用户名: 密码: 验证码:
压电式生物细胞微操作台建模及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代生物医学工程的发展,许多细胞级的操作如细胞分离、捕获、切割及注射等均需通过显微操作装置完成。微操作台作为细胞微夹持器、微注射器及培养皿等微操作设备的承载机构,其位移输出范围、位移分辨率及运动精度是影响细胞操作成功率的重要因素。
     针对生物细胞显微操作的特点及要求,微操作台需具有毫米级的运动范围和微米甚至亚微米级的定位及重复定位精度。因此,采用结构嵌套方式,将压电陶瓷/压电驱动器作为操作台的驱动部件,结合放大机构和平行导向机构构建了柔性一体化大行程二维微操作台,建立了微操作台的动态迟滞模型并对其控制特性可控制方法进行了实验研究。实验结果表明,设计开发的一体化大行程二维微操作台具有毫米级的运动范围和亚微米级的分辨率,可以满足细胞操作的要求。
     压电驱动器作为微操作台的驱动部件,其位移分辨率和控制精度是影响微操作台的位移输出特性的重要因素。因此,本文首先从压电驱动器的负载特性出发,分析了容性负载对驱动电源的影响,得出驱动器的等效负载电容可导致驱动系统产生相位滞后甚至振荡,为此设计了由高压放大器组成的桥式驱动电路,并针对压电驱动器这种特殊负载,采用滞后-超前控制器对驱动电源的频率特性进行了校正,使系统获得了良好的静态及动态特性。
     由于压电驱动器的输出位移不能满足细胞操作的要求,在分析不同柔性铰链位移输出特性和力学特性的基础上,选用直角平板柔性铰链作为机构的传动部分,研究了其几何参数对桥式放大机构和U型导向机构的运动特性及力学特性的影响,然后采用结构嵌套方式,构建了由桥式放大机构和U型导向机构组成的大行程、无耦合二维微操作台,分析了微操作台的位移输出特性及应力集中特性,建立了微操作台的动力学模型,并通过有限元分析和实验验证了理论分析的正确性。在细胞操作过程中,根据操作的需求,微操作台一般做随机运动,因此施加在压电驱动器上的幅值和电压变化率也不相同,但不同电压变化率会导致微操作台的迟滞特性发生变化。目前流行的基于Preisach模型的静态建模方法并不能描述这种动态迟滞特性,因此引入神经网络辨识理论,利用Preisach模型中提出的转折点、上升和下降过程等迟滞多环曲线的形态特征,结合神经网络构造出一种对驱动电压变化率敏感的动态迟滞模型,然后对模型的泛化能力进行了验证。
     在微操作台的迟滞模型研究的基础上,首先研究了微操作台实际控制特性,然后采用神经网络动态迟滞逆模型、传统PID以及神经网络自适应PID等控制方法对微操作台的在不同控制信号下的输出位移进行了分析,并通过实验比较了不同控制方法对随机位移信号的跟踪特性。
     本论文有图125幅,表7个,参考文献153篇。
With the development of the modern biomedical engineering, many cellular level manipulations such as cells isolating, capturing, microdissecting and microinjecting must be done by micromanipulator. The micro-stage which as the supporting table of microgripper, microinjector and culture dish and its displacement range, resolution and kinematic accuracy are the important factors effect the success of cell-manipulation.
     According to the characteristics and requirements of cell-manipulation, the micro-stage should have the characteristic of large stroke to millimeter and the displacement resolution to micron or submicron. Therefore, a large stroke two-dimension integrated micro-stage was established by employing piezo actuator as the driving component and the nested structure of amplification and parallel guiding mechanism. Then the dynamic hysteresis model of micro-stage was established and the experiments about the control strategy were performed. The experimental results proved that the large stroke two-dimension integrated micro-stage has the displacement of millimeter and the resolution reached to submicron, those features could meet the requirements of cell-manipulation.
