用户名: 密码: 验证码:
意大利蜜蜂和中华蜜蜂雄蜂与工蜂触角差异蛋白质组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜜蜂利用复杂的化学信号交流系统来调节其多层次的社会生活,而触角是感受这些化学信号的主要器官。为了进一步探明雄蜂与工蜂触角发挥功能的分子机制,选择从形态学和差异蛋白质组的角度对其进行分析。本研究分别对意大利蜜蜂(Apis mellifera ligustica)和中华蜜蜂(A. cerana cerana)的雄蜂和工蜂触角进行扫描电镜观察以及蛋白质的二维电泳,结合质谱技术和实时荧光定量PCR技术对蛋白质进行鉴定以及验证,并利用生物信息学等方法对结果进行分析。
     对意大利蜜蜂(A. mellifera ligustica)和中华蜜蜂(A. cerana cerana)触角形态学分析发现,相比工蜂,雄蜂具有较长的触角和较多的板型感受器(意蜂7.5倍,中蜂3倍),可以推测雄蜂触角中的大量板型感受器能促进雄蜂对蜂王性信息素的识别以及交配过程中对蜂王的定位;相反工蜂触角中的类毛状感受器要比雄蜂多(意蜂2倍,中蜂2倍),这些类毛状感受器可能与昆虫搜寻食物,以及对温湿度、机械力刺激较敏感有关,这有助于工蜂通过调节自身活动来维持蜂群的稳定。意蜂雄蜂触角中板型感受器的数目约是中蜂雄蜂的2.5倍,这表明了中蜂雄蜂的板型感受器可能对识别蜂王信息素更加敏感,而意大利蜜蜂在生物进化过程中需要更多的板型感受器来提高其对蜂王信息素的灵敏性。
     对意大利蜜蜂(A. mellifera ligustica)性成熟雄蜂与采集蜂触角的蛋白质组图谱进行比较发现,在雄蜂触角中表达454个蛋白质,在工蜂触角中表达439个蛋白质,其中402个共有蛋白质占总蛋白质数量的82%,这说明虽然雄蜂与工蜂触角在形态学上及功能上存在差异,但它们在分子进化过程中还是相对保守的。在有差异的蛋白质中,61个高丰度蛋白质的功能得到了鉴定,其中有41个(67%)蛋白质在性成熟雄蜂触角中高表达,仅有20个(33%)蛋白质在采集蜂触角中高表达。更多的参与脂肪酸代谢、抗氧化和蛋白质折叠相关的蛋白质在性成熟雄蜂触角中高表达,这些蛋白质可能为促进对性信息素的检测及降解过程提供了保障。在采集蜂触角中高表达蛋白质主要参与碳水化合物代谢和能量产生以及分子转运功能,这表明在工蜂的采集活动和其他的触角功能反中需要大量的能量代谢和分子转运蛋白质参与。对表达量有差异的蛋白质进行功能富集和生化通路分析,其中都发现了参与碳水化合物代谢和能量产生,脂肪酸代谢,细胞骨架,抗氧化,以及分子转运5个功能的蛋白质,这进一步表明了参与这5个功能的蛋白质在蜜蜂触角发挥功能过程中起到重要作用。其中,参与碳水化合物代谢和能量产生以及分子转运功能蛋白质占据了功能富集分析的80%以上,并占构建的触角差异蛋白质生物相互作用网络的45%,表明这两类蛋白质家族对雄蜂和采集蜂触角具有更为重要的影响。对生化通路中的10个蛋白质的基因水平表达进行验证,发现其中9个蛋白质的表达趋势与转录水平是一致的,这些表达一致性的蛋白质可以作为后续基因操作的靶向蛋白质。
     对中华蜜蜂(A. cerana cerana)性成熟雄蜂和采集蜂触角进行差异蛋白质组比较发现,在雄蜂触角中表达424个蛋白质,在工蜂触角中表达408个蛋白质,其中包括361个共有蛋白质这也表明了触角在不同性别蜜蜂中的分子进化水平的保守性。其中有46个高丰度差异蛋白质得到鉴定,其中在雄蜂触角中高表达的28个蛋白质(60.9%)主要参与碳水化合物代谢和能量产生、蛋白质折叠、脂肪酸代谢、发育以及分子转运,这些蛋白质为雄蜂触角运动以及对信息素识别和转运过程提供了能量来源和信号转导的分子基础。在工蜂触角中高表达的18个蛋白质(39.1%)中,参与分子转运以及抗氧化作用的蛋白质更多的在工蜂中高表达,这些蛋白质对采集蜂识别蜜粉源、防御敌害以及调节蜂群内的分工具有重要意义。对差异蛋白质进行功能富集和生化通路分析,其中都发现了参与碳水化合物代谢和能量产生、脂肪酸代谢、抗氧化和分子转运功能的蛋白质,这说明参与这些功能的蛋白质对蜜蜂触角功能的发挥提供了分子依据。
     虽然意蜂和中蜂为两个不同的蜂种,但是从各自的雄蜂和工蜂触角蛋白质组成比较,发现差异蛋白质的种类和表达水平十分相似,表明不同蜂种间触角功能的发挥具有一定的保守性;另一方面意蜂中参与碳水化合物代谢和能量产生以及抗氧化的蛋白质分别在工蜂和雄蜂中高表达的较多;而在中蜂中更多的碳水化合物代谢和能量产生类蛋白质在雄蜂中高表达,抗氧化类的蛋白质更多的在工蜂中高表达;产生这种现象的原因可能是由于不同种间进化水平的差异造成的。
     蜜蜂触角差异蛋白质组分析不仅表明了在性成熟雄蜂和采集蜂触角中性别偏好的蛋白质表达水平,也表明了它们对不同的嗅觉功能相应的反应机制。这对深入了解蜜蜂社会活动和蜜蜂生物学具有重要意义。
Honey bees have evolved an intricate system of chemical communication to regulate their multifaceted social interactions. To gain better understanding how the drone and the worker react to different olfactory responses and undertake their activities, morphology and differential proteomics research were carried out. The antennae of drones and workers from Apis mellifera ligustica and A. cerana cerana were examined using scanning electron microscope (SEM), and the antennae proteins were extracted, then two dimensional electrophoresis (2-DE), mass spectrometry, quantitative real-time PCR (qRT-PCR) and bioinformatics approaches were used.
