用户名: 密码: 验证码:
干旱胁迫下白芥差异表达蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境胁迫常引起植物基因表达和细胞代谢的改变,从而影响作物的生长发育和产量。光照、干旱、盐、温度是限制作物产量最主要的胁迫因素,而干旱造成的损失最大,其损失量超过其他逆境造成损失的总和。因而改良作物遗传特性、提高作物品种的抗旱性成为作物品种高产、稳产的关键。白芥具有抗逆性强等很多优良的农艺性状,尤其是所表现出来的抗旱性能已得到重视和应用,相关研究逐步由一般性的抗旱性鉴定、评价逐步走向基因和分子水平,白芥逐渐成为十字花科作物育种的优良种质资源类型。
     本研究以白芥为研究对象,对其干旱胁迫下叶片中多胺含量的变化、叶片差异蛋白表达情况进行研究,旨在探讨和揭示白芥对干旱胁迫的抗性机理。试验通过PEG6000处理白芥幼苗来模拟干旱对白芥幼苗的影响,发现PEG6000完全可以成功的模拟干旱胁迫,使幼苗表现出干旱条件下的生长状态。通过对不同干旱程度下白芥幼苗叶片中多胺含量变化的测定,发现多胺含量随干旱程度的增加呈现上升趋势,但随干旱程度加剧,叶片中的多胺含量开始逐步下降,细胞受伤害程度加剧。由此可以推断,干旱胁迫会调动植物体内多胺积累以提高植株的抗旱性。试验通过蛋白质双向电泳和质谱技术研究了白芥干旱胁迫与对照幼苗叶片的蛋白差异表达情况,发现干旱胁迫较对照相比产生58个差异蛋白质。其中,对照组中有16个特有蛋白质,处理组中有42个特有蛋白质,共有有43个蛋白出现表达量的变化。可以推测这些差异蛋白与白芥的抗旱机理密切相关。试验选取10个差异蛋白点进行质谱分析,分析结果显示有5个蛋白点在NCBI和SP数据库中获得相关匹配,对这些蛋白进行初步鉴定和相关功能推测。有5个蛋白点在NCBI和SP数据库中没有获得相关匹配,预测可能为新的抗旱性相关蛋白。结果表明,本研究方法成熟可靠,结果较为理想,可以为以后进一步深入研究白芥抗旱机理、抗旱基因的克隆以及作物的抗旱育种提供重要的理论依据。
Sinapis alba L. is an important Chinese herbal medicines, with a lot of good agronomic traits, such as yellow seed and crack pod. Especially demonstrated by the drought resistance has been widespread attention and conducted in-depth study, cruciferous breeding excellent germplasm resources.
     Environmental stress often caused by changes in plant gene expression and cell metabolism, thus affecting the growth and yield of crops. Biotic and abiotic stress are often accompanied by the growth of the plants, in which light, drought, salt, temperature is the most important stress factors limiting crop production, while the losses caused by drought, and its loss more than the sum of the losses of other adversities. Thus increasing the drought resistance of crop varieties has become the key to high-yield crop varieties and stable yield.
     The polyamines are a presence in plants, the regulation of plant growth and development of low molecular weight aliphatic nitrogen-containing alkali. Putrescine, spermidine, spermidine is the common polyamines. Recent studies show that polyamines and plant resistance are closely linked, when plants experience drought and other environmental stresses, the cells increase in the sky a protective effect through the polyamine content. In addition, the plants subjected to drought stress, total body protein synthesis rate dropped, some of the original protein synthesis is inhibited, while at the same time new synthesis of some proteins (stress-inducible protein). Stress-inducible protein to adapt to the adversity of plants play an important role, can significantly improve plant resistance to stress ability.
     For current research on the arid sinapis alba L. proteome level at home and abroad are still rarely reported that this experiment by PEG6000treatment of seedlings to simulate the impact of the drought seedlings, found that PEG6000can simulate drought stress, so that seedling performanceout of the state of growth under drought conditions. Before the relevant reports, drought can affect the accumulation of polyamines in the leaves. we measured polyamine content in leaves of sinapis alba L. seedlings under different drought levels, polyamine content with the increase of the degree of aridity on the rise, but withdrought intensified, the polyamine content in leaves decreased cell damage intensified. Thus, we can initially infer that drought stress to mobilize the accumulation of polyamines, polyamine accumulation helps to improve the drought resistance of sinapis alba L.. Study the relationship of the degree of aridity and polyamine accumulation, suggesting that polyamines play an important role in the mechanism of sinapis alba L. drought, but the exact mechanism still needs further exploration; Drought mechanism in order to more in-depth study of2D-PAGE., we identified58differentially expressed proteins under drought stress. Among them, the control group,16unique proteins,42unique proteins in the treatment group. Speculate that these proteins are closely related to the drought resistance of the sinapis alba L.. We selected10protein spots to mass spectrometry analysis showed that five protein spots match in the database of NCBI and SP. These proteins have been identified, and speculated that its function.For further research to study the mechanism of drought, drought Cloning and crop drought breeding provides an important theoretical basis.
