用户名: 密码: 验证码:
木霉菌REMI突变株构建及其功能挖掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木霉菌是传统的植物病害生物防治真菌,然而随着生态农业的快速发展,木霉菌的单一功能很难满足农业清洁生产多方面的需求,因此筛选出具有更多生态功能的木霉菌具有重要意义。除了防病功能外,本研究针对目前生态农业中对农作物秸秆处理、土壤磷化合物的降解、杂草的抑制等需求,通过限制性内切酶介导的基因整合技术(restriction enzyme mediated DNA integration,REMI)对野生型木霉菌进行分子改良,以求获得多功能木霉菌资源,为进一步创制新型木霉菌剂奠定基础。
     两株木霉菌T.atroviride T23和T.koningii CICC 40144经过REMI转化,共得到201株突变株,并继代培养、PCR检测和Southern杂交,证明外源质粒pV_2已经成功整合到出发菌基因组中,且单拷贝率达64.3%,形成了优化的木霉菌分子改良技术体系,为今后克隆功能基因奠定了重要基础。对不同条件下REMI突变株菌丝生长及产孢的情况进行了研究,发现这些突变株在pH2-10范围内均可生长,pH在4-6时,菌丝生长最快;30℃时菌丝的产量最高;液体培养基中以蔗糖和果糖为碳源,以酵母膏、蛋白胨为氮源时突变株的菌丝生长最好,菌丝干重最大。总体上看,经过转化之后获得的突变株在利用碳源、氮源方面比出发菌T23有了明显的提高。对不同条件下突变株孢子萌发的情况进行了研究,发现在15℃-40℃时突变株孢子均可萌发,但最适温度为25℃-35℃;培养28h各突变株孢子萌发率均达到100%;孢子萌发pH值范围为2-8,在pH10时几乎不萌发;光照可以促使孢子萌发,湿度越大,孢子萌发率越高。当湿度为100%时,突变株TE7的孢子萌发率最高,几乎达到100%。
     用聚丙烯酰胺凝胶电泳技术对木霉菌T23及其4株突变株的可溶性蛋白和酯酶进行了比较。研究发现各突变株之间,突变株与出发菌之间可溶性蛋白和酯酶的谱带均有差异。4株突变株在不同程度上均存在着蛋白条带的丢失现象,其中突变株TE7丢失了5条蛋白带;酯酶同工酶之间的差异更为明显,且谱带数量也明显少于可溶性蛋白谱带。这些结果说明外源质粒DNA插入木霉菌染色体之后导致基因组结构发生改变,从而引起了由基因组控制的蛋白的改变,此研究为今后进一步定位和克隆基因奠定理论基础。
     为了对木霉菌株更多功能的挖掘,通过筛选获得了纤维素酶活明显高于出发菌的的突变株11株(TK-2R-3、TK-2R-9、TK-2R-11、TK-2R-14、T30-B3、T30-C7、T23-A2H等),且出发菌纤维素酶活越高,其突变株纤维素酶活提高幅度越小。最终获得了一株高产纤维素酶木霉突变株TK-2R-14,其CMC酶活达37.6IU/mL,比出发菌提高8.05%,FPA酶活达16.9 IU/mL,比出发菌提高19.01%。通过正交试验确定了突变株TK-2R-14固体发酵时最佳培养基组分为稻草粉:麦麸为9:1,料水比1:1,硫酸铵1%,Tween-20 0.1%;通过单因素优化试验,确定其最佳培养条件为:接种量5%-7.5%,培养温度30℃,培养时间96h,pH值自然,该突变株的FPA酶活和CMC酶活分别达6.097 IU/g、8.123 IU/g。
     从康氏木霉T30的REMI突变株中筛选到四株解磷能力较强的突变株TK-2、TK-38、TK-46、TK-47,以TK-46最显著,其解磷能力比出发菌提高41%,达363.79μg/mL。对突变株TK-46的解磷条件进行了研究,发现其在以麦芽糖为碳源、氯化铵或硫酸铵为氮源、pH7.0的条件下,解磷作用最好,且对CaHPO_4的溶解能力远大于AlPO_4,但不能溶解FePO_4。同时发现pH值下降并不一定引起解磷,但解磷可导致pH值下降。
     从木霉菌REMI突变株中,筛选出了8株有抑草活性突变株TA2,TB3,TB7,TE2,TE5,TH8,TJ6和TJ9,并对水稻生长安全。在对发酵液分离后进一步检测发现,无论是孢子液、孢子超声波破碎液还是去除孢子的发酵液对稗草根的抑制作用均优于苗;且对苗的抑制作用主要表现为完整的孢子,破碎的孢子对苗基本没有抑制作用,去除孢子的发酵液对苗的抑制作用也不明显。另外还发现,突变株TE2的抑草活性是由存在于发酵液中的某些次生代谢物产生的,与分生孢子无关;但突变株TH8的抑草活性刚好相反,其抑草活性由分生孢子产生,而与其代谢产物无关。最后筛选获得了一株抑草活性较强且功能较全面的目标菌株TB3。对筛选出来的抑草活性较高的木霉REMI突变株TB3的抑草素活性组分进行了分析,通过萃取及蛋白沉淀等方法分离出突变株发酵液的不同组分,然后进行抑草活性检测,结果发现该突变株TB3所产生的这种抑草活性物质即不是胶霉毒素,也不是二氢绿胶霉素,可能是一种蛋白质,该蛋白质用丙酮沉淀会失去其活性,但用硫酸铵沉淀活性保存完好,且适应于用高饱和度硫酸铵沉淀。该蛋白质究竟是一种什么样的蛋白,需进一步研究。
     为了阐明木霉突变株表型改变的本质,采用功能蛋白质组学的差异蛋白分析方法,比较了突变株TK-2R-1与出发菌T.koningii CICC 40144之间的蛋白质差异,在2-D电泳图谱中获得了8个蛋白表达量存在差异的蛋白点,经质谱分析,鉴定出了4个蛋白点,这些蛋白点均与木霉的生长代谢有关。利用质粒拯救技术研究了突变株TB3和TK-2R-1、TK-2R-14、TK-2R-15插入位点分子特性,得到了经REMI突变后限制性内切酶插入位点侧翼的序列,但是在Blast数据库中基本没有找到与之相对应的功能基因序列,故猜测其可能是一些未知的氨基酸序列,这些序列经ORF Finder查找,没有找到足以大到编码一种蛋白质的ORF,这些序列的作用还有待进一步研究。
Trichoderma spp.was the traditional bio-control fungi to plant diseases.The single-functional Trichoderma spp.cannot meet the needs of clean agriculture production.Therefore,it was very important that multifunctional Trichoderma strains were screened.For obtaining multifunctional Trichoderma strains and producing new agent of Trichoderma spp.,the wild strain of Trichoderma spp.was improved through restriction enzyme mediated DNA integration.We studied the effects of Trichoderma mutants on degradation of crop debris,degradation of soil phosphate-compound and inhibition of weeds besides the function of preventing plant disease.