     Morphological assay by SEM showed that the antennae of drone are lager than worker', and the total poreplate sensilla showed significant higher number in the drone than those of the worker (almost 7.5 times in A. mellifera ligustica, almost 3 times in A. cerana cerana), suggested to assist its high antennal olfactory functions, particularly the sex pheromone related responses. In contrast, the number of hair-like sensilla of workers was two-fold higher than drones', This is likely to help the foragers to search nectar resource quickly, to sense temperature, humidity and mechanical force.
     With the comparison of the proteins profile of sexual matured drones and foragers' antennae (A. mellifera ligustica), a total of 484 and 439 protein spots were detected in adult drones and workers'antennae, respectively, of which 416 expressed proteins were shared between drone and worker antennae, it means that they evolve conservatively between them.61 proteins differentially expressed proteins were identified, of which 41 proteins (67%) were highly regulated in the sexual mature drones' antennae whereas only 20 proteins (33%) upregulated in forager worker bees'. Proteins associated with fatty acid metabolism, antioxidant activities and protein folding were highly upregulated in the sexual mature drones' antennae indicating their significance to detection and degradation of sex pheromones required in queen mating. The forager worker bees' antennae highly expressed proteins related to carbohydrate and energy metabolism and the molecular transporters signifying high demand for metabolic energy and odorant binding proteins in their foraging activities and other olfactory responses. Some proteins were found in the results of functional enrichment and biological interaction networks (BIN) analysis. The involvement of carbohydrate and energy metabolism, fatty acid metabolism, cytoskeleton, antioxidant and molecular transporters in these groups reveals their important role in the antennal olfasctory function. Over 80% of the functional enrichment analysis and 45% of the BIN of the altered antennal proteins were covered by carbohydrate metabolism and energy production and molecular transporters, respectively confirming that these two protein families play the crucial role in the antennal olfactory function of sexual mature drone and forager worker bees.10 key node proteins in the BIN were validated at the transcript level and 9 proteins displayed comparable expression with the qRT-PCR analysis, and these proteins provide us some target proteins for further genetically manipulation.
