用户名: 密码: 验证码:
水导激光微细加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对MEMS(Micro Electro Mechanical System)器件制造出现了许多新型微细加工方法,如LIGA(Lithograthie Galvanoformung Abformung)加工、电火花微细加工、电化学微细加工、激光微细加工、水导激光微细加工等。近年,随着微电子硅基材料加工业、精密医疗器械制造业的兴起,水导激光微细加工技术得到迅速的发展,其特有的加工能力能保证高加工精度、高加工速度、极小加工作用力、极小热影响区、无残余应力、无裂纹。目前,瑞士的SYNOVA公司有较成熟产品,但价格非常昂贵。基于以上现状,本文在国内外相关研究的基础上,深入开展了水导激光微细加工的理论、仿真和试验研究。建立了加工仿真模型,设计制造了完整、性能稳定可靠、成本较低的水导激光微细加工系统,通过试验得到了优化的加工工艺参数并加工出品质优异的样件。
     首先,在总结国内外研究基础上,研究了水束光纤的耦合原理,包括耦合对准、全反射最大入射角、多模光纤传输和激光能量在水束中的衰减、受激拉曼散射等。研制了耦合状态检测和调整系统,该系统基于CCD机器视觉采集到的耦合状态图像,采用自行开发的图像处理软件,能够实现实时、快速、准确的耦合对准和加工状态监测。
     对高速稳定水射流束的流体动力学原理进行研究,研究了影响水束稳定性的因素、缩流原理、空化原理,通过应用FLUENT有限元分析软件针对本文设计的高压水射流液压系统进行流体动力学仿真,得到能够形成理想射流状态的合理液压参数。应用仿真的结果,实验得到了稳定长度超过100mm、流速超过100m/s的高速水射流。
     对激光与固体、液体的相互作用原理进行研究,应用ANSYS有限元分析软件仿真加工过程的温度场。采用了“单元杀死技术”仿真加工蚀除情况。仿真中激光能量依照水导激光微细加工特有的非高斯分布考虑。重点研究了高速水射流的冷却、冲击作用对热影响区分布、温度梯度大小和熔融产物生成的影响。
     其次,从实现水导激光微细加工的各项关键技术入手,设计并研制了一套水导激光微细加工设备。由脉冲式Nd:YAG激光系统、高压水液压系统、激光与水束光纤耦合系统、CCD机器视觉耦合状态检测和监控系统、计算机数控系统、数控工作台等几部分组成。激光与水束光纤耦合装置是该系统的关键部分。耦合装置内液体腔极小,腔内流场稳定、对称,激光穿过的水层厚度仅0.2mm。齐整的喷嘴孔口边缘保证返流式缩流射流的形成。采用添加望远镜部件和扩束器部件的Nd:YAG脉冲激光系统,聚焦激光束数值孔径合理,束腰直径小、焦深大,适合于水导激光微细加工。
     最后,为了掌握水导激光微细加工的工艺规律,针对所设计的系统进行了试验研究。研究各项加工参数对水束稳定性的影响规律,研究加工参数对激光光斑直径影响规律,对激光能量衰减规律,不同材料的加工效率。接着采用单因素法和正交试验法进行加工参数优化试验。最后通过采用优化参数加工硅基晶片和不锈钢1Cr18Ni9Ti样件,验证了水导激光微细加工系统优异的微小零件加工性能和广泛实用性。
There are many new micromachining methods developed for MEMS(Micro Electro Mechanical System) such as LIGA micromachining, micro-EDM and micro-ECM, etc. In Recent years, with the development of silicon-based microelectronic materials processing and sophisticated medical equipment manufacturing, water-jet guided laser micromachining develops quickly. It′s particular processing ability insures high machining precision, high machining speed, minimal machining force, minimal heat-affected zone, no remain stress and no crack. At present, SYNOVA Company in Sweden has mature products using this technology, but the price is quite high. Based on the situation above, this dissertation is aiming at doing research on the theories,simulation and experiments of water-jet guided laser micromachining. The simulation model was built up. The complete, steady and low cost water-jet guided laser micromachining system was designed and built up. The optimized machining parameters and high quality products were acquired from experiments.
     Firstly, on the bases of summing up the other researchers′work all over the world, the coupling mechanisms of water-jet guided laser micromachining were researched including the coupling alignments, the largest incidence angle of full reflection, multimode optical fiber transmission, the decay of laser energy in water and SRS(Stimulated Roman Scattering). The coupling status detecting and adjusting system was designed. This system was based on the coupling image acquired from the CCD camera machine vision. A self-developed image processing software was used. It can monitor the coupling status rapidly and accurately.