     For building Trichoderma spp.resource and screening,REMI was used to construct mutants from T.atroviride strain T23 and T.koningii strain CICC 40144. Totally,201 mutants were obtained.Successive culture,PCR and Southern blot analysis were applied to determine that plasmid pV2 was integrated into Trichoderma spp.gene.Frequency of single copy transformation reached 64.3%,which favored further study such as plasmid rescue.The conditions of mycelium growth and spore germination of mutants of Trichoderma strain T23 has been studied.The mutants could grow in a wide range of pH value(from 2 to 10),but the optimal pH value for mycelium growth was from 4 to 6.The optimal temperature for mycelium growth was 30℃.Sucrose and fructose were the best carbon sources and yeast extracts and peptone were the best nitrogen sources.As a whole,mutants were better than Trichoderma strain T23 in the aspect of using carbon and nitrogen.The spores of mutants could germinate in a wide range of temperature(from 15℃to 40℃),but the optimal temperature for spore germination was from 25℃to 35℃.In incubating for 28 hours,the rate of spore germination reached 100%.The spore could germinate in a wide range of pH value(from 2 to 8),but didn't germinate when pH value was 10. Illumination accelerated spore germination.The spore germination need direct proportion to the RH(relative humidity).As in the air,conidia of TE7 could germinate complete when RH reached 100%.
     The soluble proteins and esterase isozyme of Trichoderma strain T23 and four mutants were analysed with polyacrylamide gel electrophoresis.The results showed there were differences among mutants and between wide strain and mutants.Some of the bands of protein was lost in four mutants.TE7 has lost five bands of protein.The difference between esterase isozyme was more obvious.The strips of esterase isozyme were less than protein.It confirmed the protein were changed when a plasmid insertion,which established the base of theory for allocation and the clone gene further.
     For excavating more functions of Trichoderma spp.,11 mutants were screened for improved cellulase activity as compared with their parent strain.Higher cellulase activity of parent strain had,less improvement of mutants.Moreover,one mutant, TK-2R-14,was found with the highest CMC(37.6 IU.mL-1) and FPA(16.9 IU.mL-1) activities among all screened mutants,which were increased by 8.05%and 19.07%, respectively.The optimal condition for solid fermentation of TK-2R-14 was carried out for higher cellulase production.The results based on orthogonal experiment showed that the optimal solid materials components were determined as follows: ratio of rice straw to bran 9:1,the ratio of solid materials to water 1:3 in conjunction with(NH_4)_2SO_4 1%and Tween-20 0.1%.Moreover the single fermentation factors were also crucial to the mutant for improving cellulase enzyme activity,inoculum volume 5%-7.5%,culture temperature 30℃.culture time 96 h and neutral pH value were best for fermentation.The FPA and carboxyl methyl cellulase activity of TK-2R-14 were 6.097 IU/g and 8.123 IU/g respectively under these optimal conditions.