     The displacement resolution and kinematic accuracy of piezo actuator are the most important factors which influence the output displacement performance of micro-stage. Then this dissertation analyzed the effect of capacitive load to driving power supply based on the load characteristic of piezo actuator and derived that the equivalent capacitance of piezo actuator can lead to phase lag even oscillation of the driving system. For this, a bridge type driving circuit was designed based on high voltage operational amplifier. Meanwhile, a lead lag controller was applied to corrected the frequency characteristic of the capacitive load system and obtain the better static and dynamic performance.
     Because the output displacement of piezo actuator could not meet the requirements of cell-manipulation, the right angle flexure hinge was adopted as transmission section based on the analysis of displacement and mechanical performance to various type flexure hinges. The effect of geometric parameters to kinetic and mechanical performance of bridge type amplification and U-type parallel guiding mechanism were studied. Then a large stroke two-dimension integrated micro-stage was established based on bridge type amplification and U-type parallel guiding mechanism with the nested structure. The output displacement and stress concentration characteristics were analyzed. Finally, the dynamic model of micro-stage was established and verified by the finite element method and experiment.
     of cell-manipulation because of the random motion of micro-stage according to the operation requirements. However, the different voltage regulation can lead to the change of hysteresis characteristic of the micro-stage. And the static modeling method based on Preisach-type model did not describe this dynamic hysteresis phenomenon. So the neural network identification theory was introduced into and a dynamic hysteresis model was established based on the morphological of turning point, rising and falling of multi-loop hysteresis curve proposed by Preisach model. Then, the generalization ability of the dynamic model was verified by experiments.
     The control performance of micro-stage was tested by experiments base on its dynamic hysteresis characteristic. Then the control performance for step response and sine response was studied by employing the dynamic hysteresis inverse model, classical PID and the neural network adaptive PID control strategy. Finally, the random displacement tracking performance was compared by employing different control method.
     There are 125 figures, 7 tables and 153 references in the dissertation.
引文
[1]汪德耀.普通细胞生物学,(第1版)[M].上海:上海科学技术出版社,1998.
    [2]翟中和,王喜忠,丁明孝.细胞生物学(第3版)[M].北京:高等教育出版社,2007.
    [3]沈大棱,吴超群.细胞生物学[M].天津:复旦大学出版社,2007.
    [4] Lamond A I, Earnshaw W C. Structure and function in the nucleus [J]. Sience, 1998, 280(5363):547-553.
    [5]卢桂章,张建勋,赵新.面向生物工程实验的微操作机器人.南开大学学报:自然科学版,1999,3(3):42-46.
    [6]毕树生.面向生物工程的微操作机器人系统研究[D].北京:北京航空航天大学博士学位论文,2002.
    [7]江泽民,徐德,王麟昆等.微操作机器人的研究现状与发展趋势[J].机器人,2003,25(6):554-559.
    [8]王家畴,荣伟彬,孙立宁.纳米操作系统研究现状及关键技术[J].压电与声光,2007,29(3):340-343.
    [9]张连明,杨宜民.转基因超微量注射控制器的研究[J].广东自动化与信息工程,2004,(1):10-12.
    [10] Ammi M, Ferreira A, Fontaine J G. Virtualized reality interface for tele-micromanipulation[C]. Proceeding of 2004 IEEE International Commence on Robotics and Automation, 2004, 3:2 776-2781.
    [11] FOTIADIS D, SCHEURING S, MULLER S A, et al. Imaging and manipulation of biological structures with the AFM [J].Micron, 2002, 33(4):385-397.
    [12] Worn H., Schmoeckel F., Buerkle, A., et al. From decimeter to centimeter-sized mobile microrobots the development of the MINIMAN system [J]. Proceedings of the SPIE - The International Society for Optical Engineering, 2001, (4568):175-186.
    [13] Min-Soo Jang, Seok-Joo Lee, Ho-dong Lee. Shape recognition of the embryo cell using deformable template for micromanipulation [J]. Springer-Verlang Heidelberg. 2004, (3029):463-472.
    [14]毕树生,宗光华.用于生物工程的微操作机器人系统的若干问题[J].仪器仪表学报,2000,21(6):560-564.