     By comparison of the proteins profile of sexual matured drones and foragers' antennae (A. cerana cerana),424 and 408 protein spots were detected in drones and workers' antennae, respectively, and 416 shared proteins mean that they evolve conservatively between them.46 differentially expressed proteins were identified, proteins were highly regulated in the sexual mature drones' antennae, which was involving in carbohydrate and energy metabolism, fatty acid metabolism, development and molecular transporters, and they provide energy and molecular transporter in recognizing and processing of pheromone. More proteins expressed highly in workers, which related to carbohydrate and energy metabolism and the molecular transporters, this demonstrates that foraging activities, defense, and other olfactory responses need high metabolic energy and more odorant binding proteins. Although Apis mellifera ligustica and Apis cerana cerana belong to two different species, the kind and expressional level of differentially expressed proteins seem similar between drones and workers'antennae and it indicates molecular mechanism is conservative at a certain extent in different species. For Apis mellifera ligustica, more proteins expressed highly in drone and worker respectively, which related to carbohydrate and energy metabolism and antioxidant. However the results were contrast in Apis cerana cerana, the dispency between two spiecies may contribute to different evolve level.
     This differential proteomic analysis reveals sex-biased protein expression in the sexual mature antennae of drone and forager worker bees, and indicates their responding mechanism to different olfactory functions accordingly. Moreover, the results will open the way for future detailed functional analysis in the antennae of the two honeybee casts.
引文
[1]Winston M L.1987. The biology of the honey bee [M]. Cambridge, MA.; Harvard University Press.1987:316-318.
    [2]Consortium H G S. Insights into social insects from the genome of the honeybee Apis mellifera [J]. Nature,2006,443:931-949.
    [3]Slessor K N, Winston M L, Le Conte Y. Pheromone communication in the honeybee (Apis mellifera L.)[J]. J Chem Ecol,2005,31:2731-2745.
    [4]Wilson E O. The Insect Societies [M]. Cambridge:Belknap Press of Harvard University Press, 1971.
    [5]陈盛禄.中国蜜蜂学[M].北京:中国农业出版社,2001.
    [6]Crespi B J, Yanega D. The definition of eusociality[J]. Behav Eco,1995,6:109-115.
    [7]Wilson E O, Holldobler B. Eusociality:origin and consequences[J]. Proc Natl Acad Sci USA, 2005,102:13367-13371.
    [8]Haupt S S. Antennal sucrose perception in the honey bee (Apis mellifera L.):behaviour and electrophysiology[J]. J Comp Physiol A,2004,190(9).
    [9]杜芝兰.中华蜜蜂工蜂触角感受器的扫描电镜观察[J].昆虫学报,1989,32(2):166-170.
    [10]Dietz A, Humphreys W J. Scanning electron microscopic studies on antennal receptors of the worker honey bee, including sensilla campaniformia. [J]. Ann Entmol Soc Am,1971,64.
    [11]Esslen J, Kaissling K E. Zahl und verteilung antennaler sensillen bei der honigbiene (Apis mellifera L.)[J]. Zoomorphology,1976,83(3):227-251.
    [12]Brockmann A, Bruckner D. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera[J]. Naturwissenschaften, 2001,88(2):78-81.
    [13]Kaissling K E, Renner M. Antennale rezeptoren fur queen substance und sterzelduft bei der Honigbiene [J]. Z Vergl Physiol,1968,59:357-361.
    [14]Bruckner A B D. The EAG response spectra of workers and drones to queen honeybee mandibular gland components:the evolution of a social signal[J]. Naturwissenschaften,1998,85(6).
    [15]Becker M M, Bruckner D, Crewe R. Behavioural response of drone honey bees, Apis mellifera carnica and Apis mellifera scutellata, to worker-produced pheromone components[J]. J Agric Res, 2000,39(3):149-152.