     Four phosphate-degradading mutants were screened from T.koningii REMI mutants,named TK-2,TK-38,TK-46 and TK-47.TK-46 of them was the best because it's phosphate- degradading capacity was 363.79μg / mL,increased 41% compared with their parent isolates.Studied the optimal condition of TK-46 for phosphate-degradading,the results showed that the optimal carbon source was maltose,the optimal nitrogen source was ammonium chloride or ammonium sulfate, the optimal pH value was 7.0.The phosphate-degradading capacity to CaHPO_4 was far greater than to AIPO_4.But it didn't dissolve FePO_4.It was discovered that the decreasing pH value of culture mediums was not necessarily to the degradation of phosphate,but the degradation of phosphate could lead to pH value decrease.
     After screening for barnyardgrass-inhibition of REMI mutants of Trichoderma spp.,eight mutants were obtained.They are TA2,TB3,TB7,TE2,TE5,TH8,TJ6 and TJ9.Their culture filtrates(CFs) have bamyardgrass-inhibition activities,and are safe to rice.In Secondary experiments,the bioassays of the spore suspension,ultrasonic broken spore PBS suspension treatment and CFs without spores are conducting.Thus mutant TB3 was the best one.
     For analysing barnyardgrass-inhibition component of TB3,some extract experiments and protein precipitation were carried on.The result was that barnyardgrass-inhibition component from TB3 was neither gliotoxin nor viridiol,but protein.The protein could lose activity by acetone precipitation,but preserves activity by ammonium sulphate precipitation.Furthermore,ammonium sulphate of high saturation was applicable for the protein precipitation.We must study which kind of protein was the protein further.
     In purpose of expounding the phenotype change of Trichoderma mutants,protein profiles of T.koningii CICC 40144 and it's mutant TK-2R-1 were detected by 2-DE. Eight unique spots were found and four of them were identified their functions by MS-TOF-TOF which were connected with growth and metabolization of Trichoderma spp.Furthermore,the frank fragment of TB3 and TK-2R-1,TK-2R-14,TK-2R-15 genomics DNA and restriction integration site characterization by REMI was separated and analyzed by plasmid rescue.But the sequence of function gene had not been found in Blast database.Therefore they were unknown amino acid sequences possibly.Searching ORF in ORF Finder,enough big ORF of code protein wasn't found among these sequences.The effect of these sequences would been studying further.
引文
[1]徐同,仲静萍,孟征.第三届全国真菌地衣学术讨论会及论文摘要汇编.1990.57-61
    [2]孙裕光,沙莎,徐剑,等.纤维素酶菌株选育的研究进展[J].上海畜牧兽医通讯,2007(1):2-4
    [3]汪世华.纤维素酶高产菌株的诱变育种[J].福建农林大学学报(自然科学版),2005(9):34-36
    [4]曾宪贤.离子注入改良纤维分解细菌及其机理研究[J].新疆大学学报(自然科学版),2005(2):17-20
    [5]Papavizas G C,Lewis J A,Moity THA-E.Evaluation of New Biotypes of Trichoderma harzianum for Tolerance to Benomyl and Enhanced Biocontrol Capabilities[J].Phytopathology 1982,72(11):126-132
    [6]Papavizas G C,Lewis J A.Physiological and biocontrol characteristics of stable mutants of Trichoderm aviride resistant to MBC fungicides[J].Phytopathology,1983,73:407-441
    [7]Papavizas G C,Dunn M T,Lewis J A.Liquid fermentation technology for experimental production of biocontrol fungi[J].Phytopathology 1984,74(10):1171-1175
    [8]Ahmad JS,Baker R.Rhizosphere competence of Trichoderma harzianum[J].Phytopathology 1987,77(22):182-189
    [9]Ahmad JS,Baker R.Competitive saprophytic ability and cellulolytic activity of rhizosphere- competent mutants of Trichoderma harzianum[J].Phytopathology 1987,77(22):358-362
    [10]管 斌,孙艳玲,谢来苏,等.纤维素酶高产菌株的选育[J].中国酿造,2002,120(4):18-20
    [11]韩铭海,黄俊,余晓斌,等.中性纤维素酶高产菌株的诱变选育及产酶条件[J].无锡轻工大学学报,2004,23(3):85-88