     The hydrokinetics principle of high speed water-jet was researched. The factors affecting the stability of water-jet, the contract flow principle and the cavitation principle were researched. The high-pressure water-jet hydraulic system was simulated by using FLUENT finite element analysis software. The reasonable parameters for creating ideal jet state were acquired. By using the simulation results high speed jet which was more than 100mm long at the speed of over 100m/s was formed in experiment.
     The interaction principle of laser, solid and liquid was researched. The temperature field of the machining process was simulated by using ANSYS finite element software. Meanwhile, material removal situation was simulated by using“elements killing technique”. In the simulation, the laser energy distribution is not treated as Gaussian distribution. The cooling of high speed water-jet and the impact of shock on heat-affected zone distribution, temperature gradient and melt debris were focused on.
     Secondly, a set of water-jet guided laser micromachining system was designed and developed to realize the key techniques of water-jet guided laser micromachining. It composed of pulsed Nd: YAG laser system, high-pressure hydraulic system, coupling unit of laser and water-jet, CCD camera machine vision coupling status detecting system, computerized numerical control system and workbench, etc.
     The coupling unit of laser and water-jet is the key part. It′s structure affects the machining results much. The liquid cavity in the coupling unit is quite small. Liquid field in the cavity is steady and symmetrical. The thickness of the water layer which laser goes through is only 0.2mm. Sharp nozzle orifice edge guarantees the formation of the reflux contract water-jet. By adding telescope unit and beam expanding unit on pulse Nd: YAG laser system, the numerical aperture of focusing laser beam is reasonable, waist diameter is small and the focus depth is great, which is quite suitable for water-jet guided laser microprocessing.
     Finally, in order to master the processing principle, the experiments were carried out using the water-jet guided laser micromachining system. The experiments were done to find the influence of machining parameters on water-jet stability, focused laser spot diameter, the attenuation of laser energy and the processing efficiency of different materials. The processing parameters were optimized by using single factor method and orthogonal experimental method. At last, silicon-based chip and stainless steel 1Cr18Ni9Ti were machined by using optimized processing parameters. The experiments results proved the excellent micro-machining ability of water-jet guided laser micromachining and its wide practicality.
引文
1 A.Vogel,J.Noack,G.Huttman,G.Paltauf.Mechanisms of Femtosecond Laser Nanosurgery of Cells and Tissues.Appl.Phys.2005, 81:1015~1047
    2田兴志.激光加工现状及21世纪的展望.激光应用.2003,(2):1~4
    3梅遂生.激光加工在电子工业中的应用.激光与红外.1994,24(1):5~8
    4陈军伟.激光微加工技术纵览.光机电信息.2001,(11):15~20
    5虞钢.集成化激光智能加工工程.冶金工业出版社.2002:66~69
    6刘晋春,赵家齐,赵万生.特种加工(第四版).机械工业出版社.2000:125,134~138
    7左铁钏.高强铝合金的激光加工.国防工业出版社.2002:305~311
    8倪晓昌.飞秒激光微精细加工理论与实验研究.天津大学博士毕业论文.2003:1~20
    9 Y.Zhang, R.M.Lowe, E.Harvey.High Aspect-ratio Micromachining of Polymers with an Ultrafast Laser.Applied Surface Science.2002,186:345~351
    10 L.Tunna,A.Keams,C.J .Sutcliffe.Micromachining of copper using Nd:YAG Laser Radiation at 1064,532and 355 Nm Wavelengths.Optics and Laser Technology.2001,33(3):135~143
    11 J.J.Zayhowski,Passively q-switched Nd:YAG Microchip Lasers and Applications.Journal of Alloys and Compounds.2000,303~304:393~400
    12 J.Y.Cheng,C.W.Wei.Direct-write Laser Micromachining and Universal Surface Modification of PMMA for Device Development.Sensors and Actuators.2004,B99:186~196
    13 S . Metev . Laser-induced Chemical Micro-treatment and Synthsis of materials.LPM.2002:47~51