    [15] Matsuoka H, Komazaki T, Mukai Y, etal.High throughput easy microinjection with a single-cell manipulation supporting robot [J].Journal of Biotechnology, 2005, 116(2):185-194.
    [16]田桂中,侯丽雅,章维一.数字化进退针装置的设计与试验[J].机械工程学报,2008,44:(10),234-238.
    [17]王会香,陈立国,孙立宁,等.生物显微切割微操作仪的设计与研制[J].光学精密工程,2006,14(3),416-421.
    [18]于保军,杨志刚.视觉控制技术在细胞注射装置中的应用[J].长春理工大学学报(自然科学版),2007,30(4):58-62.
    [19]钟辉,郭阿全,席文明.视觉伺服控制微机械手的细胞注射研究[J].装备制造技术,2007,(4):21-23.
    [20]赵玮,宗光华,李旭东,等.视觉导引的生物细胞自动操作运动规划的研究[J].高技术通讯,2001,11(8):93-97.
    [21]李欣欣,肖献强,杨志刚,等.视觉控制技术在压电驱动细胞注射装置中的应用[J].吉林大学学报(工学版),2006,36(S2):91-96.
    [22] NAKAJIMA M,ARAI F,DONG L X, et al. Hybrid nanorobotic manipulation system inside scanning electron microscope and transmission electron microscope[A] .Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Japan: Sendai, 2004:589-594.
    [23]汤春明,于翔.关于显微运动细胞追踪的问题与策略[J].武汉理工大学学报,2004,26(9),81-84.
    [24]孙立宁,安辉.压电/电致仲缩陶瓷控制模型归一化的研究[J].哈尔滨工业大学学报,1998,30(5):4-7.
    [25]薛实福,李庆祥.精密仪器设计[M].北京:清华大学出版社,1991.
    [26]沈剑英,杨世锡,周庆华,等.单平行四杆柔性铰链机构的输出位移和耦合误差分析[J].机床与液压,2004,(3):27-28.
    [27] Ryu J W, Gweon D G. Error analysis of a flexure hinge mechanism induced by machining imperfection [J]. Precision Engineering, 1997, 21(3):83-89.
    [28]纪华伟.压电陶瓷驱动的微位移工作台建模与控制技术研究[D].杭州:浙江大学博士学位论文,2006.
    [29]纪华伟;杨世锡;吴昭同,等.一种无耦合位移和低集中应力的二维微操作器研究[J].仪器仪表学报,2006,27:(11),1473-1477.
    [30] Elfizy A T, Bone G M, Elbestawi M A. Design and control of a dual-stage feed drive [J].International Journal of Machine Tools & Manufacture, 2005, 45(2): 153-165.
    [31]节德刚,刘延杰,孙立宁,等.一种宏微双重驱动精密定位机构的建模与控制[J].光学精密工程,2005,13(2):171-178.
    [32]节德刚.宏_微驱动高速高精度定位系统的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [33] Scire F E, Teague E C. Piezodriven 50-μm range stage with subnanometer resolution [J]. Review of Scientific Instruments, 1978, 49(12):1735-1740.
    [34]孙立宁,马立,荣伟彬.一种纳米级二维微定位工作台的设计与分析[J].光学精密工程,2006,14(3):106-411.
    [35]田延岭,张大卫,闫兵.二自由度微定位平台的研制[J].光学精密工程,2006,14(1):94-99.
    [36]田中哲郎著,陈俊彦,王余君译.压电陶瓷材料[M].北京:科学出版社,1982.
    [37]华南工学院编.陶瓷材料物理性能[M].北京:中国建筑工业出版社,1980.
    [38]山东大学压电铁电物理教研室.压电陶瓷及其应用[M].济南:山东人民出版社,1974.
    [39]张福学.现代压电学[M].北京:科学技术出版社,2001.
    [40]崔玉国,孙宝元,董维杰,等.压电陶瓷执行器迟滞与非线性成因分析[J].光学精密工程,2003,11(3):270-275.
