用户名: 密码: 验证码:
低(奇)偶周期相关序列的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低(奇)偶周期相关序列在密码、码分多址通信系统、正交频分复用通信系统、编码、雷达、声纳等领域有着重要的应用。在许多通信系统中,序列性能的好坏直接影响着通信系统的性能优劣和系统容量的大小。本论文主要研究了具有低(奇)偶周期相关性质的序列,特别针对跳频序列的理论界及其最优构造、(几乎)完备和奇完备序列的构造、低/零奇相关区序列的构造、格雷和QAM格雷序列的完备和奇完备循环共轭性质研究、形似于格雷序列的周期互补对和奇周期互补对的构造、二元签名序列的理论界及其最优构造等五个方面进行了深入研究。
     首先,根据Song等人ODing等人的工作,本文进一步研究了跳频序列集和循环码之间存在密切的联系,讨论了已知的理论界之间的关系。发现了从Plotkin编码理论界得到的Peng-Fan界Plotkin跳频序列理论界的之间的联系、从Singleton编码理论界出发得到的两个跳频序列理论界之间的联系以及两个Peng-Fan界之间的关系。除此之外,基于一些的循环码,包括Reed-Solomon码以及其截短码、多项式函数定义的码、以及两类MDS码及其截短的MDS码,设计了达到新的最大汉明相关的Singleton界的最优跳频序列集。
     其次研究了(几乎)完备和奇完备序列的构造。利用差平衡函数,定义了新的移位序列,推广了Krengel的几乎完备和奇完备三元序列的构造方法。选取平衡的几乎完备序列,构造了(几乎)完备和奇完备的三元序列、高斯整数序列以及QAM+序列,还设计了具有几乎完备性质的16-QAM序列。论文将利用素数p的2阶和4阶分圆数,构造了周期为p的完备高斯整数序列。利用序列积映射,可以构造更多参数的高斯完备序列。对于奇数长度的完备的高斯整数序列,利用奇偶变换,可以构造奇完备的高斯整数序列。这是首次构造了奇数长度的、完备和奇完备的高斯整数序列,首次给出了完备和奇完备QAM+序列的构造,肯定回答了Boztas和Parampalli关于完备QAM+序列存在性的问题。
     本文利用交织技术和Gray映射的逆映射,研究了低/零奇相关区序列集的设计。基于交织技术,选取奇完备序列或者具有低奇周期自相关性质的序列作为列序列,利用已有的移位序列,提出了一种具有灵活参数的低/零奇相关区序列集的构造方法,得到了最优的低/零奇相关区序列集。另外,在适当选取移位序列和具有低奇自相关性质的二元序列,利用Gray映射的逆映射,构造了具有低奇相关区性质的四元序列集。基于已有的二元低奇相关区序列集,利用Gray映射的逆映射,设计了具有低奇相关性质的四元序列集。
     接着本文对格雷序列和QAM格雷序列的进行了深入的研究,发现了部分四元格雷序列和QAM格雷序列具有完备和奇完备循环共轭性质。类似于格雷序列,设计了几类周期互补对和奇周期互补对。这些互补对可以用于设计最优的签名序列。
     最后,本文研究了二元签名序列的理论界及其最优构造。注意到奇周期互相关函数和偶周期互相关函数的对称地位,本文给出了奇周期完全相关平方和的理论下界,并建立了达到理论界的签名序列与奇周期互补集的联系。从已知的奇完备的三元序列出发,构造了二元奇周期互补序列对。利用多项式函数,构造了一些新的二元奇周期互补集。除此之外,本文从m序列出发,构造了新的二元签名序列集,推广了Ganapathy、Pados和Karystinos基于Gold序列集的二元签名序列集的构造。
Sequences with low (odd) even periodic correlation have been applied in cryptography, code division multiple access communication systems, orthogonal frequency division multi-plexing communication systems, coding, Radar, Sonar and so on. In many communication systems, the performances are dominated by properties of sequences. In this thesis, we mainly focus on the study of sequences with low (odd) even periodic correlation in five topics:the bound of frequency hopping sequence sets and their optimal constructions, constructions of (almost) perfect and odd perfect sequences, constructions of low/zero odd correlation zone, the perfect and odd perfect cyclically conjugated property of Golay sequences and Golay QAM sequences, the perfect and odd perfect periodic complementary pairs and odd periodic complementary pairs which have similar form to Golay sequences, and the bound of binary signature sequences and their optimal constructions.