    14王振龙.微细加工技术.国防工业出版社.2000:1~40
    15袁哲俊.精密和超精密加工技术.机械工业出版社.1999:163~169
    16袁哲俊.纳米科学与技术.哈尔滨工业大学出版社.2005:340~356
    17李勇,周兆英.特种微型机械加工技术.光学精密工程.2000,8(3):287~291
    18黄瑞宁.微细电火花线切割加工装置及相关技术研究.哈尔滨工业大学博士毕业论文.2006:1~4
    19张勇.微细电火花加工系统及其工艺技术研究.哈尔滨工业大学博士毕业论文.2004:1~6
    20王振龙,夏良俊,赵万生.半导体硅材料的电火花加工技术研究.电加工与模具.2004,(1):13~16
    21 M . Datta , D . Landolt . Fundamental Aspects and Applications of Electrochemical Micrefabrication . Electrochemica Acta . 2000 , 45 :2535~2558
    22 M . Datta , L . T . Romankiw . Jet and Laser-jet Electrochemical Micromachining of Nickel and Steel . Journal of Electrochemical Society.1989,136:2251~2256
    23 M.Datta, D.Harrist.Electrochemical Micromachining:an Environmentally friendly,High Speed Processing Technology.Electrochimica Acta.1997,42:3007~3010
    24 B.Bhattacharyya,S.Mitra.Electrochemical Machining: New Possibilities For Micromachining.Robotics and Computer Integrated Manufacturing 2002,18:283~289
    25王建业,徐家文.电解加工原理及应用.国防工业出版社. 2001:222~226
    26 J.McGeough.Micromachining of Engineering Materials.The University of Edinburgh, Scotland. 2000:263~266
    27 X . C . Li , H . Choi . Micro Rapid Prototyping System for Micro Components.Thin Solid Films.2002,420:515~523
    28 B.Richerzhagen.Industrial Applications of the Water-jet guided Laser.The Industry Laser User.2002,(28):28~30
    29苏红新.水导激光加工技术.光电子技术与信息.1998,6:35~37
    30 B.Richerzhagen. The Best of both worlds? Laser and Water Jet combined in a new Process:the Water Jet guided Laser.Synova SA, Ecublens,CH.2004:1~8
    31 B.Richerzhagen.Method and Apparatus for Machining Material with a Liquid-guided Laser Beam.United States Patent.1999:1~8
    32 K.Kobayashi, Mitaka. Dicing Method and Dicing Apparatus for Dicing Plate-like Workpiece.United States Patent.2004:1~11
    33 K.M.Merdan, J.Weber.Tubular Cutting Process and System.United States Patent.2004:1~6
    34 A.Catherine,D.Timothy,S.PaulLugg.Arrys of Optical Element and Method of Manufacture Same.United States Patent.2005:1~14
    35 L.Li,Y.Wang,L.Yang,J.C.Chu.Experimental Research on Water-jet guided Laser Processing.Proceedings of SPIE - The International Society for Optical Engineering,v 6595 I,Fundamental Problems of Optoelectronics and Microelectronics III.2007,6595:659525~659532
    36 W.L.Liang,B.K.Ngoi.Micromachining of Circular Ring Microstructure by Femtosecond Laser Pulses.Optics & Laser Technology.2003,35: 285~290
    37 A.S.Kuar,B.Doloi,B.Bhattacharyya.Modelling and Analysis of Pulsed Nd:YAG Laser Machining Characteristics during Micro-drilling of Zirconia (ZrO2).International Journal of Machine Tools & Manufacture.2006,46:1301~1310
    38吕善进.激光加工数控系统及状态监测技术研究.哈尔滨工业大学博士毕业论文.2006:6~17
    39 S.Lv,Y.Wang.An investigation of pulsed laser cutting of titanium alloy sheet.Optics and Lasers in Engineering.2006,44(10):1067~1077
    40杨立军.金属薄板激光诱导无模成形技术的研究.哈尔滨工业大学博士毕业论文.2007:6~17
    41 I.Zergioti, S.Mailis,N.A.Vainos,C.Fotakis.Microdeposition of Metals by Femtosecond Excimer Laser.Applied Surface Science.2000,155:633 ~639
    42 T.Tanaka,H.B.Sun,S.Kawata.Rapid sub-diffraction-limit Laser Micro/nanoprocissing in a Threashold Material System.Applied Physics Letters.2002(80):312~314
    43 http://www.synova.com.ch
    44 B.Richerzhagen,G.Delacrétaz,R.P.Salathé.Complete Model to Simulate the Thermal Defocusing of a Laser Beam focused in Water.Opt.Eng.1996,35(7) :2058~2066
    45 A.Kruusing.Underwater and Water-assisted Laser Processing: Part1-General Features,Steam Cleaning and Shock Processing.Optics and Lasers in Engineering.2004,41:307~327
    46 A . Kruusing . Underwater and Water-assisted Laser Processing :Part2-Etching,Cutting and rarely used Methods.Optics and Lasers in Engineering.2004,41:329~352
    47 C.F.Li, D.B.Johnson,R.Kovacevic.Modeling of Waterjet guided Laser Grooving of Silicon.International Journal of Machine Tools & Manufacture.2003,43:925~936.