引文
[1]GONG ZH H(巩振辉)Reswastance to black blotch of dwastant hybrid between Chinese cabage ×S inapwas alba L. [J]. Acta Botanica Sinica(植物学报),2003,26(2):43-45.
    [2]TANG D CH(唐道城).White mustard water stress physiology in Brassica four specie[J]. Acta Botanica Sinica (植物学报),1999,23(1):73-79.
    [3]LIAN X H(连小华).Studies on nuclear type of four Brassica specie in Sinapwas alba L. [J]. Journal of Sichuan Agriculture(四川大学学报),1989,3:36-38.
    [4]WANG Y P(王幼平).Somatic crossing between S. alba and B. napus[J]. Acta Botanica S inica(植物学报),2005,47(1):84-91.
    [5]OU M R(欧敏锐).A pharmaceutical study on the inhibition of by seeds of B rassica alba[J]. Journal of Fujian N ormal University(福建师范大学学报),2002,35(2):23-30.
    [6]唐道城,张礼,王艳萍,等.白芥及油菜产量性状抗旱性及抗早性鉴定指标研究初探[J].干旱地区农业研究1999,17(3):62-64.
    [7]唐道城.土壤干旱胁迫对白芥光合器官发育及光合速率的影响[J].中国油料作物学报,2000,22(1):49-52.
    [8]王艳萍,唐道城,朱红芸.水分亏缺对白芥地上部分形态及生理生化指标的影响[J].青海大学学报,2001,19(6):8-9.
    [9]R J拉姆.白芥角果上的硬毛能防止跳蛱危害[J].加拿大植物科学杂志,1980,60(4):32-33.
    [10]巩振辉,王鸣,向玉科.白芥抗黑腐病基因导入白菜的研究[J].西北农林学报,1996,5(3):59-64.
    [11]巩振辉,何玉科,王鸣.白菜×白芥属间远缘杂种黑斑病抗性研究[J].园艺学报,1994(4):401-403.
    [12]庄丽,陈亚宁,李卫红,等.干旱区荒漠植被丙二醛及保护酶活性对地下水位的响应[J].2005,27(5):723-730.
    [13]鱼小军,王芳,白小明.草坪草抗旱性研究现状[J].2005,22(2):96-100.
    [14]余叔文,汤章成.植物生理与分子生物学[M].北京:科学出版社,1999.739-751.
    [15]周广胜.中国东北样带(NECT)与全球变化——干旱化、人类活动和生态系统[M].北京:气象出版社,2002.3-6.
    [16]宋松泉,王彦荣.植物对干旱胁迫的分子反应[J].应用生态学报,2002,13(8):1037-1044.
    [17]张强,赵雪,赵哈林.中国沙区草地[M].北京:气象出版社,1998.1-7.
    [18]曾群望,杨双兰.云烟生产的土壤地质背景[M].昆明:云南科技出版社,1993,Pp:7.
    [19]Van Oosterom EJ,Acevedo E.Adaptation of barley(Hordeum vulgwere L.)to harsh Mediterranean environments.Euphytica,1992,62:1-14.
    [20]Bogdanova ED,Polimbetova FA.Use of adaptive traits for drought-reswastance as a spring wheat breeding strategy.In:A.E.Slinkard(ed.),Proceedings of the 9th Internationa wheat Genetics Symposium.Vol.4.Saskatchewan,Canada:University Extension Press,1998,11-12.
    [21]Koji Yamance,Koji Hayakawa,Michio Kawasaki etc.Bundle sheath chloroplasts of rice were more sensitive to drought stress than mesophyll chloroplasts. Plant Physiol,2003, 160:1319-1327.
    [23]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展.西北植物学报,2006,26:641-648.
    [24]Reddya,Chaitanyaa KV,Vivekanandanb M.Drought-induced responses of photosyntheswas and antioxidant metabolwasm in higher plants.Journal of Plant Physiology,2004,161:1189-1202.
    [25](Cornic,2000); Cornic G.Drought stress inhibits photosyntheswas by decreasing stomatal aperture-not by affecting ATP syntheswas.Trends Plant Sci,2000,5:187-188
    [26]张其德.干旱对光合作用的影响.植物杂志,1997,3:30-32.