     Firstly, according to the work given by Song et al. and Ding et al., we will further investigate the relationship between frequency hopping sequences and cyclic codes, and will discuss the relationship of several known bounds. We find the relationship of Peng-Fan bound and Plotkin bound on the frequency hopping sequences from the Plotkin bound in coding the-ory, the relationship of two Singleton bounds on frequency hopping sequences, which comes from the Singleton bound in coding theory, and the relationship of two Peng-Fan bounds. Furthermore, based on several classes of cyclic codes, such as Reed-Solomon codes and their punctured codes, codes defined by polynomial functions, and two classes of MDS codes and their punctured codes, we will design several classes of optimal frequency hopping sequence sets, which are optimal with respect to the new Singleton bound on the maximum Hamming correlation.
     Secondly, we will study the construction of (almost) perfect and odd perfect sequences. Using the difference balanced functions, we will define new shift sequences, which gener-alizes the method to construct almost perfect and odd perfect ternary sequences given by Krengel. Choosing almost perfect sequences with balanced property, we can obtain (almost) perfect and odd perfect ternary sequences, Gaussian integer sequences, and QAM+sequences. We also design a class of almost perfect16-QAM sequences. For any odd prime p, we use the2and4order cyclotimic numbers with respect to p to construct perfect Gaussian integer sequences. Based on product mapping of sequences, more perfect and odd perfect Gaussian integer sequences can be obtained. By using even-odd transformation, odd perfect Gaussian integer sequences can also be derived. This thesis first constructs the perfect and odd perfect Gaussian integer sequences of odd length. and first presents perfect and odd perfect QAM+sequences, which positively answers the existence problem on perfect QAM+sequences pro-posed by Boztas and Parampalli.
     In this thesis, based on interleaving technique and the inverse mapping of Gray mapping, we will study the construction of low/zero odd correlation zone sequence sets. According to interleaving technique, choosing odd perfect sequences or sequence with low odd autocorrela-tion property and using the known shift sequences, we will propose a construction of low/zero odd correlation zone sequences with flexible parameters. Those proposed sequences sets are optimal. Besides, applying the inverse mapping of Gray mapping to a binary sequence with low odd autocorrelation and choosing a proper shift sequence, we will construct quaternary sequence sets with low odd correlation zone property. Based on a known binary sequence set with low correlation zone property, using the inverse mapping of Gray mapping, we can obtain a quaternary sequence set with low odd correlation zone.
     Next, we will study Golay sequences and QAM Golay sequences, and present that some quaternary Golay sequences and QAM Golay sequences have perfect and odd perfect cycli-cally conjugated property. Similar to Golay sequences, we give several classes of periodic complementary pairs and odd periodic complementary pairs, which can be used to construct optimal signature sequences.
     Finally, we will study the bound of binary signature sequences and its optimal construc-tions. Note that odd periodic correlation function has the same importance as even periodic correlation function, we propose the lower bound of odd periodic total squared correlation, and obtain the relationship between and optimal signature sequences and odd periodic com-plementary sequence sets. We construct odd periodic complementary pair from known odd perfect ternary sequences. Using polynomial functions, we propose a class of new odd pe-riodic complementary sets. Besides, using m-sequences, we give new binary signature sets, which generalize the construction of binary signature sequences from Gold sequence sets given by Ganapathy, Pados and Karystinos.