    [12]Ferenczy L,Kevei F,Zsolt J.Fusion of fungal protoplasts[J].Nature,1974,248(5451):793-794
    [13]Toyama H,Yamaguchi K,Shinmyo A,et al.Protoplast Fusion of Trichoderma reesei,Using Immature Conidia[J].Appl.Environ.Microbiol.,1984,47:363-368
    [14]Harman G E,Hayes C K.The genetic nature and biocontrol ability of progeny from protoplast fusion in Trichoderma[A].Biotechnology in plant disease control [C].Wiley Liss Press,1993,237-255
    [15]邱雁临,曾 莹,胡赛阳,等.原生质体融合子代的筛选和鉴定[J].生物技术,2003,13(6):17-19
    [16]Sivan A,Stasz T E,Hemmat M,et al.Transformation of Trichoderma spp.with plasmid conferring hygromycin B resistance[J].Mycologia,1992,84(5):687-694
    [17]Haran S,Schikler H,Oppenhein A,et al.New components of the chitinolytic system of Trichoderma harzianum[J].Mycological research,1995,99(4):441-446
    [18]Thrane C,L(u|¨)beck M,Green H,et al.A tool for monitoring Trichoderma harzianum Ⅰ:Transformation with the GUS gene by protoplast technology[J].Phytopathology,1995,85:1428-1435
    [19]Green H,Jenson D F.A tool of monitoring Trichoderma harzianum(?):The use of GUS transformant for ecological studies in the rhizosphere[J].Phytopathol,1995,85:1436-1440
    [20]Lo C T,Nelson E B,et al.Biological control of turfgrass disease with a rhizosphere competent strain of Trichoderma harzianum[J].Plant Dis.,1996,80:736-741
    [21]Bae Y S,Knudsen G R.Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils[J].Applied and Environmental Microbiology,2000,66(2):810-815
    [22]Limon M C.Increased antifungal activity of Trichoderma harianumt ransformants that overexpress a 332kDa chitinase[J].Phytopathology,1998,89:254-261
    [23]李 梅,杨谦,李常银.多菌灵抗性基因转化哈茨木霉的研究[J].农业环境科学学报,2003,22(4):493-495
    [24]黄 卫,汪天虹,吴志红,等.丝状真菌遗传转化系统研究进展[J].微生物学杂志,2000,20(3):40-44
    [25]Wu Q,Sandrock TM,Turgeon BG,et al.A fungal kinesin required for organelle motility,hyphal growth,and morphogenesis[J].Mol Biol Cell,1998,9(1):89-101
    [26]Boeke J D,Corces V G.Transcription and reverse transcription of retro transposons[J].Annual Review of Microbiology,1989,43:403-434
    [27]Villalba F,Lebrun M H,Hua-Van A,et al.Yransposon impala,a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea[J].Plant-Microbe Interact.2001,14:308-315
    [28]Banta L M,Joerger R D,Howitz V R,et al.Glu-255 outside the predicted ChvE binding site in VirA is crucial for sugar enhancement of acetosyringone perception by Agrobacterium tumefaciens[J].J Bacteriol,1994,176(11):32-42
    [29]Biserka Reli(?),Mirjana Andjelkov(C),Luca Rossi,et al.Interction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens:Analysis by subcellular localization in mammalian cells[J].Proc.Natl.Acad.Sci.USA 1998,95(16):9105-9110
    [30]Michielse C B,Hooykaas P J,van den Hondel C A,et al.Agrobacterium-mediated transformation as tool for functional genomics in fungi[J].Current Genetics,2005,48(11):1-7
    [31]Bundock P,Hooykaas P J..Integration of Agrobacterium tumegaciens T-DNA in the Saccharomces cerevisiae genome by illegitimate recombination[J].Pro Natl Acad Sci USA,1996,93(3):15272-15275
    [32]De Meyer G,Bigirimana J,Elad Y,et al.Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinema[J].Eur J Plant P athol,1998,104(3):279-286
    [33]Zeilinger S.Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation[J].Current genetics 2004,45(11):54-60
    [34]高兴喜,杨谦,宋金柱,等.根癌农杆菌介导的木霉菌遗传转化方法[J].技术通讯,2004,14(5):32-35
    [35]高兴喜,杨谦,宋金柱,等.影响根癌农杆菌介导的木霉菌遗传转化因素分析[J].微生物学通报,2005,32(1):74-78
    [36]高兴喜,杨谦.根癌农杆菌介导的CryA(b)基因在哈茨木霉菌中的转化[J].科学通报,2004,49(21):2193-2197
    [37]黄玉杰,杨合同,陈凯,等.利用根癌农杆菌介导的转化方法改良木霉菌(英文)[J].山东科学,2005,18(3):30-35
    [38]Schiestl R H,Petes T D.Integration of DNA fragments by illegitimate recombination in Saccharornyces cerevisiae[J].Proc.Natl.Acad.Sci.USA,1991,88(17):7585-7589