    [16]Free J B. Pheromones of social bees[J]. Cornell Univ Press, Ithaca, NY,1987.
    [17]Foret S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera).[J]. Genome Res,2006,16:1404-1413.
    [18]Salmon A W. Br Bee[J],1938,66:62.
    [19]Keeling C I, Slessor K N, Higo H A, et al. New components of the honey bee (Apis mellifera L.) queen retinue pheromone [J]. Proc Natl Acad Sci USA,2003,100(8):4486-4491.
    [20]Butler C G, Gibbons D A. The inhibition of queen rearing by feeding queenless worker honeybees (A. mellifera) with an extract of "queen substance"[J]. J Ins Physiol,1958,2(1):61-64.
    [21]Gary N E. Chemical mating attractants in the queen honey bee[J]. Sci,1962,136(3518):773-774.
    [22]Slessor K N, Kaminski L A, King G G S, et al. Semiochemical basis of the retinue response to queen honeybees[J]. Nature,1988,332:354-356.
    [23]Le Conte Y, Arnold G, Trouiller J, et al. Identification of a brood pheromone in honeybees[J]. Naturwissenschaften,1990,77:334-336.
    [24]Moritz R F A, Burgin H. Group response to alarm pheromones in socialwasps and the honeybees.[J]. Ethology,1987,76:15-26.
    [25]Collins A M, Rothenbuhler W C. Laboratory test of the response to an alarm chemical, isopentyl acetate, by Apis tnelufera [J]. Annals of the Entomological Society of America,1978,71(6).
    [26]Menzel R. Searching for the memory trace in a mini-brain, the honeybee[J]. Learn Mem, 2001,8(2):53-62.
    [27]Ditzen M. Odor similarity does not influence the time needed for odor processing[J]. Chem Senses,2003,28(9):781-789.
    [28]Deisig N, Giurfa M, Lachnit H, et al. Neural representation of olfactory mixtures in the honeybee antennal lobe[J]. Eur J Neurosci,2006,24(4):1161-1174.
    [29]Swanson J A, Torto B, Kells S A, et al. Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae[J]. J Chem Ecol, 2009,35:1108-1116.
    [30]Vogt R G. Molecular basis of pheromone detection in insects[J]. Comprehensive Insect Mol Sci, 2005,3:753-804.
    [31]Bitterman M E, Menzel R, Fietz A, et al. Classical conditioning of proboscis extension in honeybees (Apis mellifera)[J]. J Comp Psychol,1983,97(2):107-119.
    [32]Menzel R, Muller U. Learning and memory in honeybees:from behavior to neural substrates[J]. Annu Rev Neurosci,1996,19:379-404.
    [33]Esselen J, Kaissling K E. Zahl und Verteilung antennaler Sensillen bei der Honigbiene(Apis mellifera L.)[J]. Zoomorphology,1976,83:227-251.
    [34]Whitehead A T, Larsen J R. Ultrastructure of the contact chemoreceptors of Apis mellifera L. (Hymenoptera:Apidae)[J]. International Journal of Insect Morphology and Embryology, 1976,5(4-5):301-315.
    [35]Suzuki H. Antennal movements induced by odour and central projection of the antennal neurones in the honey-bee[J]. J Insect Physiol,1975,21(4):831-847.
    [36]Gil M, De Marco R J. Decoding information in the honeybee dance:revisiting the tactile hypothesis[J]. Animal Behaviour,2010,80(5):887-894.
    [37]Sanchez-Gracia A, Vieira F G, Rozas J. Molecular evolution of the major chemosensory gene families in insects[J]. Heredity,2009,103:208-216.
    [38]Robertson H M, Wanner K W. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family[J]. Genome Res,2006,16:1395-1403.
    [39]Dahanukar A, Hallem E A, Carlson J R. Insect chemoreception [J]. Curr Opin Neurobiol,2005,15: 423-430.
    [40]Rutzler M, Zwiebel L J. Molecular biology of insect olfaction:recent progress and conceptual models[J]. J Comp Physiol A Neuroethol Sens Neura Behav Physiol,2005,191(9):777-790.