引文
[1]S. Golomb, G. Gong. Signal Design for Good Correlation:For Wireless Communica-tion, Cryptography and Radar. Cambridge,2005
    [2]P. Fan, M. Darnell. Sequence Design for Communications Applications. New York: Wiley,1996
    [3]C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Jour-nal.1949,28:656-715
    [4]L. Milstein, D. Schiling. Spread spectrum for mobile communications. IEEE Trans. Veh. Technol.1989,40(2):209-232
    [5]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术.西安电子科技大学出版社,2004
    [6]M. Simon, J. Omura, R. Scholtz, B. Levitt. Spread Spectrum Communications Hand-book. MCGraw-Hid Telecom,2002
    [7]M. Pursley. Performance evaluation for phase-coded spread-spectrum multiple-access communication—Part Ⅰ:System analysis. IEEE Trans. Inf. Theory.1977,25(8):795-799
    [8]M. Pursley. Performance evaluation for phase-coded spread-spectrum multiple-access communication—Part Ⅱ:Code sequence analysis. IEEE Trans. Inf. Theory.1977, 25(8):800-803
    [9]D. Sarwate, M. Pursley. Crosscorrelation properties of pseudorandom and related se-quences. Proc. IEEE.1980,68:593-619
    [10]M. Pursley. An Introduction to Digital Communications. Pearson Prentice Hall, U.S, 2005
    [11]T. Helleseth, P. Kumar. Sequences with Low Correlation in Handbook of Coding The-ory. Amsterdam, The Netherlands:North-Holland/Elsevier,1998
    [12]B.M. Popovic. Synthesis of power efficient multitone signals with flat amplitude spec-trum. IEEE Trans. Communications.1991,39(7):1031-1033
    [13]J. Davis, J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Trans. Inf. Theory.1999,45(7):2397-2417
    [14]M. Golay. Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Amer.1951,41(7):468-472
    [15]M. Golay. Complementary series. IRE Trans. Inf. Theory.1961, IT-7(2):82-87
    [16]S. Golomb. Sequences with Randomness Properties. Baltimore, Glenn. L. Martin Company,1955
    [17]N. Zierler. Linear recurring sequences. J. Soc. Indust. Appl. Math.1959,7:31-48
    [18]A. Lempel, H. Greenberger. Families of sequence with optimal hamming correlation properties. IEEE Trans. Inf. Theory.1974,20(1):90-94
    [19]D. Peng, P. Fan. Lower bounds on the hamming auto-and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory.2004,50(9):2149-2154
    [20]J. Komo, S. Liu. Maximal length sequences for frequency hopping. IEEE J. Select. Areas Commun.1990,8(5):819-822
    [21]梅文华,杨义先.基于GMW序列构造最佳跳频序列族.通信学报.1997,18(11):20-24
    [22]U. Parampalli, M. Siddiqi. Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory.1998,44(4): 1492-1503
    [23]C. Ding, M. Moisio, J. Yuan. Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory.2007,53(7):2606-2610
    [24]C. Ding, J. Yin. Sets of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory. 2008,54(8):3741-3745
    [25]G. Ge, Y. Miao, Z. Yao. Optimal frequency hopping sequences:Auto-and cross-correlation properties. IEEE Trans. Inf. Theory.2008,55(2):867-879
    [26]P. Kumar. Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inf. Theory.1988,34(1):146-151
    [27]Z. Zhou, X. Tang, D. Peng, U. Parampalli. New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inf. Theory.2011,57(6):3831-3840
    [28]Q. Wang. Optimal sets of frequency hopping sequences with large linear spans. IEEE Trans. Inf. Theory.2010,56(4):1729-1736
    [29]J. Chung, Y. Han, K. Yang. New classes of optimal frequency hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory.2009,55(12):5783-5791
