用户名: 密码: 验证码:
水生植物厌氧发酵产沼气研究及其产气模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水生植物具有良好的水质净化效果,在富营养化水体的生物修复中应用广泛,但生长繁殖速度过快,易腐烂分解,造成水体的二次污染。若将水生植物看作一种高产的能源植物,用厌氧发酵技术加以利用,可制取清洁能源。本文将选取一些水生植物进行生化成分测定和厌氧发酵实验,探索其作为沼气发酵原料的可行性,并分析植物成分对其厌氧发酵过程的影响;对香蒲厌氧发酵过程的接种率、料液浓度等工艺条件进行优化。主要的结论如下:
     (1)从美人蕉和香蒲的厌氧发酵实验得出,增加接种量和原料添加量、粉碎以及选取合适的接种物都能明显提升产气效果,表现为:产气稳定性增强,产气周期延长,产气量增加。
     (2)木质纤维素、碳水化合物以及蛋白质是水生植物的主要有机成分,原料的可生物性较好。各水生植物在37℃的产气率分别为:香蒲513.23mL·g-1VS、香菇草539.09mL·g-1VS、再力花577.96mL·g-1VS、菖蒲508.95mL.g-1VS、美人蕉555.05mL·g-1VS、紫芋629.41mL·g-1VS、梭鱼草473.09mL·g-1VS,可以作为良好的厌氧发酵原料。
     (3)香蒲和紫芋的C/N分别为18.59和16.97,理论产沼气潜力分别为969.21mL·g-1VS和897.69mL·g-1VS,厌氧降解率分别为52.95%和70.11%。
     (4)本实验对发酵原料木质纤维素含量与厌氧生化产沼气潜力(ABP)之间的联系进行相关性分析,得出木质素与ABP之间的相关性(r=-0.259,p>0.05)很微弱,而半纤维素与ABP间有一定的相关性(r=-0.781,p<0.05),说明半纤维素的含量会对ABP产生直接影响,这与以往的研究成果认为ABP受木质素的影响不同。以半纤维素作为单独变量,建立预测ABP的模型方程,得出:半纤维素与ABP间的一元线性回归方程斜率为3.592,截距为587.104,相对偏差为6.81%。
     (5)在香蒲的工艺条件优化实验中得出,固体浓度6%、接种率50%的实验组产气率最高,发酵过程中pH值变化最稳定,累积产气量和产气率分别为6482mL和581.39mL·g-1VS、固体浓度8%、接种率40%的实验组累积产气量最高,累积产气量和产气率分别为9297mL和.521.17mL·g-1VS,可以作为香蒲厌氧发酵的较佳条件。
The aquatic plants have good ability for the water purification, so they are widely used in the bioremediation of entropic water. However, the rapid growth and decomposition of aquatic plants could easily cause the secondary pollution of water bodies, if the aquatic plants were used as a high yielding energy plant to convert to biogas through anaerobic fermentation, which will not only stop the secondary pollution, but also produce economic value. In order to explore the feasibility of using aquatic plants for biogas through anaerobic fermentation, several aquatic plants were explored as fermentation materials for biogas production in this paper. The composition of the selected aquatic plants was determined and their effects on anaerobic fermentation were analysised, and the fermentation concentration and inoculums rate were also optimized in the fermentation process of Typha. The main conclusions are as follows:
     (1)The exploratory anaerobic fermentation experiments of Canna indica and Typha orientalis were carried out first. The results indicated that the measures like increasing the inoculation amount and raw materials, grinding and selecting suitable inoculums all had notable influence on the biogas production, enhancing the stability of the gas production, prolonging the gas production cycles and increasing the gas volume.
     (2)The major organic components of the aquatic plants are lignocellulose, carbohydrates and protein, which showed a good biodegradability. The biogas production rates of the seven aquatic plants were:Typha orientalis513.23mL·g-1VS, Hydrocotyle vulgaris539.09mL·g-1VS, Thalia dealbata577.96mL·g-1VS, Acorus calamus508.95mL·g-1VS, Canna indica555.05mL·g-1VS, Colocasia tonoimo629.41mL·g-1VS and Pontederia cordata473.09mL·g-1VS respectively, which suggested that the aquatic plants can be utilized to be resources for biogas production.
     (3)The C/N of Typha orientalis and Colocasia tonoimo was18.59and16.97respectively, and their theoretical biogas potential was969.21mL·g-1VS and897.69mL·g-1VS respectively, so their anaerobic degradation rate was52.95%and70.11%respectively.