    [41] GUYOMAR D. Piezoelectric ceramics nonlinear behavior: application to Langevin transducer .Journal de Physique, 1997, 7(6):1197-1208.
    [42]孙涛,谭久彬,董申.压电陶瓷微驱动器用于超精定位的技术研究[J].压电与声光,1999,21(6):493-497.
    [43] Hall D A. Review Nonlinearity in piezoelectric ceramics [J]. Journal of Materials Science, 2001, 36(19):4575-4601.
    [44] Ge P, Jouaneh M. Tracking control of a piezoceramic actuator [J].IEEE Transaction on Control System Technology, 1996, 4(3): 209-216.
    [45] KUCZMANN M, IVANYI A. A new neural network based scalar hysteresis model [J].IEEE Trans on Magnetics, 2002, 38(2):857-860.
    [46] Goldfarb M, Celanovie M. Modeling Piezoelectric stack actuators for control of micromanipulation [J]. IEEE Control Systems Magazine,1997, 17(3):69-79.
    [47] LIU Y T, FUNG R F,HUANG T K. Dynamic responses of a precision positioning table impacted by a soft-mounted [J].Piezoelectric. Actuator Precision Engineering. 2004, (8):252-260.
    [48]陈立国,荣伟彬,汝长海,等.基于电流控制的压电陶瓷驱动电源及其试验研究[J].机械工程学报,2006,42(3):179-183.
    [49]杨雪锋,李威,王禹桥.压电陶瓷驱动电源研究现状及进展[J].仪表技术与传感器,2008,(11):109-112.
    [50]赵建伟,孙徐任.低频压电陶瓷驱动器驱动电源研制[J].压电与声光,2002,24(2):107-110.
    [51] NEWCOMB C V. Improving the linearity of piezoelectric ceramic actuators [J]. Electronics Letters, 1982, 18(11):442-443.
    [52]李福良.基于PA85的新型压电陶瓷驱动电源[J].压电与声光,2005,27(4):392-394.
    [53]荣伟彬,邹翾,徐敏,等.基于电流控制的压电陶瓷驱动器[J].纳米技术与精密工程,2007,5(1):38-43.
    [54]冯志华,廖波.几种压电陶瓷高压驱动电源的构成级比较[J].机械与电子,1996,19(1):34-36.
    [55]曲东升.纳米级精密定位系统关键技术的研究[D].哈尔滨:哈尔滨工业大学博士论文,2003.
    [56]冯晓光,赵万生,栗岩,等.减小压电陶瓷驱动电源纹波的一种有效方法[J].哈尔滨工业大学学报,1997,29(5):111-114.
    [57] Xu W, King, T G. Mechanical amplifier design for piezo-actuator applications [J]. IEE Colloquium on Innovative Actuators for Mechatronic Systems, 1995, 1-5.
    [58] ALEXANDRE E G,SPENCER P M,LARRY L H,et al. Compliant joint design principles for high compressive load situations [J].Journal of Mechanical Design, Transactions of the ASME. 2005, 127(44):774-781.
    [59] Lobontiu N, Carcia E, Hardau M, et al. Stiffness characterization of corner-filleted flexure hinges .Review of Scientific Instruments [J]. 2004, 75(11):4896-4905.
    [60]宗光华,余志伟,毕树生,等.直角切口柔性铰链串联支链的屈曲分析[J].机械工程学报,2007,43(6):8-13.
    [61]于靖军,毕树生,宗光华.全柔性微位移放大机构的设计技术研究[J].航空学报,2004,25(1):74-78.
    [62] Kim J H,Kim S H, Kwaka Y K. Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism [J]. Review of Scientific Instruments, 2003, 74(5):2918-2924.
    [63]高鹏,袁哲俊,姚英学.基于柔性铰链结构的新型双向微动工作台的研究[J].仪器仪表学报,1998,19(2):80-83.
    [64]王勇,刘志刚,薄锋,等.大行程高分辨率微定位机构的设计分析[J].机械设计,2005,22(5):22-24.
    [65] Niezrecki C, Brei D, Balakrishnan S, etal. Piezoelectric actuation: State of the art [J]. Shock and Vibration Digest, 2001, 33(4):269-280.