    [30]X. Zeng, H. Cai, X. Tang, Y. Yang. A class of optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory.2012,58(7):4899-4907
    [31]W. Chu, C. Colbourn. Optimal frequency-hopping sequences via cyclotomy. IEEE Trans. Inf. Theory.2005,51(3):1139-1141
    [32]J.-H. Chung, K. Yang.k-fold cyclotomy and its application to frequency-hopping se-quences. IEEE Trans. Inf. Theory.2011,57(4):2306-2317
    [33]R. Fuji-Hara, Y. Miao, M. Mishima. Optimal frequency hopping sequences:A combi-natorial approach. IEEE Trans. Inf. Theory.2004,50(10):2408-2420
    [34]G. Ge, R. Fuji-Hara, Y. Miao. Further combinatorial constructions for optimal fre-quency hopping sequences. J. Combinator. Theory Ser. A.2006,113:1699-1718
    [35]G. Gong. Theory and applications of q-ary interleaved sequences. IEEE Trans. Inf. Theory.1995,41(2):400-411
    [36]H. Song, I. Reed, S. Golomb. On the nonperiodic cyclic equivalent classes of Reed-Solomon codes. IEEE Trans. Inf. Theory.1993,39(4):1431-1434
    [37]C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo, M. Mishima. Sets of frequency hopping sequences:Bounds and optimal constructions. IEEE Trans. Inf. Theory.2009,55(7): 3297-3304
    [38]C. Ding, Y. Yang, X. Tang. Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory.2010,56(7):3605-3612
    [39]Y. Yang, X. Tang, U. Parampalli, D. Peng. New bound on frequency hopping sequence sets and its optimal constructions. IEEE Trans. Inf. Theory.2011,57(11):7605-7613
    [40]P. Fan, M. Lee, D. Peng. New family of hopping sequences for time/frequency CDMA systems. IEEE Trans. Wireless Commun.2005,4(6):2836-2842
    [41]F. J. Mac Williams, N. J. A. Sloane. The Theory of Error-correcting Codes. Amsterdam, 1977
    [42]M. Grassl, T. Gulliver. On self-dual MDS codes. ISIT 2008.2008:1954-1957
    [43]M. Ezerman, M. Grassl, P. Sole. The weights in MDS codes. IEEE Tran. Inf. Theory. 2011,57(1):392-396
    [44]R. Gaudenzi, C. Elia, R. Viola. Bandlimited quasisynchronous CDMA:A novel satellite access technique for mobile and personal communication systems. IEEE J. Sel. Areas Commun.1992,10(2):328-343
    [45]N. Suehiro. Approximately synchronized CDMA system without cochannel using pseudo-periodic sequences. Proc. Int. Symp. Personal Commun.1994:179-184
    [46]P. Fan, N. Suehiro, N. Kuroyanagi, X. Deng. Class of binary sequences with zero correlation zone. Electron. Letters.1999,35(10):777-779
    [47]X. Tang, P. Fan, S. Matsufuji. Lower bounds on the maximum correlation of sequence set with low or zero correlation zone. Electron. Letters.2000.36:551-552
    [48]X. Tang, P. Fan. A class of pseudonoise sequences over GF(p) with low correlation zone. IEEE Trans. Inf. Theory.2001,47(4):1644-1649
    [49]唐小虎.低/零相关区理论与扩频通信系统序列设计.西南交通大学博士学位论文.2001
    [50]R. Gold. Maximal recursive sequences with 3-valued recursive cross-correlation func-tions. IEEE Trans. Inf. Theory.1968, IT-14:154-156
    [51]T. Kasami. Weight distribution formula for some class of cyclic codes. Coordinated Sci. Lab., Univ. Illinois, Urbana, IL, Tech. Rep.1966
    [52]X. Deng, P. Fan. Spreading sequence sets with zero correlation zone. Electron. Letters. 2000,36(12):982-983
    [53]X. Tang, P. Fan, J. Lindner. Multiple binary ZCZ sequence sets with good crosscorrela-tion property based on complementary sequence sets. IEEE Trans. Inf. Theory.2010, 56(8):4038-4045