    [39]Maier F J,Sch(a|¨)fer W.Mutagenesis via Insertional or Restriction Enzyme-Mediated Integration(REMI) as a Tool to Tag Pathogenicity Related Genes in Plant Pathogenic Fungi[J].Biological Chemistry,1999,380(7-8):855-864
    [40]B(o|¨)lker H U,Bohnert K H,Braun J.Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated intergration[J].Mol Gen Genet.,1995,248(3):547-552
    [41]Balhadere P V,Foster A J,Talbot N J.Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis[J].Mol Plant-Microbe Interact.1999,12(2):129-142
    [42]Linnemannstons P,Vob T,Hedden P et al.Deletions in the Gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme mediated integration and conventional transformation mediated mutagenesis[J].Applied and Environmental Microbiology.1999,65(6):2558-2564
    [43]Sweigard J A,Carroll A M,Farrall L et al.Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis[J].Mol Plant Microbe Interact.,1998,11(5):404-412
    [44]Tanaka A,Shiotani H,Yamamoto M et al.Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata[J].Mol Plant Microbe Interact.1999,12(8):691-702
    [45]Riggle P J,Kumamoto C A.Genetic analysis in fungi using restriction-enzyme -mediated integration[J].Currion Opionion in Microbiology,1998,1(4):395-399
    [46]张文荟,周益军,范永坚,等.稻瘟病菌限制性酶介导(REMI)转化的致病性诱变[J].南京师大学报(自然科学版),2002,2:17-21
    [47]Bomes G,Rine J.Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae:nuclear entry and biological consequences[J].Proc.Natl.Acad.Sci.USA.1985,82(5):1354-1358
    [48]Shi Z,Leung H.Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis[J]. Mol Plant Microbe Interact. 1995, 8(6): 949-959
    [49] Lu S, Lyngholm L, Yang G et al. Tagged mutations at Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration[J].Proc Natl Acad Sci USA. 1994, 91(26): 12649-12653
    [50] Bolker M, Bohnert H U, Braun K H et al., Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration(REMI) [J]. Mol Gen Genet. 1995,248(3): 547-552
    [51] Karos M. Fisher R. hymA (hypha-like metulae), a new developmental mutant of Aspergillus nidulans[J]. Microbiology. 1996,142: 3211-3218
    [52] Akamatsu H, Itoh Y, Kodama M et al. AAL-toxin-deficient mutants of Alternaria alternate tomato pathotype by restriction enzyme-mediated integration[J]. Phytopathology. 1997, 87: 967-972
    [53] Itoh Y, Scott B. Effect of de-phosphorylation of linearized pAN7-1 and of addition of restriction enzyme on plasmid integration in Penicillium paxilli[J]. Curr Genet. 1997,32:147-151
    [54] Brown J S, Aufauvre-Brown A, Holden D W. Insertional mutagenesis of Aspergillus fumigatus[J]. Mol Gen Genet. 1998,259: 327-335
    [55] Sanchez O, Navarro R E, Aguirre J. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration(REMI) [J].Mol Gen Genet. 1998,258: 89-94
    [56] Cummings W J, Celerin M, Crodian J et al. Insertional mutagenesis in Coprinus cinereus: use of a dom marker to generate tagged, sporulation-defective metants[J]. Curr Genet. 1999,36:371-382
    [57] Granado J D, Kertesz-Chalouphova K, Aebi M et al. Restriction enzyme-mediated DNA integration in Coprinus cinereu[J]s. Mol Gen Genet. 1997, 256: 28-36
    [58] Chang Y C,Baker R. Increased growth of plants in the presence of the biological control agent Trichoderma harzianum [J]. Plant Dis, 70: 145-148
    [59] Guerin A N, Larochelle A D.. A user's guide to restriction enzyme-mediated integration in Dictyostelium[J]. J. Muscle Res. Cell M. 2002,23: 597-604
    [60] van Dijk R, Faber K N, Hammond A T, et al. Tagging Hansenula polymorpha genes by random integration of linear DNA fragments (RALP) [J]. Mol. Genet Genomics. 2001., 266: 646-656
