泥中的原油回收[J].高校化学工程学报,2009(02):297–302.
    [178] Das D, Ismail K. Aggregation and adsorption properties of sodium dodecyl sulfate inwater-acetamide mixtures.[J]. Journal of colloid and interface science,2008,327(1):198–203.
    [179] Mehta S K, Kaur K, Bhasin K K. Micellization behavior of cationic surfactantdodecyldimethylethylammonium bromide (DDAB) in the presence of papain[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,317(1-3):32–38.
    [180] Inoue T, Misono T. Cloud point phenomena for POE-type nonionic surfactants inimidazolium-based ionic liquids: effect of anion species of ionic liquids on the cloudpoint.[J]. Journal of colloid and interface science,2009,337(1):247–53.
    [181] Páhi A B, Király Z, Mastalir A, et al. Thermodynamics of micelle formation of thecounterion coupled gemini surfactant Bis(4-(2-dodecyl)benzenesulfonate)-Jeffaminesalt and its dynamic adsorption on sandstone.[J]. The journal of physical chemistry. B,American Chemical Society,2008,112(48):15320–6.
    [182]于涛,李钟,丁伟,等.系列烷基芳基磺酸盐在水溶液中胶束化的焓-熵补偿现象[J].物理化学学报,2010(03):638–642.
    [183] Cayias J, Schechter R, Wade W. Modeling Crude Oils for Low InterfacialTension[C]//SPE Journal. Texas: Society of Petroleum Engineers,1976:351–357.
    [184]杨晓鹏,郭东红,钟安武.结构及用量对脂肪醇/烷基酚聚氧乙烯醚磺酸盐界面活性的影响[J].石油天然气学报,2010(01):132–135.
    [185]杨晓鹏,郭东红,辛浩川,等.脂肪醇聚氧乙烯醚磺酸盐NNA系列高温高盐条件下界面活性研究[J].油田化学,2009(04):422–424.
    [186]贺伟东,李瑞冬,葛际江,等.辛基酚聚氧乙烯醚磺酸盐的合成与界面张力的测定[J].石油化工高等学校学报,2010(04):20–24.
    [187]蒋泽银,刘友权,石晓松,等.川中须家河气藏泡排技术研究与应用[J].石油与天然气化工,2010,39(5):422–426.
    [188] Wang Y, Wang L, Li J, et al. Surfactants Oil Displacement System in High SalinityFormations: Research and Application[C]//SPE Permian Basin Oil and Gas RecoveryConference. Texas: Society of Petroleum Engineers,2001.
    [189] Kirk D. Two-tailed surfactant having one aromatic containing tail and their use inchemical water flooding: US,4545912[P].1985.
    [190] Billy,GH. Oil reciovery by surfactant-alcohol water flooding: US,4629000[P].1986.
    [191]华平,张跃军.磺基琥珀酸二己酯钠盐合成工艺与结构的关系[J].日用化学工业,2002(02):21–25.
    [192]华平,戴宝江,李建华,等.乙二醇双子琥珀酸2-甲基戊基双酯磺酸钠的合成与性能[J].精细化工,2011(10):964–967.
    [193]贾金英,闫杰,安悦,等.琥珀酸酯磺酸盐Gemini表面活性剂的合成及表面活性[J].应用化学,2011(10):1184–1188.
    [194]牛金平,韩亚明.驱油用磺酸盐的工业化生产现状与发展趋势[J].日用化学品科学,2008,31(11):4–7.
    [195]李学刚,赵国玺.氧乙烯基对胶团化过程热力学函数的影响[J].物理化学学报,1992(06):18–23.
    [196]王仲妮,王正武,高艳安,等. QSPR模型对AE3SO3表面活性剂的cmc计算及其分子中EO基团对胶束化的作用[J].化学学报,2004,62(24):2391–2397.
    [197]沈钟,赵振国,王果庭.胶体与表面化学[M].第第三版版.北京:化学工业出版社,2004:412–413.
    [198]赵国玺,朱瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [199] Lee D. Enthalpy-entropy compensation in ionic micelle formation[J]. Colloid&Polymer Science,1995,273:539–543.
    [200] Hunter,RJ. Introduction to Modern Colloid Science[M]. New York: Oxford UniversityPress,1989.
    [201] Klevens H. Structure and aggregation in dilate solution of surface active agents[J].Journal of the American Oil Chemists’ Society,1953.