     (4) The correlation between lignocellulose content and anaerobic biogas potential(ABP) was studied in this paper. The results showed that the correlation between lignin and ABP (R2=0.067) is very weak, while there is a certain correlation between hemicelluloses and ABP (R2=0.610, p<0.05). The conclusion believed that the hemicelluloses content directly affected the ABP. While the previous research results suggested a different opinion that the ABP was affected by lignin. We established a model equation for predicting ABP by using hemicellulose as an independent variable. The inclination, intercept and relative deviation of the linear regression line was3.592,587.104and6.81%respectively.
     (5) In the experiment of optimizing parameters of anaerobic fermentation for Typha, the results showed that:the pH value for the fermentation concentration of6%with inoculums rate of50%was most stable, and the biogas production rate of which was the highest, total biogas yield and biogas production rate were6482mL and581.39mL·g-1VS respectively. While the total biogas yield for the fermentation concentration of8%with inoculums rate of40%was the highest, and the total biogas yield and biogas production rate were9297mL and521.17mL·g-1VS respectively, and the above process conditions was the most suitable for the anaerobic fermentation of Typha.
引文
[1]杜宁.国内外能源植物的利用与开发[J].世界农业,2006(4):57-60.
    [2]刘晓娟,殷卫峰.国内外生物质能开发利用的研究进展[J].洁净煤技术,2008(04):7-9.
    [3]Schemer M R, Vogel K P, Mitchell R B,et al. Net energy of cellulosic ethanol from swithgrass[J]. Proc Natl Acad Sci USA,2008,105(2):464-469.
    [4]匡廷云,马克平,白克智.生物质能研发展望[J].中国科学基金.2005,19(6):326-330.
    [5]Gable M, Sassner P, Wingren A, et al. Process engineering economics of bioethanol production[J]. Adv Biochem Engin/Biotechnol,2007,108:303-327.
    [6]王莉衡.关于开发能源植物问题的思考[J].陕西农业科学,2010(4):123-126.
    [7]张荣成,李秀金.作物秸秆能源转化技术研究进展[J].现代化工,2005,25(6):14-17.
    [8]赵军,王述洋.我国生物质能源与利用[J].太阳能学报,2008,29(1):90-93.
    [9]尚士友,杜健民,李旭英,等.草型湖泊沉水植物收割工程对生态改善的试验[J].农业工程学报,2003,19(6):95-100.
    [10]沈昆根,姚俊杰.新型人工浮床在城市中小河道治理中的应用[J].水资源保护,2008,24:72-73.
    [11]徐大勇,徐祖信.人工湿地植物生理生态及其去污机理研究[J].安徽农业科学,2008,36(3):1144-1 146.
    [12]武海涛,吕宪国,杨青.湿地草本植物枯落物分解的影响因素[J].生态学杂志,2006,25(11):1405-1410.
    [13]齐玉梅,高伟生.凤眼莲净化水质及其后处理工艺探讨[J].环境科学进展,1999,7(2):136-14.
    [14]Smith V H. Eutrophication of fresh water and coastal marine ecosystems-A global problem[J]. Environ.Sci.Poll.Res,2003,10(2):126-139.
    [15]朱斌,陈飞星,陈增奇.利用水生植物净化富营养化水体的研究进展[J].上海环境科学,2002,21(9):564-567.
    [16]Allnson G,Stagnitti F,Colville S. Growth of floating aquatic macrophytes in alkalne industrial wastewaters[J]. J Environ Eng,2000,12:1103-1107.
    [17]Joseph B, Hughes J. Transfanation TNT by aqutic plants and plant tissue cultures[J]. Environ Sci Technd,1997,31(1):266-271.
    [18]Pilon-Snits E A H, De Souza M P, Hong G. Voatilizafion and accumulation by twenty aquatic plant species[J]. J Environ Qual,1999,128(3):1011-1018.
    [19]由文辉,刘淑嫒,钱晓燕.水生经济埴物净化受污染水体的研究[J].华东师范大学学报(自然科学版),2001,(1):99-102.
    [20]辛晓云,马秀东.氧化塘水生植物净化污水的研究[J].山西大学学报(自然科学版),2003,26(1):85-87.
    [21]童昌华,杨肖娥,濮培民.水生植物控制湖泊底泥营养盐释放的效果与机理[J].农业环境科学学报,2003,22(6):673-676.
    [22]王旭明,匡晶.水芹菜对污水净化的研究[J].农业环境保护,1999,18(1):34-35.