    [54]S. Matsufuji, N. Kuroyanagi, N. Suehiro, P. Fan. Two types of polyphase sequence sets for approximately synchronized CDMA systems. IEICE Trans. Fundamentals.2003, E86-A(1):229-234
    [55]X. Tang, W. Mow. A new systematic construction of zero correlation zone sequences based on interleaved perfect sequences. IEEE Trans. Inf. Theory.2008,54(12):5729-5734
    [56]A. Rathinakumar, A. K. Chaturvedi. A new framework for constructing mutually or-thogonal complementary sets and ZCZ sequences. IEEE Trans. Inf. Theory.2006, 52(8):3817-3826
    [57]X. Tang, W. Mow. Design of spreading codes for quasi-synchronous CDMA with intercell interference. IEEE J. Sel. Areas Commun.2006,24(1):84-93
    [58]H. Torii, M. Nakamura, N. Suehiro. A new class of zero-correlation zone sequences. IEEE Trans. Inf. Theory.2004,50(3):559-565
    [59]B. Long, P. Zhang, J. Hu. A generalized QS-CDMA system and the design of new spreading codes. IEEE Trans. Veh. Technol.1998,47:1268-1275
    [60]X. Tang, U. Parampalli. New recursive construction of low correlation zone sequences, in Proc. Second Int. Workshop Sequence Design and Its Applicat. Commun.2005:86-89
    [61]Y.-S. Kim, J.-W. Jang, J.-S. No, H. Chung. New constructions of quaternary low corre-lation zone sequences. IEEE Trans. Inf. Theory.2005,51(4):1469-1477
    [62]G. Gong, S.W. Golomb, H.-Y. Song. A note on low-correlation zone signal sets. IEEE Trans. Inf. Theory.2007,53(7):2575-2581
    [63]J. Chung. K. Yang. New design of quaternary low-correlation zone sequence sets and quaternary Hadamard matrices. IEEE Trans. Inf. Theory.2008,54(8):3733-3737
    [64]Z. Zhou, X. Tang, G. Gong. A new class of sequences with zero or low correlation zone based on interleaving technique. IEEE Trans. Inf. Theory.2008,54(9):4267-4273
    [65]H. Hu, G. Gong. New sets of zero or low correlation correlation zone via interleaving techniques. IEEE Trans. Inf. Theory.2010,56(4):1702-1713
    [66]X. Tang, P. Fan. Bounds on aperiodic and odd correlation with low or zero correlation zone. Electron. Letters.2001,37(19):1201-1203
    [67]H. Luke. Sets of ternary sequences with odd periodic zero correlation zones. Frequenz. 2004,58:214-216
    [68]T. Hayashi. A class of ternary sequence sets with a zero-correlation zone for periodic, aperiodic, and odd correlation functions. IEICE Trans. Fundamentals.2003, E86-A(7): 1850-1857
    [69]T. Hayashi. Ternary sequence set having periodic and aperiodic zero-correlation zone. IEICE Trans. Fundamentals.2006, E89-A(6):1825-1831
    [70]T. Hayashi. Zero-correlation zone sequence set constructed from a perfect sequence. IEICE Trans. Fundamentals.2007, E89-A(5):1107-1111
    [71]Y. Yang, G. Gong, X. Tang. Odd perfect sequences and sets of spreading sequences with zero or low odd periodic correlation zone. SETA 2012. Springer,2012:1-12
    [72]H. Luke, H. Schotten. Odd-perfect almost binary correlation sequences. IEEE Trans. Aerosp. Electron. Syst.1995,31:495-498
    [73]D. Jungnickel, A. Pott. Perfect and almost perfect sequences. Discrete applied mathe-matics.1999,95:331-359
    [74]M. J. Mossinghoff. Wieferich pairs and Barker sequences. Des. Codes Cryptogr.2009, 53(3):1-15
    [75]R. Frank, S. Zadoff, R. Heimiller. Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inf. Theory.1962,8(6):381-382
    [76]D. Chu. Polyphase codes with good periodic correlation properties. IEEE Trans. Inf. Theory.1972,18(4):531-532