    [41]Hallem E A, Dahanukar A. Insect odor and taste receptors[J]. ANNU Rev Entomol,2006,51: 113-135.
    [42]Vogt R G, Riddiford L M. Pheromone binding and inactivation by moth antennae[J]. Nature, 1981,293:161-163.
    [43]Lobel D, Jacob M, Volkner M, et al. Odorants of different classes interact with distinct odorant binding protein subtypes[J]. Chem Senses,2002,27(1):39-44.
    [44]Vogt R G, Prestwich G D, Lerner MR. Odorant-binding protein subfamilies associated with distinct classes of olfactory receptor neurons in insects.[J]. J Neurobiol,1991,22:74-84.
    [45]Vogt R G, Callahan F E, Rogers M E, et al. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera)[J]. Chem Senses,1999,24:481-495.
    [46]Krieger J, von Nickisch-Roseneck E, Mameli M, et al. Binding proteins from the antennae of Bombyx mori[J]. Insect Biochem Mol Biol,1996,26:297-307.
    [47]Dani F R, Iovinella I, Felicioli A, et al. Mapping the expression of soluble olfactory proteins in the honeybee[J]. J Proteome Res,2010,9(4):1822-1833.
    [48]Vogt R G. Odorant binding protein subfamilies associate with distinct classes of olfactory receptor neurons in insects[J]. J Neurobiol,1991,22(1):74-84.
    [49]Danty E, Arnold G, Huet J C, et al. Separation, characterization and sexual heterogeneity of multiple putative odorant-binding proteins in the honeybee Apis mellifera L. (Hymenoptera: Apidea)[J]. Chem Senses,1998,23(1):83-91.
    [50]Danty E, Michard-Vanhee C, Huet J C, et al. Biochemical characterization, molecular cloning and localization of a putative odorant-binding protein in the honey bee Apis mellifera L. (Hymenoptera:Apidea)[J]. FEBS Lett,1997,414(3):595-598.
    [51]Jordan M D, Stanley D, Marshall S D, et al. Expressed sequence tags and proteomics of antennae from the tortricid moth, Epiphyas postvittana[J]. Insect Mol Biol,2008,17(4):361-373.
    [52]Prestwich G D. Chemistry of pheromone and hormone metabolism in insects[J]. Sci,1987,(237): 999-1006.
    [53]Vogt R G. Comprehensive molecular insect science[J]. Elsevier,2004,3:753-803.
    [54]Pelosi P, Maida R. Odorant-binding proteins in insects[J]. Comp Biochem Physiol B Biochem Mol Biol,1995,111(3):503-514.
    [55]Kaissling. Pheromone deactivation catalyzed by receptor molecules:a quantitative kinetic model[J]. Chem Senses,1998.
    [56]Wcislo W T. Nest localization and recognition in a solitary bee, Lasioglossum (Dialictus) figueresi Wcislo (Hymenoptera:Halictidae), in relation to sociality[J]. Ethology,1992,92(2): 108-123.
    [57]Chapman R F. Chemoreception:The significance of receptor numbers[J]. Adv Insect Physiol, 1982,16:24-356.
    [58]Dreller C, Kirchner W. Hearing in honeybees:localization of the auditory sense organ[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,1993,173(3):275-279.
    [59]Michelsen A. Karl von Frisch lecture. Signals and flexibility in the dance communication of honeybees[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,2003,189(3):165-174.
    [60]冯毛.意大利蜜蜂(Apis mellifera L.)工蜂咽下腺发育蛋白质组研究[D].北京:中国农业科学院,2010.
    [61]房宇.王浆高产蜜蜂(Apis mellifera L.)与原种意大利蜜蜂(Apis mellifera L.)雄蜂胚胎发育蛋白质组分析[D].郑州:郑州大学,2009.
    [62]Butler C G, Calam D H, Callow R K. Attraction of Apis mellifera drones by the odours of the queens of two other species of honeybees[J]. Nature,1967,213(5074):423-424.