    [61]Kahmann R,Basse C.REMI(restriction enzyme mediated integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants[J].European Journal of Plant Pathology,1999,105:119-221
    [62]Shuster J R,Connelley M B.Promoter-rafted restriction enzyme-mediated insertion(PT-REMI) mutagenesis in Aspergillus niger[J].Mol Gen Genet,1999,262:27-34
    [63]杨长德,刘刚,郑易之,等.根癌农杆菌在丝状真菌转化中的应用[J].生物技术通报,2006,17(5):784-787
    [64]De-Groot M J A,Bundock P,Hooykass P J,et al.Agrobacterium- mediated transformation of filamentous fungi[J].Nature Biotechnol,1998,16:839-843
    [65]Mullins E D,Romaine P,Chen X,et al.Agrobacterium- mediated transformation of Fusarium oxyporum:A valuable tool for tagging pathogenicity genes[J].Phytopathology,2000,90,S54
    [66]Rho H S,K SC,Lee Y H.Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus,Magnaporthe grisea[J].Molecules and cells,2001,12(3):407-411
    [67]Rogers C W,Challen M P,Green J R,et al.Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus Coniothyrium minitans[J].FEMS Microbiology Letters,2004,241:207-214
    [68]Chung K R,Ehrenshaft M,Wetzel D K,et al.Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae[J].Molecular Genetics and Genomics,2003,270:103-113
    [69]刘限,陈捷,等.防治番茄灰霉病的木霉工程菌株的构建及特性分析[A].北京:中国植物病理学会2004年学术会议论文集[M],2004
    [70]Huang YQ,Zhou XY,Chen J.Insertion mutagenesis of Trichoderma atroviride by restriction enzyme-mediated DNA integration[J].Shanghai Jiaotong University (Science),2005,E-10:161-166
    [71]Xiaoying Zhou,Shufa Xu,Jie Chen,et al.Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI)[J].Bioresource Technology,2007,98,(15):2958-2962
    [72]周红资,李宝聚,刘开启.抗药性木霉菌研究进展[J].北方园艺,2003,(6):10-11
    [73]Brukner H,Reninecke C,Kripp T,et al.In:4th International Congress of Plant Pathology[C].Germany:Regensburg,1993.
    [74]Sonia N.H.,Alan Bruce,Eldridge Buultjens,et al.The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans[J].FEMS Microbiology Letters,2002,(210):215-219
    [75]Lusia Mannina,Anna L.S.A new fungal growth Inhibitor from Trichoderma viride[J].Tetrahedron,1997,53(9):3315-3144
    [76]Evidente A,Cabras A,Maddau L,et al.Viridepyronone,a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride[J].J Agric Food Chem,2003,51(24):6957-6960
    [77]周红姿,李宝聚,刘开启,等.绿色木霉对黄瓜灰霉病的防治作用北[J].北方园艺,2003,(5):64-65
    [78]Elisa Esposito,Manuela da Silva.Systemtics and environmentalapplication of the genus Trichoderma[J].Critrical Review in Microbiology,1998,24(2):89-98
    [79]Ricard,J.L.Commercialization of a Trichoderma-based myco-fungicide some problems and solutions[J].Biocontrol News and Information,1981,(2):95.
    [80]蒲金基,曾会才.绿色木霉LTR12-1对黄瓜枯萎病菌防治作用机制的初步研究[J].热带农业科学,2002,22(2):22-25
    [81]袁虹霞,李洪连,王振跃,等.利用土壤拮抗性微生物防治棉花枯萎病[J].中国生物防治,1998,14(4):156-158
    [82]Tucker E.J.B,Bruce A,Staines H.J.Application of Modified International Wood Preservative Chemical Testing Standards for Assesment of Biocontrol Treatments[J].International Biodeterioration & Biodegradation,1997,39(2-3):189-197
    [83]Heather L.Brown,Alan Bruce,Harry J.S.Assesment of the biocontrol potential of a Trichoderma viride isolate Part Ⅱ:Protection against soft rot and basidiomycete decay[J].International Biodeterioration & Biodegradation,1999,(44):225-231
    [84]王芊.绿色木霉在生物防治上的应用及拮抗机制[J].黑龙江农业科学,2001,(1):41-43
    [85]Chang Y C,Baker R.1986.Increased growth of plants in the presence of the biological control agent Trichoderma harzianum[J].Plant Dis.,70:145-148
    [86]Kleifeld O, Chet I. Trichoderma harzianum interaction with plants and effect on growth response[J]. Plant Soil, 1992,144: 267-272
    [87]Yedidia I, Benhamou N, Kapulnik Y, et al. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T - 203 [J]. Plant Physiol Biochem, 2000, 38:863-873