    [23]胡春华,濮培民,王国样,等.冬季净化湖水的效果与机理[J].中国环境科学,1999,19(6):561-565.
    [24]种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-40.
    [25]雷泽湘,谢贻发,徐德兰,等.大型水生植物对富营养化湖水净化效果的试验研究[J].安徽农业科学,2006,34(3):553-554.
    [26]贺锋,吴振斌.水生植物遮污水处理和水质改善中的应用[J].植物学通报,2003,20(6):645-647.
    [27]刘欣萍.浅谈水葫芦治理与利用[J].中国环境管理,2004,12(4):60-62.
    [28]王佳,舒新前.人工湿地植物的作用和选择[J]环境与可持续发展,2007,4:62-64.
    [29]徐德福,徐建民,王华胜等.湿地植物对富营养化水体中氮、磷吸收能力研究(J.植物营养与肥料学报,2005,11(5):597-601.
    [30]Fennessy M S, Cronk J K, Mitseh W J.Macrophyte produetirlty and community development in created wetlands under experimental hydrological conditions[J]. Ecol Eng,1994,3(4):469-484.
    [31]Brix H. Treatment of wastewater in the rhizosphere of wetland plants:The root gone method[J].War Sei Technol,1987,19:107-118.
    [32]许航.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69-73.
    [33]Sparling D W.Metal concentrations in aquatic macrophytes as influenced by soil anf acidification[J]. Water Air Soil Pollute,1998,18(12):203-221.
    [34]Scheffer M.The effect of aquatic vegetation on turbidity:how important are the filter feeders[J].Hydrobiologia,1999,408(4):307-316.
    [35]洪喻,胡洪营.水生植物化感抑藻作用研究与应用[J].科学通报,2009,54(3):287-293.
    [36]郭长城,胡洪营,李锋民,等.湿地植物香蒲体内氮、磷含量的季节变化及适宜收割期[J].生态环境学报2009,18(3):1 020-1 025.
    [37]戴树桂,赵凡,金朝晖,等.香蒲植物提取物的抑藻作用及其分离鉴定[J].环境化学,1997,16(3):268-271.
    [38]Tanner Chris C.Plants for constructed wetland treatment systems-A comparison of the growth and nutrient uptake of eight emergentspecies[J].Ecological Engineering.1996,7(1):59-83.
    [39]石雷,杨璇.人工湿地植物量及其对净化效果影响的研究[J].生态环境学报2010,19(1):28-33.
    [40]Meuleman Arthur F M, Van Logtestijn Richard, Rijsger B J, et al. Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment[J]. Ecological Engineering,2003,20(1):31-44.
    [41]朱雪生,王丽卿,徐后涛,等.利用人工湿地处理池塘养殖废水效果分析[J].渔业现代化,2009,36(4):8-12.
    [42]范云爽,戴丽,蒋云东.人工湿地处理污染河水和湿地植物腐烂分解影响研究[J].环境科学导刊,2010,29(3):42-45.
    [43]李文朝.东太湖茭黄水发生原因与防治对策探讨[J].湖泊科学,1987,9(4):364-368.
    [44]曹学新,黄庆顺.我国城市生活垃圾堆肥处理展望[J].有色冶金设计与研究,2001,22(1):52-55.
    [45]秦蓉,徐亚同,何淑英,等.富营养化水体的生物修复与植株残体的资源化利用[J].2008,33(9):1-4.
    [46]王艳丽,肖瑜,潘慧云,等.沉水植物苦草的营养成分分析与综合利用[J].生态与农村环境学报,2006,22(4):45-47,70.
    [47]卢隆杰,苏浓,岳森.低投入、高产出、多用途的凤眼莲[J].吉林畜牧兽医,2003,(12):26-27.
    [48]黄东风,李清华,陈超.水葫芦有机肥料的研制与应用效果[J].中国土壤与肥料,2007,(5):48-52.
    [49]蒋伟军,颜幼平,李萍.水葫芦资源化利用综述[J].水资源保护,2010,26(6):79-83.
    [50]Mukherjee R,Nandi B.Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two pleurotus species[J].International Biodeterior&Biodegradation,2004,53:7-12.
    [51]张敏,薛晓珍.微生物活干菌发酵玉米秸秆有效成份分析[J].仪器分析与检测,2003,12(3):45-46.
    [52]纪智慧.人工湿地污水处理系统中植物体系的构建与展望[J].环境科学与管理,2008,33(11):92-95,112.