    [77]A. Milewski. Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM Journal of Research and Development.1983,27(5): 425-431
    [78]H. Luke, H. Schotten, H. Hadinejad-Mahram. Binary and quadriphase sequence with optimal autocorrelation:-A survey. IEEE Trans. Inf. Theory.2003,49(12):3271-3282
    [79]A. Pott. Difference triangles and negaperiodic autocorrelation functions. Discrete Mathematics.2008,308(13):2854-2861
    [80]V. Ipatov. Ternary sequences with ideal periodic autocorrelation properties. Radio Engineering and Electornic Physics.1979,24:7579
    [81]V. Ipatov. Contribution to the theory of sequences with perfect periodic autocorrelation properties. Radio Engineering and Electornic Physics.1980,25:3134
    [82]V. Ipatov. Spread Spectrum and CDMA:Properties and Applications. Wiley,2005
    [83]V. Ipatov. Periodic discrete signals with optimal correlation properties. Moscow, Radio i svyaz,1992
    [84]C.M. Lee. On a new of 5-ary sequences exhibiting ideal periodic authcorrelation prop-erties with application to spread spectrum systems. Phd thesis, Department of Electrical Engineering, Mississipi State University.1988
    [85]S. Boztas, U. Parampalli. Nonbinary sequences with perfect and nearly perfect auto-correlations. ISIT 2010.2010:1300-1304
    [86]H. Schotten, H. Luke. New perfect and w-cyclic-perfect Sequences, in Proc. Int. Symp. Information Theory and Its Applications.1996:82-85
    [87]T. Hoholdt, J. Justesen. Ternary sequences with perfect periodic auto-correlation. IEEE Trans. Inf. Theory.1983, IT-29(4):597-600
    [88]E. Krengel. Almost-perfect and odd-perfect ternary sequences. SETA 2004.2004: 197-207
    [89]E. Krengel. Some constructions of almost-perfect, odd-perfect and perfect polyphase and almost-polyphse sequences. SETA 2010.2010:387-398
    [90]K. Huber. Codes over Gaussian integers. IEEE Trans. Inf. Theory.1994,40(1):207-216
    [91]X. Deng, P. Fan, N. Suchiro. Sequences with zero correlation over Gaussian integer. Elect Letters.2000,36(6):552-553
    [92]F. Zeng, X. Zeng, Z. Zhang, G. Xuan.8-QAM+ periodic complementary sequence sets. IEEE Communications Letters.2012,16(1):83-85
    [93]C. Roβing, V. Tarokh. A construction of OFDM 16-QAM sequences having low peak powers. IEEE Trans. Inf. Theory.2001,47(5):2091-2097
    [94]C. V. Chong, R. Venkataramani, V. Tarokh. A new construction of 16-QAM Golay complementary sequences. IEEE Trans. Inf. Theory.2003,49(11):2953-2959
    [95]H. Lee, S. Golomb. A new construction of 64-QAM Golay complementary sequences. IEEE Trans. Inf. Theory.2006,52(4):1663-1670
    [96]Y. Li. Comments on "A new construction of 16-QAM Golay complementary se-quences" and extension for 64-QAM Golay sequences. IEEE Trans. Inf. Theory.2008, 54(7):3246-3251
    [97]C. Y. Chang, Y. Li, J. Hirata. New 64-QAM Golay complementary sequences. IEEE Trans. Inf. Theory.2010,56(5):2479-2485
    [98]Y. Li. A construction of general QAM Golay complementary sequences. IEEE Trans. Inf. Theory.2010,56(11):5765-5771
    [99]M. Anand, P.V. Kumar. Low-correlation sequences over the QAM constellation. IEEE Trans. Inf. Theory.2008,54(2):791-810
    [100]P. Lusina, S. Shavgulizde, M. Bossert. Space-time block factorization codes over Gaus-sian integers. IEE Proc. Commu.2004,151(5):415-421
    [101]C. Li, S. Wang, C. Wang. Novel low-complexity SLM schemes for PAPR reduction in OFDM systems. IEEE Trans. Signal Processing.2010,58(5):2916-2921