    48á.Spiegel,N.Vágó,Frank,R.Wagner.High Efficiency Raman Scattering in Micrometer-sized Water Jets.Optical Engineering.2004,43:450~454.
    49 P.Couty,F.Wagner,P.Hoffmann.Laser Coupling with a Multimode Water-jet Waveguid.Opticle Engineering.2005,44 (6):068001,1~8
    50 F.Wagner,O.Sibailly,N.Vágó.The Laser Microjet Technology-10 Years of Development.Synova SA,Ecublens,CH.2003:1~8
    51 P.Couty,á.Spiegel,N.Vágó,B.I.Uguryas,P.Hoffmann.Laser-induced Break-up of Water Jet Waveguide.Experiments in Fluids.2004,36:919~927
    52 N.Dushkina, F.Wagner, C.Boillat.Water Jet guided Laser vs Saw Dicing.Photon Processing in Microelectronics and Photonics.2003,4977:75~85
    53 H.Ophardt.Wter-jet guided Laser Disinfection.United States Patent.2007:1~11
    54 A.Jyri,A.P.Yrj?.Cutting thin Sheet Metal with a Water Jet guided Laser using Various Cutting Distances , Feed Speeds and Angles of Incidence.Journal of Advanced Manufacture Technology.2007,33:
    961~967
    55 T.A.Mai,B.Richerzhagen,P.C.Snowdon.The Laser Microjet (LMJ)-a Multi-solution Technology for high Quality Micro-machining.Proc.of SPIE.2007,6459:1~7
    56 D.Kray,S.Hopman,A.Spiegel. Study on the Edge Isolation of Industry Silicon Solar Cells with Water-jet guided Laser.Solar Energy Materials and Solar cells.2007,91:1638~1644
    57 B.Richerzhagen,M.Plankensteiner,N.U.Kling,K.Stay,A.Brulé.Saw + LMJ:A hybrid Semiconductor Dicing Solution.Proc.of SPIE.2008,6880:1~6
    58陈笑.高功率激光与水下物质相互作用过程与机理研究.南京理工大学博士毕业论文.2004:30~68
    59徐荣青.高功率激光与材料相互作用力学效应的测试与分析.南京理工大学博士论文.2004:7~16
    60陈虹.高功率激光光束特性对激光加工的影响.光学技术.2006,32(6):834~841
    61陈虹.激光光束质量对光束传输聚焦和加工质量的影响.北京工业大学博士毕业论文.2005:47~50
    62孙秀平,冯克成,张喜和.单模石英光纤受激拉曼散射温度特性研究.光谱学与光谱分析.2007,27(10):2049~2052
    63左剑,里佐威,田艳杰.液芯光纤中溶液吸收和荧光的性质对CS2受激拉曼散射阈值的影响.物理学报.2007,56(2):889~894
    64胡大伟,王正平,张怀金.YbVO4晶体的受激拉曼散射.物理学报.2008,57(3):1714~1718
    65 http://www.synova.ch/chinese/products/products_lcs_300.html
    66 B . Ricrerzhagen , M . Kutsuna , H . Okada . Waterjet-guided Laser Processing.Proceedings of SPIE.2003,4830:91~94
    67 http://www.synova.ch/chinese/products/application_notes.php
    68周永恒、廖健宏.血管内支架的激光精细切割技术.应用激光.2005,25(3):161~164
    69 O.Sibailly,F.Wagner,B.Richerzhagen.Laser Micro-machining in Microelectronic Industry by Water Jet Guided Laser.Proc.of SPIE.2004,5339:259~264
    70 O.Sibailly,F.Wagner,B.Richerzhagen.High Precision Laser Processing of Sensitive Materials by Microjet.Proc.of SPIE.2003,5063:501~504
    71蓝信钜.激光技术.科学出版社.2000:272~273,281~283,314
    72饶云江.光纤技术.科学出版社.2006:55~56,63~64
    73孙秀平.光纤中的受激拉曼散射及其应用的研究.长春理工大学博士学位论文.2006:20~56
    74李春江.晶圆处理预对准系统的研究.哈尔滨工业大学硕士毕业论文.2006:5~13
    75节徳刚.宏/微驱动高速高精度定位系统的研究.哈尔滨工业大学博士毕业论文.2006:1~20