    [53]Peng P S,Chanwakitelhareon P,Krasinsr I R. Removal of heavy metal ions by lignocellulosic-formaldehyde ion exchange resin produced from water hyacinth[J].J Sei Res,1997,22(1):35-42.
    [54]张庭婷,李嘉薇,王双飞.几种生物质原料厌氧发酵制取沼气能量转换效率的比较[J],造纸科学与技术,2009,28(3):36-41.
    [55]谢光辉.能源植物分类及其转化利用[J].中国农业大学学报,2011,16(2):1-7.
    [56]杨永兴,吴玲玲,赵桂瑜,等.上海市崇明东滩湿地生态服务功能湿地退化与保护对策[J].现代城市研究,2004,(12):10-12.
    [57]马立珊,骆永明,吴龙华,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000,(2):99-101.
    [58]牛晓军.我国人工湿地植物系统的研究进展[J].四川环境,2005,24(5):45-47.
    [59]张奕,杨柳燕,肖琳,等.水生植物压滤液厌氧发酵条件试验[J].农村生态环境,2005,21(3):54-57.
    [60]刘海琴,宋伟,高运强,等.水葫芦与蓝藻厌氧发酵产沼气研究[J].江苏农业科学,2008,3:254-256.
    [61]查国君,曾国揆,张无敌,等.水葫芦发酵产气潜力的实验研究[J].能源工程,2006,6:49-51.
    [62]胡晓明,张建萍,张无敌,等.香根草中温发酵产沼气的试验研究[J].科技信息,2008,27:8-9.
    [63]安雷,朱洪光,陈小华.互花米草发酵产沼气的潜力研究[J].现代农业科技,2009,14:229,238.
    [64]查国君,张无敌,尹芳,等.滇池水葫芦固液分离后的沼气发酵研究[J].中国野生植物资源,2008,27(1):36-38.
    [65]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999.
    [66]Yan L F,Li W,Yang J L, et al.Direct visualization of straw cell walls by AFFM[J].Macromol Biosci,2004,4:112-118.
    [67]杨敏.高效木质素降解菌处理秸秆类农业废弃物的资源化研究[D].北京:中科科学院生态环境研究中心,2002.
    [68]Terashima N,Atalla R H,Vanderhart D L.Solid state NMR spectroscopy of specifically C13-enriched ligin in wheat straw from coniferin [J]. Phytochem, 1997,46:863-870
    [69]Tuomela M,Vikman M,Hatakka A,et al.Biodegradatiom of ligin in a compost environment:a review[J].Biores Technol,2000,72:169-183.
    [70]吴相淦.农村能源[M].北京:农业出版社,1988:2-12.
    [71]胡纪萃等.废水厌氧生物处理理论与技术[M].中国建筑工业出版社.2003:1-35.
    [72]陈广银,郑正,邹星星,等.互花米草厌氧消化产沼气的实验研究[J].中国环境科学,2009,29(8):861-866.
    [73]Komilis D P,Ham R K.The effect of lignin and sugars to the anaerobic decomposition of solid waste[J]. Waste Management,2003,23:419-423.
    [74]雷中方,陆雍森.木质素在厌氧生物处理过程中的转化[J].同济大学学报,1995,23(4):421-426.
    [75]Castrillon L. Anaerobic thermophilic treatment of cattle manure in UASB reactors[J].Waste Management&Research,2002,20:350-356.
    [76]Lier J B van. New perspectives in anaerobic digestion[J]. Water Science and Technology,2001,43(1):1-18.
    [77]The Probability and Statistic Group of Mathematics Speciality of Mathematics Meehanics Department in Beijing University. Orthogonal Design[M].Beijing:Peoples Education Publishing Company,1976.
    [78]Yadvika,Santosh,T R Sreekrishnan,et al.Enhancement of biogas production from solid substrates using different techniques-a review[J].Bioresource Technology,2004,95:1-10.
    [79]倪圣亚,藏宜萍,邓哗,等.秸秆沼气技术研究与应用展望[J].江苏农业科学,2010(3):458-459.
    [80]陈小华,朱洪光.农作物秸秆产沼气研究进展与展望[J].农业工程学报.2007,23(3):279-283.
    [81]Scheffer T C.Natural resistance of wood to microbial deterioration [J]. Annual review of Phytopathology,1966,4:147-170.
    [82]黎先发,贺新生.木质素的微生物降解[J].纤维素科学与技术,2004,12(2):41-46.
    [83]Wilson D.Manipulation of infection levels of horizontally transmitted fungal endophytes in the field[J].Mycol Res,1996,100:827-830.