    [27]Tezara,Mitchell VJ,Drwascoll SD,Lawlor DW.Water stress inhibits plant photosyntheswasby decreasing coupling factor and ATP.Nature 1999,1401:914-917.
    [28]Meyer S,Genty B.Heterogenous inhibition of photosyntheswas over the leaf surface of Rosarubinosa L.during water stress and abscwasic acid treatment:induction of a metabolic component by limitation of CO2 diffusion.Planta,1999,210:126-131.
    [29]Lawlor DW,Cornic G.Photosynthetic carbon assimilation and associated metabolwasm inrelation to water deficits in higher plants.Plant Cell Environ 2002,25:275-294.
    [30]Medrano H,Parry MA,Socias X,Lawlor DW.Long term water stress inactivates Rubwasco in subterranean clover.Ann Appl Biol,1997,131:491-501.
    [31]Lawlor DW.Limitation to photosyntheswas in water stressed leaves:stomata vs.metabolwasm and the role of ATP.Ann Bot,2002,89:1-15.
    [32]Chaitanya KV,Sundar D,Jutur PP,Ramachandra Reddy A.Water stress effects on photosyntheswas in different mulberry cultivars.Plant Growth Regulate,2003,40:75-80
    [33]Parry MAJ,Andralojic PJ,Khan S,Lea PJ,Keys AJ.Rubwasco activity:effects of drought stress.Ann Bot,2002,89:833-839.
    [34]Chaves MM,Pereira JS,Maroco J,Rodrigues ML,Ricardo CPP,Osorio ML,Carvalho I,Faria T,Pinheiro C.How plants cope with water stress in the field Photosyntheswas and growth.Ann Bot,2002,89:907-916.
    [35]梁建生,张建华周期性土壤干旱和叶片水势对气孔响应木质部ABA灵敏度的影响.植物学报,1999,41(8):855-861.
    [36]李岩,潘海春,李德全.土壤干旱条件下玉米叶片内源激素含量及光合作用的变化.植物生理学报,2000,26(4):301-305.
    [37]李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理与分子生物学学报,1992,18(1):27-44.
    [38]李鲁华,李世清,翟军海,史俊通.小麦根系与土壤水分胁迫关系得研究进展.西北植物学报,2001,21(1):1-7.
    [39]武宝轩.小麦幼苗中过氧化物歧化酶活性和幼苗脱水忍耐力相关性的研究.植物学报, 1985,27(2):152-160.
    [40]何操,尹丽,胡庭兴,等.干旱胁迫对麻疯树幼苗抗氧化代谢的影响[J].四川林业科技,2009,30(5):17-20.
    [41](Chandler,1994; Chen,1994) Chandler PM,Robertson M.Gene expression regulated by abscwasic acid and its relations to stress tolerance.Annu Rev Plant Physiol Plant Mol Bio,1994,45:113-141.
    [42]张殿忠.干物质积累和脯氨酸积累的水势阈值与小麦抗旱性的关系.干旱地区农业研究,1990,2:66-71.
    [43]Liang J, Zhang J.The relations of stomata closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering.Plant Growth Regulation,1999,29:77-86.
    [44]杨洪强,贾文锁,黄丛英.蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累.科学通报,2001,46(1):50-53.
    [45]Del Duca S, Beninati S, Serafini-FraeassiniD. Polyamines in chloroplasts:identifieation of their glutamyl and aeetylderivatives.BioehemJ,1995,305:233-237
    [46]Bawas HP, Ravwashankar GA.Synergwastic effect of auxins and Po]yamines in hairy roots of Ciehorium intybusL.during growth, coumarin Production and morphogeneswas.Acta Physiol Plant,2003,25:193-208.
    [47]Bezold TN, Loy JB, Minoeha SC.Changes in the cellar contents of Polyamines in different twassues of seed and fruit of a normal and a hull-less seed variety of Pumpkin during development.Plant Sci,2003,164:743-752.
    [48]FragaMF, RodriguezR, Canal MJ.Reinvigoration of Pinus radiate was associated with partial recovery of juvenile-like polyamine concentrations.Tree Physiol,2003,23:205-209.
    [49]Sudha G, Ravwashankar GA, Sudha G. Putreseine facilitated enhancement of capsaicin Produetion in cell suspension cultures of Capsicum frutescens. J Plant Physiol,2003, 160:339-346.
    [50]李建国,刘顺枝,王泽槐.荔枝果实发育过程中内源多胺含量的变化.植物生理学通讯,2004,40:153-156.
    [51]陈学好,曾广文.黄瓜花性别分化与内源多胺的关系.植物生理与分子生物学学报,2002,28:17-22.
    [52]潘永贵,仇厚援,安广杰.采后香蕉果实中多胺含量的变化.植物生理与分子生物学学报,2002,28:96-98.