    [202] Rosen,MJ. Surfactant and interfacial phenomena[M]. New York: Wiley,1978.
    [203] Hiemenz,PC, Rajagopalan,R. Principles of Colloid and Surface Chemistry[C]//NewYork: Marcel Dekker,Inc.
    [204] Rosen M J, Zhu Z H, Gao T. Synergism in Binary Mixture of Surfactants[J]. Journal ofColloid and Interface Science,1993,157(1):254–259.
    [205] Rosen, MJ. Normal and Abnormal Surface Properties of GeminiSurfactants[C]//Proceeding of the4th World Surfactants Congress. Barcelona:1996:416–423.
    [206] Rosen M J, Zhu Z H, Hua X Y. Relationship of structure to properties of surfactants.16. Linear decyldiphenylether sulfonates[J]. Journal of the American Oil ChemistsSociety,1992,69(1):30–33.
    [207] ROSEN M J. GEMINIS: A NEW GENERATION OF SURFACTANTS: THESEMATERIALS HAVE BETTER PROPERTIES THAN CONVENTIONAL IONICSURFACTANTS AS WELL AS POSITIVE SYNERGISTIC EFFECTS WITHNON-IONICS [J]. Chemtech, American Chemical Society,23(3):30–33.
    [208]牛金平,王军.新型表面活性剂的结构特点与物化性能[J].日用化学品科学,2000(02):1–4.
    [209] D’Andrea M G, Domingues C C, Malheiros S V P, et al. Thermodynamic andstructural characterization of zwitterionic micelles of the membrane proteinsolubilizing amidosulfobetaine surfactants ASB-14and ASB-16.[J]. Langmuir: theACS journal of surfaces and colloids, American Chemical Society,2011,27(13):8248–56.
    [210] Lumry R, Rajender S. Enthalpy-entropy compensation phenomena in water solutionsof proteins and small molecules: a ubiquitous property of water.[J]. Biopolymers,1970,9(10):1125–227.
    [211] Chen L-J, Lin S-Y, Huang C-C. Effect of Hydrophobic Chain Length of Surfactants onEnthalpy Entropy Compensation of Micellization[J]. The Journal of PhysicalChemistry B, American Chemical Society,1998,102(22):4350–4356.
    [212]赖国华,周仁贤,韩晓祥,等.焓-熵补偿的热力学解释[J].化学通报,2005(12):50–56.
    [213]谢修银,吴采樱.焓-熵补偿在芳香化合物位置异构体保留机理研究中的应用[J].色谱,1997(06):3–6.
    [214]肖传敏.泡沫复合驱用起泡剂性能评价[J].精细石油化工进展,2008,9(7):14–15.
    [215]李松岩,李兆敏,林日亿,等.泡沫分流酸化数学模型的建立及应用[J].中国石油大学学报:自然科学版,2008,32(5):77–81.
    [216]齐宁,李金发,温庆志,等.稠油油藏蒸汽泡沫驱渗流机理[J].辽宁石油化工大学学报,2009,29(4):34–39.
    [217]岳玉全,郑之初,张世民.氮气泡沫驱发泡剂优选及油层适应性室内实验[J].石油化工高等学校学报,2010,23(1):30–35.
    [218]郑延成,韩东,杨普华.磺酸盐表面活性剂研究进展[J].精细化工,2005,22(8):578–583.
    [219]汪庐山,曹嫣镔,于田田,等.气液界面特性对泡沫稳定性影响研究[J].石油钻采工艺,2007,29(1):75–77.
    [220]李豪浩.起泡剂的筛选与性能评价[J].石油地质与工程,2009,23(2):128–131.
    [221]李兆敏,刘伟,李松岩,等.泡沫酸与石英反应动力学及缓速效果研究[J].石油与天然气化工,2010(01):47–50.
    [222]蒋泽银,刘友权,石晓松,等.川中须家河气藏泡排技术研究与应用[J].石油与天然气化工,2010(05):422–426.
    [223]王业飞,赵福麟.由AES合成脂肪醇聚氧乙烯醚磺酸钠的研究[J].精细石油化工,1996(05):22–25.
    [224]张永民,牛金平,李秋小.壬基酚聚氧乙烯醚磺酸钠的合成及性能[J].精细石油化工,2009(02):4–7.