    [88] Wright J M. Biological control of a soil-borne Pythium infection by seed inoculation [J]. Plant Soil, 1956, 8: 132-140
    [89] Lumde R D , Wal Ter J F. Development of Gliocladium virens for damping off disease control [J] .Can. J . Plant Pathol. ,1996 ,18: 463 - 468
    [90] Haragychi H , Hamtani Y, Hamada M ,et al.. Effect of gliotoxin on growth and branched-chainamino acid biosynthesis in plant [J] . Phytochemistry , 1996 ,42 : 645 - 648
    [91] Van Der Pyl D, Inokoshi J , Shiomi K Yangh ,et al. Inhibition of farnesyl- protein yransferase by gliotoxin and acetylgliotoxin [J]. Antibiot, 1992,45:1802 -1805
    [92] De Clercq E, Billiau A, Ottenheijm H C J, et al. Antireverse teansciptase activity of gliotoxin analogs[J]. Biochem. Pharmacol, 1978,27: 635-639
    [93] Jone R W, Lanini W T, Hancock J G. Plantgrowth response to the phytotox in viridiol produced the fungus Gliocladium virens [J] . Weed Sci., 1988, 36: 683- 687
    [94] Cul Ter H G, Cox R H, Cruml E Y, et al. 6-Pent- yll- α - pyrone from Trichoderma harzianum: its plant growth inhibitory and antimicrobial properties[J]. Agric. Biol. Chem., 1986, 50: 2943-2945
    [95] Cul Ter H G, Jacyno J M. Biological activity of ( - - ) - harziano - pyridone isolated from Trichoderma harzianum [J] . Agric. Biol. Chem.,1991, 50: 2943-2945
    [96] Cul Ter H G, Himmelsbach D S , Yagen B, et al. Koninginin A: a nover plant growth regulator from Trichoderma koningii [J] . Agric. Biol. Chem., 1989, 53:2605-2611
    [97] Howell C R, Stipanovic R D. Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens [J]. Phytopathology, 1984,74: 1346-1349
    [98] Lunsden R D, Ridout C J . Regulation of the production of the metabolites gliotoxin and viridin by the biological fungus,Gliocladium virens[J].Phytopathology,1991,81:703
    [99]刘惠君,刘维屏.农药污染土壤的生物修复技术[J].环境污染治理技术与设备,2001,2(2):74-80
    [100]Smith W H.Forest occurrence of Trichoderma species:emphasis on potential organochlorine(Xenobiotic) degradation[J].Ecotoxicol Environ Saf,1995,32(2):179-183
    [101]Marina formina,Karl Ritz,Geoffrey M.G.Negative fungal chemotropism to toxic metal[J].FEMSMicrobiology Letters,2000,(193):207-211
    [102]Geoffrey M G,Lynn Ramsay,John W C,et al.Nutritional influence on fungal colony growth and biomass distribution in response to toxic metal[J].FEMS Microbiology Letters,2001,204:311-316
    [103]仪美芹.降解甲基对硫磷真菌的分离及降解特性[J].农药学学报,2000,4:40-43
    [104]刘新.霉Y对毒死蜱和甲胺磷的降解作用[J].福建农林大学学报(自然科学版),2002,31(4):454-458
    [105]付文祥.有机磷农药降解菌木霉FM10的生长条件研究[J].生物磁学,2005,5(3):29-31
    [106]李树文,孟文芳,巩学敏等.污染环境生物修复技术的应用前景[J].河北建筑科技学院学报,2005,22(2):7-9
    [107]Hong Wanga,Adhityan Appanb,John S Gulliver.Modeling of phosphorus dynamics in aquatic sediments:Ⅱ-examination of model performance[J].Water Research,2003,37:3939-3953
    [108]金术超,杜春梅,平文祥,等.解磷微生物的研究进展[J].微生物学杂志,2006,26(2):73-78
    [109]李淑高.解磷微生物的研究[J].土壤通报,1981,(5):33-37
    [110]许广辉.土壤微生物分析方法手册[M],北京:农业出版社,1988
    [111]尹瑞龄.自生固氮菌的解磷作用[J].土壤,1990,22(5):251-253
    [112]林启美,王华,赵小蓉.一些细菌和真菌的解磷能力及其机理初探[J].微生物学报,2001,28(2):26-29
    [113]CHENG Guo-Chao,HE Zhen - Li and WANG Yi - J un.Impact of pH on Microbial Biomass Carbon and Microbial Biomass Phosphorus in Red Soils[J]. Pedosphere,2004,14(2):171-176
    [114]Asea P E A,Kucey R M,Sterart J W B.Inorganic phosphate-solubilization by two penicillium species in solution culture and soil[J].Soil Biol Biochem,1988,20(4):459-464
    [115]P.Illmer,F.Schinner,Solubilization of inorganic calcium phosphates solubilization mechanisms[J].Soil Biol.Biochem.,1995,27(3):257-263
    [116]孙彩霞,陈利军,武志杰.Bt杀虫晶体蛋白的土壤残留及其对土壤磷酸酶活性的影响[J].土壤学报,21004,41(5):763-765
    [117]Greaves M P.The hydrolysis of phosphates by Aerobacteracrogenes[J].Biochimica Biophysica ACTA,1967,132:412-418.