    [66]王兴松,王湘江,毛燕.基于超磁致伸缩材料的折弯型压曲放大机构设计、分析与控制[J].机械工程学报,2007,43(11):27-33.
    [67] Hong-Wen Ma; Shao-Ming Yao; Li-Quan Wang. Analysis of the displacement amplification ratio of bridge-type flexure hinge [J]. Sensors and Actuators A (Physical), 2006, 132(2):730-736.
    [68]郑伟智,辛洪兵,赵罘,等.压电驱动微位移放大机构的设计[J].机械科学与技术,2003,22(06),966-967.
    [69]马浩全,胡德金,张凯.柔性铰链位移放大机构在活塞加工中的应用[J].压电与声光, 2004,26(6):514-516.
    [70]赵宏伟,吴博达,曹殿波,等.直角柔性铰链的力学性能[J].纳米技术与精密工程,2007,5(2):143-147.
    [71]刘鸿文.材料力学Ⅰ[M].北京:高等教育出版社,2004.
    [72]刘芳,赵跃进,刘小华,等.压电陶瓷致动器迟滞曲线插值算法研究[J].压电与声光,2008,30(3):382-384.
    [73]贾宏光.基于变比模型的压电驱动微位移工作台控制方法研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2000.
    [74] Ge P, JOUANEH M. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators [J] .Precision Engineering, 1997, 20 (2):99-111.
    [75] Song D C, James Li. Modeling of piezo actuator's nonlinear and frequency dependent dynamics [J]. Mechatronics, 1999, 9(4): 393-410.
    [76]张波,王纪武,陈恳,等.压电驱动晶体的特性研究[J].中国机械工程,2002,13(5):446-449.
    [77] Bernard Y, Mendes E, Ren Z. Determination of the distribution function of Preisach's model using centred cycles [J]. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2000, 19(4):997-1006.
    [78]刘向东,修春波,李黎等.迟滞非线性系统的神经网络建模[J].压电与声光,2007,29(1):106-108.
    [79] Ku S S, Pinsopon U, Cetinkunt S, et al. Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(3):273-280.
    [80] Zhao X L, Tan Y H. Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator [J].Sensors and Actuators A: Physical, 2006,126(2):306-311.
    [81]党选举,谭永红.压电陶瓷回环特性的RBF神经网络建模研究[J].系统仿真学报,2005,17(1):144-147.
    [82] Xuanju Dang; Yonghong Tan. An inner product-based dynamic neural network hysteresis model for piezoceramic actuators [J]. Sensors and Actuators A (Physical), 2005, 121(2):535-542.
    [83]魏强.纳米定位微位移工作台的控制技术研究[D].济南:山东大学博士学位论文,2006.
    [84]刘向东,刘宇,李黎.一种新广义Preisach迟滞模型及其神经网络辨识[J].北京理工大学学报,2007,27(2):135-138.
    [85] Adly A A, Abd-El-Hafiz S K. Using Neural Networks in the Identification of Preisach-Type Hysteresis Models. IEEE Transactions on Magnetics, 1998, 34(3):629-635.
    [86]党选举,谭永红.在Preisach模型框架下的似对角动态神经网络压电陶瓷迟滞模型的研究[J].机械工程学报,2005,41(4):7-12.
    [87] Mason W P. Electromechanical transducers and wave filters 2nd [M]. Van Nostrand Reinhold, 1948.
    [88]冯若.超声手册[M].南京:南京大学出版社,1999.
    [89]李明轩,张海澜,应崇福.厚度模压电换能器应电压的特性分析[J].声学学报(中文版),1981,(5):273-283.
    [90] http://apex.cirrus.com
    [91] Carazo A V, Uchino K. Novel piezoelectric-based power supply for driving piezoelectric actuators designed for active vibration damping application [J] .Journal of Electroceramics, 2001, 7 (3) :197-210 .
    [92]凡木文,王晓云,李明全,等.适合容性负载的高压大功率放大器[J].压电与声光,2005,27(3):229-231.