    [63]Kamikouchi A, Morioka M, Kubo T. Identification of honeybee antennal proteins/genes expressed in a sex and/or caste selective manner[J]. Zoolog Sci,2004,21(1):53-62.
    [64]Winston M L. The biology of the honey bee [M]. Cambridge, MA.; Harvard University Press. 1987:316-318.
    [65]Kunieda T, Fujiyuki T, Kucharski R, et al. Carbohydrate metabolism genes and pathways in insects:insights from the honey bee genome[J]. Insect Mol Biol,2006,15:563-576.
    [66]Sies H. Oxidative stress:oxidants and antioxidants[J]. Exp Physio,1997,82(2):291-295.
    [67]Rogers M E, Jani M K, Vogt R G. An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta[J]. J Exp Biol,1999,202:1625-1637.
    [68]Evans C T, Ratledge C. Possible regulatory roles of ATP:citrate lyase, malic enzyme, and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14[J]. Canadian Journal of Microbiology,1985,31(11):1000-1005.
    [69]Kendrick A, Ratledge C. Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme[J]. Eur J Biochem,1992,209(2): 667-673.
    [70]Sun M K, Alkon D L. Carbonic anhydrase gating of attention:memory therapy and enhancement[J]. Trends Pharmacol Sci,2002,23(2):83-89.
    [71]Ruttner F, Kaissling K E. Uber die interspezifische wirkung des sexuallockstoffes von Apis mellifica und Apis cerana[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 1968,59(4):362-370.
    [72]Gary N E. Chemical Mating Attractants in the Queen Honey Bee[J]. Sci,1962,136(3518): 773-774.
    [73]Campbell P M, Harcourt R L, Crone E J, et al. Identification of a juvenile hormone esterase gene by matching its peptide mass fingerprint with a sequence from the Drosophila genome project[J]. Insect Biochem Mol Biol,2001,31(6-7):513-520.
    [74]Jacquin-Joly E, Vogt R G, Francois M C, et al. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae[J]. Chem Senses,2001,26(7):833-844.
    [75]Vogt R Q Riddiford L M, Prestwich G D. Kinetic properties of a sex pheromone-degrading enzyme:the sensillar esterase of Antheraea polyphemus[J]. Proc Natl Acad Sci U S A, 1985,82(24):8827-8831.
    [76]Pape M E, Lopez-Casillas F, Kim KH. Physiological regulation of acetyl-CoA carboxylase gene expression:effects of diet, diabetes, and lactation on acetyl-CoA carboxylase mRNA[J]. Arch Biochem Biophys,1988,267(1):104-109.
    [77]Durand N, Carot-Sans G, Chertemps T, et al. A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis[J]. Insect Mol Biol, 2010,19(1):87-97.
    [78]Kamita S G, Hinton A C, Wheelock C E, et al. Juvenile hormone (JH) esterase:why are you so JH specific[J]. Insect Biochem Mol Biol,2003,33(12):1261-1273.
    [79]Barchuk A R, Cristino A S, Kucharski R, et al. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera[J]. BMC Dev Biol,2007,7:70.
    [80]Corona M. Genes of the antioxidant system of the honey bee:annotation and phylogeny[J]. Insect Mol Biol,2006,15(5).
    [81]Free J B. Pheromones of social bees[M]. Ithaca, N.Y.:Comstock Pub. Associates,1987:218
    [82]Vareschi E. Duftunterscheidung bei der honigbiene;aEinzelzell-ableitungen und verhaltensreaktionen[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,,1971,75(2): 143-173.
    [83]Campanacci V, Lartigue A, H llberg B M, et al. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding[J]. Proc Natl Acad Sci U S A, 2003,100(9):5069.
    [84]Cane J H, Sipes S. Characterizing floral specialization by bees:analytical methods and a revised lexicon for oligolecty[J]. Plant-pollinator interactions:from specialization to generalization,2006: 99-122.
    [85]Dunkov B, Georgieva T. Insect iron binding proteins:insights from the genomes[J]. Insect Biochem Mol Biol,2006,36(4):300-309.