    [102]P. Fan, M. Darnell. Maximual length sequences over Gaussian integers. Elect. Letters. 1994,30(16):1286-1287
    [103]X. Tang, J. Lindner. Almost quadriphase sequence with ideal autocorrelation property. IEEE Signal Processing Letters.2009,16(1):38-40
    [104]W.-W. Hu, S.-H. Wang, C.-P. Li. Gaussian integer sequences with ideal periodic au-tocorrelation functions. IEEE International Conference on Communications.2011: 1-5
    [105]Y. Yang, X. Tang, Z. Zhou. Perfect gaussian integer sequence of odd length. IEEE Signal Processing Letters.2012,19(10):615-618
    [106]K. Paterson. Generalized Reed-Muller codes and power control for OFDM modulation. IEEE. Trans. Inf. Theory.2000,46(1):104-120
    [107]R. van Nee. OFDM codes for peak-to-average power reduction and error correction. Proc. IEEE GLOBECOM.1996:740-744
    [108]T. Wilkinson, A. Jones. Minimization of the peak to mean envelope power ratio of mul-ticarrier transmission schemes by block coding. Proc. IEEE 45th Vehicular Technology Conf.1995:825-829
    [109]T.A.Wilkinson, A. Jones. Combined coding for error control and increasedrob ustness to system nonlinearities in OFDM. Proc. IEEE 46th Vehicular Technology Conf.1996: 904-908
    [110]D. Wulich. Reduction of peak to mean ratio of multicarrier modulation using cyclic coding. Electron. Letters.1996,32:432-433
    [111]J. Seberry, B. Wysocki, T. Wysocki. On a use of Golay sequences for asynchronous DS CDMA applications. Advanced Signal Processing for Communication Systems The International Series in Engineering and Computer Science.2002,703:183-196
    [112]Y. Li, W. Chu. More Golay sequences. IEEE. Trans. Inf. Theory.2005,51(3):1141-1145
    [113]F. Fiedler, J. Jedwab. How do more Golay sequences arise? IEEE Trans. Inf. Theory. 2006,52(9):4261-4266
    [114]F. Fiedler, J. Jedwab, M. Parker. A framework for the construction of Golay sequences. IEEE Trans. Inf. Theory.2008,54(7):3114-3129
    [115]F. Fiedler, J. Jedwab, M. Parker. A multi-dimensional approach to the construction and enumeration of Golay complementary sequences. Journal of Combinatorial Theory A. 2008,115:753-776
    [116]G. Gong, F. Huo, Y. Yang. Large zero autocorrelation zone of Golay sequences and 4q-QAM Golay complementary sequences. Submitted to IEEE Trans. Inf. Theory. http: //arxiv.org/abs/1106.4728
    [117]G. Gong, F. Huo, Y. Yang. Large zero autocorrelation zone of Golay sequences. ISIT 2012.2012:1024-1028
    [118]Y. Yang, F. Huo, G. Gong. Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences. ISIT 2012.2012:1029-1033
    [119]Y. Yang, G. Gong, X. Tang. On the perfect cyclically conjugated even and odd periodic autocorrelation properties of quaternary Golay sequences. Sumitted to IEEE Trans. Inf. Theory
    [120]R. Welch. Lower bound on the maximum cross-correlation of signals. IEEE Trans. Inf. Theory.1974, IT-20:397-399
    [121]D. Sarwate. Bounds on the crosscorrelation and autocorrelation of sequences. IEEE Trans. Inf. Theory.1979, IT-25(6):720-724
    [122]V. Sidel'nikov. On mutual correlation of sequences. Dokl. Akad. Nauk SSSR.1971, 196(3):531-534
    [123]V. Levenshtein. New lower bound on aperiodic cross-correlation of binary codes. IEEE Trans. Inf. Theory.1999,45(1):284-288
    [124]G. Karystinos, D. Pados. New bounds on the total-squared-correlation and perfect de-sign of DS-CDMA binary signature sets. Proc. IEEE Intern. Conf. on Telecommunica-tions.2001,3:260-265