    76张舞杰,杨义禄,李迪.自动影像测量系统关键算法研究.光学精密工程.2006,(6):1~7
    77何斌.Visual C++数字图像处理.人民邮电出版社.2002:60~106
    78大恒有限公司.大恒图像采集卡使用说明书.中国:大恒有限公司,2003:11~56
    79 Fluent Inc. Fluent 6.1 User′s Guide. NH 03766 USA: Fluent Inc, 2003:52~308
    80韩占忠.FLUENT流体工程仿真计算实力与应用.北京理工大学出版社.2006:14~25
    81王瑞金.Fluent技术基础与应用实例.清华大学出版社.2007:45~70
    82何枫,谢峻石.喷嘴内部流道型线对射流流场的影响.应用力学学报.2001,18(4):114~119
    83 S.Sadik,Y.Zimmels.On the Mechanism of Spray Formation from Liquid Jets.Journal of Colloid and Interface Science.2003259:261~274
    84张利平.液压站设计与使用.海洋出版社.2004:154~158
    85 http://portal.isiknowledge.com/portal.cgi?DestApp=WOS&Func=Frame
    86国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2006-2010)机械与制造学科.北京:科学出版社.2006:222~226
    87 ANSYS Inc.ANSYS Release 9.0 Documentation.U.S.A:ANSYS Inc,2004,Champter 6,15,17 of Theory Reference
    88 R.K.Ganesh,W.W.Bowley,R.R.Bellantone.A Model for Laser Hole Drilling in Metals.Journal of Computational Physics.1996,125:161~176
    89 R.K.Ganesh,A.Faghri.A Generalized Thermal Modeling for Laser Drilling Process—I . Mathematical Modeling and Numerical Methodology.International Journal of Heat and Mass Transfer.1997,40:3351~3360
    90 R.K.Ganesh and A.Faghri.A Generalized Thermal Modeling for Laser Drilling Process—II . Numerical Simulation and Results . International Journal of Heat and Mass Transfer.1997,40:3361~3373
    91 J.M. Prusa,G.Venkitachalam,P.A.Molian,Estimation of Heat Conduction Losses in Laser Cutting.International Journal of Machine Tools and Manufacture.1999,39:431~458
    92宋林森,史国权,李占国.激光打孔温度场的数值分析与仿真.工具技术,2006,40:12~15
    93贾振元,周明.电火花微小孔加工工艺参数的优化研究.机械工程学报.2003,39(2):106~112
    94狄士春,黄瑞宁.微细电火花线切割加工工艺参数优化的研究.全国生产工程第九届年会暨第四届青年科技工作者学术会议论文集.哈尔滨,2004:208~213
    95陈义保,姚建初.基于灰色系统理论的多目标优化的一种策略.机械工程学报.2003,39(1):101~106
    96 JK702 Nd-YAG Laser Operation & Maintenance Manual.Warwickshire, CV21 1QN England:Lumonics.LTD.2000:10~196
    97邓小玖,储德林.高斯光束质量因子的研究.合肥工业大学学报.2003,26(4):501~504
    98高雪松,高春清,高明伟.高精度激光参数测量系统中衰减系统的研究与评价.强激光与粒子.20006,18(2):189~192
    99杨耀权,施仁.用Hough变换提高激光光斑中心定位精度的算法.光学学报.1999,19(12):1655~1660
    100李伦,巩马理,刘兴占.MATLAB用于激光光束质量分析.2000,24(6):405~408
    101孙伟,赵长明.直角棱镜激光衰减器的研究与实验.光学技术.1999(4):40~43
    102陈军,黄鹏,周淑文.用于测量高功率激光远场光强空间分布的小畸变光强衰减与成像系统研究.光学学报.1998,18(6):738~741
    103章秀华,杨坤涛.一种改进的二维Hough变换提取激光光斑参数方法.激光与红外.2006,36(10):995~997
    104章秀华,杨坤涛.一种新的激光光斑参数快速计算方法.光学技术. 2007,32(3):441~443
    105 Pmac2 user’s manual.Delta Tau Date Systems.1998:201~341
    106马雄波.基于PC机的开放式多轴软数控系统关键技术研究与实现.哈尔滨工业大学博士毕业论文.2007:1~17
    107张学成.基于PMAC运动控制器的开放式数控系统研究.国防科学技术大学工学硕士毕业论文.2002:1~30
    108张永强,陈武柱,张旭东.基于PC的开放式多功能激光加工数控系统.应用激光.2004,24(6):368~371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700