    [84]Chakraborty Nilanjan,Sarkar G M,Lahiri S C.Biomethanation of plant materials and agricultural residues using dung samples as wild population of microbes and also with isolated methanogens[J].The Environmentalist,2002,22:173-182.
    [85]陈育如,夏黎明,吴绵斌.植物纤维素原料预处理技术的研究[J].化工进展,1999,4:24-26.
    [86]Engelhart M,Kruger,M,Kopp J,et al. Effects of disintegration on anaerobic degradation of sewage excess sludge in downflow stationary fixed film digesters[G]//Mata-Alvarez.Proceedings of the Second International Symposium on Anaerobic Digestion of Solid Wastes.Barcelona:Grafiques,1999:153-160.
    [87]Clarkson W W,Xiao W.Bench-scale anaerobic bioconversion of newsprint and office paper[J].Water Science & Technology,2000,41 (3):93-100.
    [88]Xiao B,Sun X F,Sun R C.Chemica,l structural and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems,rye straw, and rice straw[J]. PolymerDegradation and Stability,2001,74(2):307-319.
    [89]Hendriks A TW M,Zeeman G.Pretreatments to enhance the digestibility of lignocellulosic biomass[J].Bioresource Technology,2009,100(1):10-18.
    [90]孙辰,刘荣厚,覃国栋.芦笋秸秆预处理与厌氧发酵制取沼气实验[J].农业机械学报,2010,41(8),94-99,120
    [91]Pavlostathis S G,Gossett J M. Alkaline treatment of wheat straw for increasing anaerobic biodegradability [J]. Biotechnol Bioeng,1985,27(3):334-344.
    [92]杨懂艳,李秀金,高志坚,等.化学与生物预处理对玉米秸生物气产量影响的初步比较研究[J].农业工程学报,2003,19(5):209-213.
    [93]武少菁.玉米秸秆干发酵产沼气工艺试验研究[D].河南农业大学,2009.
    [94]岳正波.水生植物的瘤胃微生物转化[D].安徽:中国科学技术大学,2008.
    [95]乐毅全,王士芬.环境微生物学[M].北京:化学工业出版社,2005:186-187.
    [96]王德良,周小慧.基础微生物学实验教程[M].北京:中国科学技术出版社.2006:177-180.
    [97]Van Soest P J.Use of detergents in the analysis of fibrous feeds.I.Preparation of fiber residues of lownitrogen content[J].J Assoc Off AnalChem,1963,46:825-829.
    [98]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004:314-315.
    [99]郑士福,周帆.半纤维素和纤维素的厌氧消化[J].环境科学与技术,1989,1,19-22.
    [100]李瑞君,陈砺,严宗诚,等.水葫芦厌氧发酵试验及其产气模型研究[J].中国农学通报,2010,26(24):421-425.
    [101]Christ O,Wilderer P A,Angerhofer R,et al.Mathematical modeling of the hydrolysis of anaerobic processes[J].Water Science and Technology,2000,41(3): 61-65.
    [102]王国立,陈金朴,等.天津东郊污水处理厂污泥厌氧消化理论产沼气量的研究[C].排水委员会第四届第一次年会,2001.
    [103]Somayaji D,Khanna S. Biomethanation of rice and wheat straw[J].Appl Microbiol Biotechnol 1994,10(5):521-523.
    [104]白娜.种植业有机废弃物厌氧发酵产气特性及动态工艺学研究[D].成都:中国农业科学院沼气科学研究所,2011.
    [105]Vieitez E R, Ghosh S. Biogasification of solid waste by two-phase anaerobic fermentation[J]. Biogas and Bioenergy,1999,16(5):299-309.
    [106]Chae K J,Jang A,Yim S K,et al.The effect of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manaure[J]. Bioresour Technol,2008,99:1-6.
    [107]Buswell A M,Muller H F.Mechanics of methane fermentation[J] Journal of Industrial Engineering Chemistry,1952,44(3):550-559.
    [108]Lestuer M,Latrille E,Maurel V B,etal.2010.First step towards a fast analytical method for determination of biochemical methane potential of solid wastes by near infrared spectroscopy[J].Bioresource Technology.2010,10:44,1016.
    [109]李志文,陶文亮,李龙江.有机废弃物厌氧消化产沼气技术研究进展[J].贵州化工,2009,25(5):18-21.
    [110]李志文,陶文亮,李龙江.稻草秸秆厌氧干发酵产沼气的工艺参数优化[J].广州化工,2010,38(4):93-95,117.