    [125]G. Karystinos, D. Pados. New bounds on the total squared correlation and optimal design of DS-CDMA binary signature sets. IEEE Trans. Communi.2003,5(1):48-51
    [126]C. Ding, M. Golin, T. Klφve. Meeting the Welch and Karystinos-pados bounds on DS-CDMA binary signature sets. Designs, Codes and Cryptography.2003,30:73-84
    [127]V. Ipatov. On the Karystinos-pados bounds and optimal binary DS-CDMA signature ensembles. IEEE Commun. Letters.2004,8:81-83
    [128]H. Ganapathy, D. Pados, G. Karystinos. New bounds and optimal binary signature sets-Part Ⅰ:Periodic total squared correlation. IEEE Trans. Inf. Theory.2011,59(4): 1123-1132
    [129]H. Ganapathy, D. Pados, G. Karystinos. New bounds and optimal binary signature sets-Part Ⅱ:Aperiodic total squared correlation. IEEE Trans. Inf. Theory.2011,59(5): 1411-1420
    [130]L. Bomer, M. Antweiler. Periodic complementary binary sequences. IEEE Trans. Inf. Theory.1990,36(6):1487-1494
    [131]K. Feng, P. J.-S. Shiue, Q. Xiang. On aperiodic and periodic complementary binary sequences. IEEE Trans. Inf. Theory.1999,45(1):296-303
    [132]M. M. F. Vanhaverbeke. Sum capacity of equal-power users in overloaded channels. IEEE Trans. Communications.2005,53(2):228-233
    [133]F. Vanhaverbeke, M. Moeneclaey. Binary signature sets for increased user capacity on the downlink of CDMA systems. IEEE Trans. Wireless Communications.2006,5(7): 1795-1804
    [134]G. Karystinos, D. Pados. The maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum total-squared-correlation binary signature sets. IEEE Trans. Inf. Theory.2005,51(1):348-355
    [135]X. Zeng, L. Hu, Q. Liu. A novel method for constructing almost perfect polyphase sequences. WCC 2005.2006, LNCS 3969:346-353
    [136]H. Luke. Binary odd-periodic complementary sequences. IEEE Trans. Inf. Theory. 1997,43(1):365-367
    [137]H. Wen, F. Hu, F. Jin. Design of odd-periodic complementary bianry signal set. ISCC 2004.2004:590-593
    [138]T. Storer. Cyclotomy and Difference Sets. Markham, Chicago,1967
    [139]S. Lin, C. Xing. Coding Theory:A First Course. Cambridge, U.K.:Cambridge Univ. Press,2004
    [140]S. Golomb, B. Gordon, L. Welch. Comma-free codes. Canadian J. Math.1958,10: 202-209
    [141]S. Golomb. A mathematical theory of discrete classification. Fourth London Sympo-sium on Information Theory. London:Butterworths,1961:404-425
    [142]W. Mow. A unified construction of perfect polyphase sequences. ISIT'95.1995:459
    [143]T. Helleseth, G. Gong. New binary sequences with ideal-level autocorrelation function. IEEE Trans. Inf. Theory.2002,154(18):2868-2872
    [144]X. Tang. A note on d-form function with differencebalanced property. Preprint
    [145]A. Klapper. d-form sequence:Families of sequences with low correlation values and large linear spans. IEEE Trans. Inf. Theory.1995,51(4):1469-1477
    [146]M. Parker. Even-length binary sequence families with low negaperiodic autocorrelation. S. Boztas, I. Shparlinski, (Editors) AAECC-14.2001:200-209
    [147]M. Antweiler. Cross-correlation of p-ary GMW sequences. IEEE Trans. Inf. Theory. 1994,40(4):1253-1261
    [148]J. Massey, T. Mittelholzer. Welch's Bound and sequence sets for code-division multiple-access systems. Sequence II, Methods in Communication, Security and Computer Sci-ences.1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700