    [225]李瑞冬,葛际江,张贵才,等. Streck法合成烷基酚聚氧乙烯醚磺酸盐过程中磺化条件的研究[J].西安石油大学学报(自然科学版),2010(05):57–60.
    [226]张锁兵,程月,田春友,等.脂肪醇聚氧乙烯醚系列磺酸盐的泡沫性能研究[J].日用化学工业,2007(03):172–175.
    [227]闫义田,王克亮,王娟,等.复配表面活性剂对三元复合体系界面张力影响研究[J].石油与天然气化工,2006(03):224–225.
    [228]郭东红,赵丕兰,张景春,等. OCS表面活性剂用于大港油田枣1219断块表面活性剂驱的室内研究[J].石油与天然气化工,2006(05):398–400.
    [229]贺伟东,蒋燕军,靳路超,等.不同结构聚醚磺酸盐的耐盐性能和起泡性能研究[J].石油与天然气化工,2011,40(5):475–479.
    [230]赵涛涛,宫厚健,徐桂英,等.阴离子表面活性剂在水溶液中的耐盐机理[J].油田化学,2010,27(1):112–118.
    [231]曹绪龙,吕凯,崔晓红,等.阴离子表面活性剂与阳离子的相互作用[J].物理化学学报,2010,26(7):156–164.
    [232]杨普华,翁蕊,罗幼松,等.阴离子混合表面活性剂体系的胶束性质[J].石油勘探与开发,2004,31(3):129–133.
    [233] Stirton A J, Maurer E W, Weil J K. Synthetic detergents from animal fats. VII.Detergent combinations[J]. Journal of the American Oil Chemists Society,1956,33(6):290–291.
    [234]夏纪鼎.钙皂分散剂与脂肪酸钠皂复合的协同效应[J].无锡轻工业学院学报,1984,3(1):1–3.
    [235]侯吉瑞,康万利,吴文祥.石油羧酸盐在高岭土上静吸附规律的实验研究[J].油田化学,1994,11(4):340–344.
    [236]高晓宇.十七烷基二甲苯系列磺酸盐的合成及性能研究[D].大庆石油学院,2009.
    [237]赵普春,杨顺贵,吴旭光,等.非离子表面活性剂NS在文明寨油砂和岩心上的吸附[J].油田化学,1998,15(2):173–175.
    [238]王亚飞,张丁涌,乐小明.阴离子表面活性剂在油砂和净砂表面的吸附规律[J].石油大学学报(自然科学版),2002,26(3):59–61.
    [239]付美龙,吴一慧,黄宏度,等.石油羧酸盐表面活性剂吸附特性实验研究[J].油气采收率技术,1997,4(2):12–16.
    [240]康万里,董喜贵.三次采油化学原理[M].北京:化学工业出版社,1997.
    [241]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996.
    [242]田仲强,隋春艳,王国壮.阴离子表面活性剂在含油和去油地层砂表面吸附的差异[J].油田化学,2002,19(2):169–172.
    [243]崔正刚,刘世霞,何江莲.重烷基苯磺酸盐在大庆油砂上的静吸附损失研究[J].油田化学,2000,17(4):359–363.
    [244]单存龙,宗丽平,徐艳姝,等.烷基苯磺酸盐在大庆油砂上的吸附特征研究[J].中外能源,2006,11(5):45–47.
    [245]江建林,陈秋芬,陈锋,等.天然羧酸盐驱油剂ZY5在高温高盐高钙镁条件下的界面活性与岩心驱油能力[J].油田化学,2001,18(2):173–176.
    [246]张鹏龙.石油羧酸盐与重烷基苯磺酸盐复配体系性能研究[J].精细与专用化学品,2011,19(3):32–34.
    [247]沈晓峰,李露.驱油重烷基苯磺酸盐中和复配新工艺[J].油气田地面工程,2011,30(6):14–15.
    [248]王凤清,王玉斗,吴应湘,等.驱油用石油磺酸盐的合成与性能评价[J].中国石油大学学报:自然科学版,2008,32(2):138–141.
    [249]谭中良. Gemini表面活性剂的特性及耐盐活性研究[J].精细与专用化学品,2006,14(S1):50–54.
    [250]刘霜,唐善法,胡小冬,等.阴离子双子表面活性剂表面活性研究[J].精细石油化工进展,2011(02):31–34.
    [251]赵田红,董阳阳,彭国峰,等.两性双子表面活性剂的合成及性能评价[J].应用化工,2011(07):1219–1221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700