    [86]Nichol H, Law J H, Winzerling J J. Iron metabolism in insects[J]. Annu Rev Entomol, 2002,47(535-59).
    [87]Garcia L, Garcia C H S, bria L K C, et al. Proteomic analysis of honey bee brain upon ontogenetic and behavioral development[J]. J Proteome Res,2009,8(1464-1473).
    [88]Farooqui T. Iron-induced oxidative stress modulates olfactory learning and memory in honeybees [J]. Behav Neurosci,2008,122(2):433-447.
    [89]Lee S, Leung H T, Kim E, et al. Effects of a mutation in the Drosophila porin gene encoding mitochondrial voltage-dependent anion channel protein on phototransduction[J]. Dev Neurobiol, 2007,67(11):1533-1545.
    [90]Borges J C, Ramos C H I. Protein folding assisted by chaperones[J]. Protein and Peptide Letters, 2005,12(3):257-261.
    [91]Walter S, Buchner J. Molecular chaperones--cellular machines for protein folding[J]. Angew Chem Int Ed Engl,2002,41(7):1098-1113.
    [92]Guzeva L N. Antimicrobial activity of bee hemolymph[J]. Veterinariia,1977,(8):57-58.
    [93]Gadagkar R. The evolution of caste polymorphism in social insects:Genetic release followed by diversifying evolution[J]. Journal of Genetics,1997,76(3):167-169.
    [94]Bamburg J. Proteins of the ADF/cofilin family:essential regulators of actin dynamics[J]. Annu Rev Cell Dev Biol,1999,15:185-230.
    [95]Chen J, Godt D, Gunsalus K, et al. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis[J]. Nat Cell Biol,2001,3(2):204-209.
    [96]Dawe HR, Minamide LS, Bamburg JR, et al. ADF/cofilin controls cell polarity during fibroblast migration[J]. Curr Biol,2003,13(3):252-257.
    [97]Lappalainen P, Drubin DG Cofilin promotes rapid actin filament turnover in vivo[J]. Nature, 1997,388(6637):78-82.
    [98]Kuhn TB, Meberg PJ, Brown MD, et al. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases[J]. J Neurobiol,2000,44(2):126-144.
    [99]Gunsalus KC, Bonaccorsi S, Williams E, et al. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis[J]. J Cell Biol,1995,131(5):1243-1259.
    [100]Hanke PD, Storti RV. The Drosophila melanogaster tropomyosin Ⅱ gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing[J]. Mol Cell Biol, 1988,8(9):3591.
    [101]Karlik CC, Fyrberg EA. Two Drosophila melanogaster tropomyosin genes:structural and functional aspects[J]. Mol Cell Biol,1986,6(6):1965.
    [102]Jacobs H, Stratmann R, Lehner C. A screen for lethal mutations in the chromosomal region 59AB suggests that bellwether encodes the alpha subunit of the mitochondrial ATP synthase in Drosophila melanogaster[J]. Mol Gen Genet,1998,259(4):383-387.
    [103]Kawamura K, Shibata T, Saget O, et al. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells[J]. Development,1999,126(2):211.
    [104]Bryant PJ, Kawamura K. Chitinase related proteins and methods of use [M]. Google Patents. 2000.
    [105]Rogers ME, Jani MK, Vogt RG. An olfactory specific glutathione S-transferase in the Sphinx moth Manduca sexta[J]. J Exp Biol,1999,202:1625-1637.
    [106]Krause KH, Michalak M. Calreticulin[J]. Cell,1997,88(4):439-443.
    [107]Johnson S, Michalak M, Opas M, et al. The ins and outs of calreticulin:from the ER lumen to the extracellular space[J]. Trends Cell Biol,2001,11(3):122-129.
    [108]Stoltzfus JR, Horton WJ, Grotewiel MS. Odor-guided behavior in Drosophila requires calreticulin[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,2003,189(6): 471-483.
    [109]Kaissling KE, Renner M. Antennale Rezeptoren fur queen substance und Sterzelduft bei der Honigbiene[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,,1968,59(4):357-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700