    [93]王筱颖.模拟电路导论[M].北京:高等教育出版社,1986.
    [94]成立,杨建宁.模拟电子技术[M].南京:东南大学出版社,2006.
    [95]王超.自动控制原理与系统[M].合肥:安徽科学技术出版社,2008.
    [96]张振鹏,张剑,赵洪.基于PA78的快速响应压电陶瓷驱动电源的研制[J].2007,29(4):420-422.
    [97]陈海初,王宣银,张蕊华.压电陶瓷驱动精密流量阀的设计与建模[J].2008,42(11):1936-1939.
    [98]杨雪锋,李威,王禹桥.基于FPGA的压电陶瓷驱动电源设计[J].微计算机信息,2008,(31):209-210.
    [99] Zhang L, Hustache R, Hignette O, et al. Design optimization of a flexural hinge-based bender for X-ray optics [J]. Journal of Synchrotron Radiation, 1998, 5(3):804-807.
    [100]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [101] YANG Xuefeng, LI Wei. Analysis of the displacement of complaint double parallel four-bar mechanism [J]. 4nd IEEE Conference on Industrial Electronics and Applications, 2009.
    [102]杨雪锋,李威,王禹桥,叶果,苏秀平.直角柔性铰链单平行四杆机构输出位移分析[J].纳米技术与精密工程.
    [103]牟新明,王建华,杨密.平行簧片机构力学分析与计算[J].纳米技术与精密工程,2005,3(4):278-282.
    [104] Young Warren C, Budynas Richar G. Roark’s Formulas for Stress and Strain [M]. 7th Ed. New York: McGraw-Hill, 2002.
    [105] http://mathworld.wolfram.com/EllipticIntegral.html
    [106] Howell, L. L., Complaint Mechanisms [M], John Wiley & Sons, Inc, 2001.
    [107] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
    [108]王华,张宪民,欧阳高飞.平面三自由度微动工作台的输入耦合分析[J].中国机械工程,2005,16(5):377-380.
    [109]刘鸿文.材料力学Ⅱ[M].北京:高等教育出版社,2004.
    [110]振动计算与隔振设计组.振动计算与隔振设计[M].北京:中国建筑工业出版社,1976.
    [111]刘品宽,孙立宁,曲东升,等.新型二维纳米级微动工作台的动力学分析[J].光学精密工程,2002,10(2):143-147.
    [112] Xu W, King T. Flexure hinges for piezo actuator displacement amplifiers: flexibility, accuracy and stress considerations [J]. Precision Engineering, 1996, 19(1):4-10.
    [113]谢传锋.动力学Ⅱ[M].北京:高等教育出版社,1999.
    [114] Zadeh L A. From circuit theory to system theory [C]. Proceedings of the IRE, 1962, 50(5):856-865.
    [115]王秀峰,卢桂章.系统建模与辨识[M].北京:电子工业出版社,2004.
    [116] Grossberg S. Nonlinear neural networks: Principles, mechanisms, and architectures [J]. Neural Networks, 1988, 1(1):17-61.
    [117] MeCulloeh W S, Pitts W A. A logical calculus of ideas immanent in nervous activity [J]. Bulletin of Mathematical Biophysics, 1943(5):115-133.
    [118] Nguyen D, Widrow B. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights [J]. International Joint Conference on Neural Networks, 1990, (3):21-26.
    [119] Fernando J P. Generalization of back-propagation to recurrent neural networks [J]. Physical Review Letters, 1987, 59(19):2229-2232.
    [120] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities [C], proceeding of the National Academy of Sciences. 1982, (79):2554-2558.
    [121] Hebb D 0. The organization of behavior [M].Newyork: Wiley, 1949.
    [122] Hornik K M, Stineheombe, White H. Multiplayer feed forward networks are universal approximates [J]. Neural network, 1989, (2):359-366.
    [123] Heeht-Nielsen R. Theory of the back-propagation neural networks [C]. Proceeding of the International Joint Conference on Neural Networks, 1989, (l):593-611.