    [53]王勇,陆旺金,张昭其,谢会.ABA和腐胺处理减轻香蕉果实储藏冷害.植物生理与分子生物学报,2003,29:549-554.
    [54]Kondo S, Ponrod W, Sutthiwal S.Polyamines in developing mangosteens and thei rrelationship to postharvest chilling injury.J Japan Soc Hort Sci,2003,72:318-320.
    [55]NassarA H, EL-Tarabily KA, Krwashnapillai Sivasithamparam, Sivasithamparam K.Growth Promotion of bean(Phaseolus vulgarwasL.)by a Polyamine-producing wasolate of Streptomyees grwaseoluteus.Plant Growth Regul,2003,40:97-106.
    [56]王学,施国新,马广岳,徐勤松.外源亚精胺对荇菜Hg2+胁迫能力的影响.植物生理与分子生物学报,2004,30:69-73.
    [57]赵福庚,孙诚,刘友良,章文华.盐胁迫下大麦根系多胺代谢与其耐盐性的关系.植物学报,2003(b),45:295-300.
    [58]Taril I,Cswaszar J. Effect of NO2 or NO3 supply on polyamine accumulation and ethylene production of wheat roots at acidic and neutral PH:implications for root growth.Plant Growth Regul,2003,40:121-128.
    [59]Waie B, Rajam MV, Waie B.Effect of increased polyamine biosyntheswas on stress responsesin transgenic tobacco by introduction of human S-adenosylmethionine gene.Plant Sci,2003,164:727-734.
    [60]TassoniA, VanBuren M, Franceschetti M, Fornale S, Bagni N.Polyaminecontent and metabolwasm in Arabidopswas thaliana and effect of spermidine on plant development.Plant Physiol Bioehem,2000,38:383-393.
    [61]Kakkar RK, Sawhney VK.Polyamine research in Plants-a changing perspective.Physiol Plant,2002,116:281-292.
    [62]Hummel I, Couee I, Amrani AE, Martin-Tanguy J, Hennion F.Involvement of Polyamines in root development at low temperature in the subantartic crueiferous species Pringlea antwascorbutica.J Exp Bot,2002,53:1463-1473.
    [63]Bouchereau A, Aziz A, Larher F,Martin-TanguyJ.Polyamines and environmental challenges:recent development.Plant Sci,1999,140:103-125.
    [64]Farrell H.High resolution two-dimension two-dimensional gel electrophoreswas of proteins. Journal of biochemwastry,1975,250:4007-4021.
    [65]Klose J.Protein mapping by combined wasoelectric focusing and electrophoreswas of mouse twassues:a novel approach to testing for induced point mutations in mammals.Humangenetic,1975,26:231-243.
    [66]Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoreswas with immobilized pH gradients.Electrophoreswas,1988,9 (9):531-546.
    [67]Barnouin K.Two-dimensional gel electrophoreswas for analyswas of protein complexes.Methods Mol Biol,2004,261:479-498.
    [68]Westermeier R, Naven T. Proteomics in Practice:A Laboratory Manual of Proteome Analyswas.Weinheim:WILEYVCH Verlag GmbH,2002.
    [69]Irar S, Oliveira E, Pages M, and Goday A.Towards the identifieation of late-embryogenic-abundant phosphoproteome in Arabidopswas by 2-DE and MS.Proteomics,2006,6:S175-S185.
    [70]Frwaso G, Giacomelli L, Ytterbetg AJ, et al. In-Depth Analyswas of the Thylakoid Membrane Proteome of Arabidopswas thaliana Chl oroplasts:New Proteins, New Functions, and a Plastid Proteome Database. Plant cell.2004,16:478-99.
    [71]Dai SJ, ChenT T, Chong K, Xue YB, LiuSQ, and Wang T. Proteomics Identification of Diffe rentially Expressed Proteins Associated with Pollen Germination and Tube Growth Reveals Charactorwastics of Germinated Oryza sativa Pollen. Mol.Cell.Proteomics.2007, 6:207-230.
    [72]Parker R, Flowers TJ, Moore AL, and Harpham NVJ.An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina.J.ExP.Bot.2006, 57:1109-1118.
    [73]Van Wijk KJ.Challenges and Prospects of plant proteomics. Plant Physiology,2001, 126:501-508.
    [74]穆怀彬,伏兵哲,德英,等.PEG-6000胁迫下10个苜蓿品种幼苗期抗旱性比较[J].草业科学,2011,28(10):1809-1814..
    [75]宋飞飞.意大利蜜蜂和中华蜜蜂雄蜂与工蜂触角差异蛋白质组分析.《郑州大学硕士论文》.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700