    [111]Davidsson A,Gruvberger C,Christensen T H,et al.Methane yield in source-sorted organic fraction of municipal solid waste [J]. Waste Management, 2007,27(3):406-41.
    [112]Kayhanian M.Biodegradability of the organic fraction of municipal solid waste in a high solids anaerobic digester[J].Waste Management and Research,1995, 13(2):123-136.
    [113]Hansen T L,Sehmidt J E,Angelidaki I, et al.Method for determination of methane potentials of solid organic waste[J]. Waste Management,2004, 24(4):393-400.
    [114]Angelidaki I, Alves M, Bolzonella D,et al.Defining the biomethane potential(BMP) of solid organic wastes and energy crops:a proposed protcol for batch assays[J].Water Science&Technology-WST,2009,59:5.
    [115]Bjorndal K A,Moore J E.Prediction of fermentability of biomass feedstocks from chemical characteristics[M]. New York:Plenum Press,1985:447-454.
    [116]Gunaseelan V N. Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol,2007,98:1 270-1 277.
    [117]Han Y W, Lee J S, Anderson A W.Chemical composition and digestibility of ryegrass straw[J].Agric Food Chem,1975,23:928-931.
    [118]Tong X, Smith L H, Mc Carty,et al.Methane fermentation of selected lignocellulosic materials[J]. Biomass,1990,21:239-255.
    [119]Bruun S, Stenberg B, Breland TA,et al. Empirical predictions of C and N mineralization patterns from near infrared spectroscopy,stepwise chemical digestion or C/N ratios[J]. Soil Biology and Biochemistry,2005,37:2283-2296.
    [120]Michel K, Ludwig B. Prediction of model pools for a long-term experiment using near-infrared spectroscopy[J].Journal of Plant Nutrition and Soil Science,2010,173:55-60.
    [121]Chandler J A,Jewell W J,Gossett J M,et al.Predicting methane fermentation biodegradability[M].New York:Biotechnology and Bioengineering Symposium No. 10,1980.
    [122]Schievano A, Pognani M, D Imporzano G,et al.Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters[J].Bioresource Technology,2008,99:8 112-8 117.
    [123]马晓建,赵银峰,祝春进,等.以纤维素类物质为原料发酵生产燃料乙醇的研究进展[J].食品与发酵工业,2004,30(11):77-81.
    [124]孙云章,毛胜勇,姚文,等.瘤胃厌氧真菌和细菌对木质素含量不同底物的发酵特性[J].福建农林大学学报(自然科学版),2007,36(4):392-395.
    [125]余红芳,杜丽丽,刘晓秋.香蒲的综合利用[J].中国现代中药,2007,31-34,38.
    [126]Nilratisakorn S.Synthetic Reactive Dye Wastewater Treatment by Narrow-Leaved Cattails (Typha Angustifolia Linn.):Effects of Dye, Salinity and Metals Science of the Total Environment[J].Science of the Total Environment, 2007,38(4):67-76.
    [127]阳承胜,蓝崇饪,束文圣.宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究[J].深圳大学学报(理工版),2000,17(2-3):51-57.
    [128]阳承胜.宽叶香蒲人工湿地生态恢复研究[D].广州:中山大学生命科学学院,1999.
    []29]史倩茜.香蒲活性炭的制备及其在染料吸附方面的应用[D].济南:山东大学环境学院,2010.
    [130]孙焕顷,范玉贞.香蒲对水体的净化效应[J].安徽农业科学,2007,35(21):6552,6576.
    [131]刘荣厚,工远远,孙辰,等.蔬菜废弃物厌氧发酵制取沼气的试验研究[J].农业工程学报,2008,24(4):209-213.
    [132]Bernal M P,Navarro A F,Sanchez-Monedero M A,et al. Infuence of sewage sludge compost stability and Maturity on carbon and nitrogen mineralization in soil[J].Soil Biol.Biochem,1998,30(3):305-313.
    [133]刘坚.木薯渣厌氧发酵制取沼气的研究[D].广州:华南理工大学生物科学与工程学院,2010.
    [134]李杰,李文哲,许洪伟,等.牛粪湿发厌氧消化规律及载体影响的研究[J].农业工程学报,2007,23(3):186-191.
    [135]陈广银,郑正,邹星星.水葫芦能源化利用研究进展[J].江苏农业科学,2008(3):5-8.
    [136]李世密,魏雅洁,张晓健,等.秸秆类木质纤维素原料厌氧发酵产沼气研究[J].可再生能源,2008,26(1):50-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700