    [124] Kolmogorov. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and condition [J]. Dokl, Akad Nauk, USSR, 1957, 114:953-956.
    [125] Funahashi, K I. On the approximate realization of continuous mappings by neural networks [J]. Neural Networks, 1989, 2(3):183-192.
    [126] ERPICO C, VISONE C. Magnetic hysteresis modeling via feed-forward neural networks [J]. IEEE Trans on Magnetics, 1998, 34(3):623-628.
    [127] BOBBIO S, MIANO G, SERPICO C, et al. Models of magnetic hysteresis based on play and stop hysterons .IEEE Trans on Magnetics, 1997, 33(6):4417-4426.
    [128]姜长生,王从庆,魏海坤,等.智能控制与应用[M].北京:科学出版社,2007.
    [129]候媛彬,汪梅,王立琦,等.系统辨识及其MATLAB仿真[M].北京:科学出版社,2004.
    [130]罗晓曙.人工神经网络理论-模型-算法与应用[M].桂林:广西师范大学出版社,2005.
    [131] Jung S B, Kim S W. Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control .Precision Engineering, 1994, 16(1):49-55 .
    [132]魏燕定.压电驱动器的非线性模型及其精密定位控制研究[J].中国机械工程,2004,15(7):565-568.
    [133]魏燕定,吕永桂,陈子辰.基于压电驱动器的微动平台开环精密定位控制研究[J].机械工程学报,2004,40(12):81-85.
    [134] Narendra K S, Parthasarathy K. Back-propagation in dynamical systems containing neural networks [R]. Technical Report 8905, Center for systems science, Department of Electrical Engineering, Yale University, New Haven, CT, 1989.
    [135] Jyh-Da Wei, Chuen-Tsai. Constructing hysteretic memory in neural networks [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2000, 30(4):601-609.
    [136]许东.基于MATLAB6.X的系统分析与设计—神经网络[M].西安:西安电子科技大学出版社,1998.
    [137] http://www.mathworks.com
    [138] Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm [J]. IEEE Transactions on Neural Networks, 1994, 5(6):989-993.
    [139]刘兴堂.应用自适应控制[M].西安:西北工业大学出版社,2003.
    [140] Yamada T, Yabuta T. Dynamic system identification using neural networks [J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(1):204-211.
    [141]孙彦广.工业智能控制技术与应用[M].北京:科学出版社,2006.
    [142] Furutani K, Urushibata M, Mohri N. Improvement of control method for piezoelectric actuator bycombining induced charge feedback with inverse transfer function compensation [J].Proceedings of IEEE International Conference on Robotics and Automation, 1998, (2):1504-1509.
    [143] Junghui Chen, Tien-Chih Huang. Applying neural networks to on-line updated
    [144] PID controllers for nonlinear proeess control [J]. Journal of Proeess Control, 2004, 14(2):211-230.
    [145]刘金琨.先进PID控制MATLAB仿真(第二版) [M].北京:电子工业出版社,2004.
    [146]汪晋宽,罗云林,王宏文.自动控制系统工程设计[M].北京:北京邮电大学出版社,2005.
    [147]于海生,潘松峰,于培仁,等.微型计算机控制技术[M].北京:清华大学出版社,1999.
    [148]焦李成.神经网络的应用和实现[M].成都:电子科技大学出版社,1993.
    [149]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003.
    [150] Shuzhi S G, Tong H L, Christopher J H. Adaptive neural network control of robotic manipulators [M]. New York: World Scientific, 1998.
    [151] Brown R E, Maliotis G N, Gibby J A. PID self-tuning controller for aluminum rolling mill [J].IEEE Transactions on Industry Applications, 1993, 29(3):578-583.
    [152]李蔚,盛德仁,陈坚红,等.双重BP神经网络组合模型在实时数据预测中的应用[J].中国电机工程学报,2007,27(17),94-97.
    [153] Farsi M, Finch J W, Warwick K, et al. Simplified PID self-tuning controller for robotic manipulators[J].IEEE Conference on Decision and Control, 1986, (25):1886-1887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700