    [118]杨青华,韩锦峰.棉田不同覆盖方式对土壤微生物和酶活性的影响[J].土壤学报,2005,42(2):348-350
    [119]Goldstein A H,Liu S T.Molecular cloning and regulation of amineral phosphat solubilizing(MPS) gene from Erwinia Herbicola[A].In:Torriani2Gorini A et al (eds.).Phosphate inmicroorganisms:cellular and molecular biology[C].ASM Press.Washington.D.C.,1994,197-203
    [120]Liu ST,Lee L Y,Tai CY,et al.Cloning of an Erwinia berbicola necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coil IIB 101:nucleotide sequence and propable involvement in biosynthesis ofthe coenzyme pyrroloquinoline quinone[J].J.Bacterial,1992,174:5814 - 5819
    [121]Goldstein A H,Rogers R D,Mead G.Separating phosphate from ores via bioprocessing[J].BioTechnology,1993,11:1250-1254
    [122]Kim K Y,McDonald G A,Joudan D.Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escgeruchia coli in culture medium[J].Biol.Fertil.Soils,1997,27:1-6
    [123]Torriani A,Ludtka D.The pho reguion ofE.coli K12[A].In:Schacchtes et al (eds.).The Molecular biology of bacterial growth[C].Jones and Bariett,1985,224 - 242
    [124]Wanner B L.Overlapping and separate controls on the phosphate regulon in E.coli K12[J].J.Mol.Biol.,1983,166:283-308
    [125]Anderson G.Assessing organic phosphorus in soils[A].In:Khssawnch EE et al (eds.).The role of phosphorus in agriculture[C].Am.Soci.of Agro.,1980, 411-431
    [126]FENG Ke,LU Hai-Miing,SHENG Hai-Jun,et al.Effect of Organic Ligands on Biological Availability of Inorganic Phosphorus in Soils[J].Pedosphere,2004,14(1):85-92
    [127]Wanner B L,McSharry R.Phosphate controlled gene expression in E.coli K12usiing Mudl-directed LacZ Fusions[J].J.Mol.Biol.,1982,158:347-363
    [128]陆文静,何振立,许建平.石灰性土壤难溶态磷的微生物转化和利用[J].植物营养与肥料学报,1999,5(4):377-383
    [129]Altomare,C.W.A.Norvell et al.Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus Trichoderma harzianum Rifai 1295-22[J].Applied and environmental microbiology 1999,65(7):2926-2933
    [130]赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J].微生物学杂志,2003,23(3):5-7
    [131]王光华,赵英,杨谦.解磷菌的研究现状与展望[J].生态环境,2003,12(1):99-100
    [132]Ghami A Gha S.Rajan A.Lee.Enhancement of phosphate rock solubility through biological processes[J].Soil Biol.Biochem,1994,26:127-136
    [133]Hakan Wallander.Uptake of P from apatite by Pinuc sylvestris seedlings colonized by different ectomycorrhizal fungi[J].Plant and Soil.,2000,218:249-256
    [134]Gulden R H,Vessey J K.Penicillium bilaii inoculation increases root-hair production in field pea[J].Canadian Journanl of Plant science,2000,80(4):801-804
    [135]Vessey J K,Heisinger K G.Effect of Penicillium bilaii inoculation and phosphorus fertilization on root and shoot parameters of field-growth pea[J].Canadian Journanl of Plant science,2001,81(3):361-366
    [136]Chabot R,Antoun H,Cescas M P.Stimulation de la croissance dumaise et de la laitue romaine par desmicroorganismes dissolvant le phosphore inorganique[J].Can J Microbiol,1993,39:941-947
    [137]Rodríguez H,Goire I,Rodríguez M.Caracterización de cepas de Pseudomonas solubilizadoras de fósforo[J].Rev ICIDCA,1996,30:47-54
    [138]唐勇,陆玲,杨启银.解磷微生物及其应用的研究进展[J].天津农业科学, 2001,7(2):1-4
    [139]尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246
    [140]刘丽丽.PK菌肥的菌种筛选及其应用研究[J].南开大学学报,1994,27(3):82-86
    [141]郜春花,王岗,董云中.解磷菌剂盆栽及大田施用效果[J].山西农业科学,2003,31(3):40-43
    [142]鲁如坤.我国的磷矿资源和磷肥生产消费Ⅰ磷矿资源和磷肥生产[J].土壤,2004,36(1):1-4
    [143]曾家豫,冯克宽.纤维素酶制备工艺的研究[J].甘肃农业科技,2000,(4):46-47
    [144]张继泉,王瑞明.里氏木霉生产纤维素酶的研究进展[J].饲料工业,2003,24(1):9-13
    [145]余晓斌,具润谟.分批与流加发酵法生产纤维素酶的研究[J].食品与发酵工业,1999,25(1):16-19
    [146]肖永澜译.纤维素酶工程的近期进展[J].应用微生物,1977,(1):1-6
    [147]张芩花,王运吉.固态混合发酵生产纤维素酶的研究.中国饲料,1998,2:14-17
    [148]张中良,兰云贤.不同培养条件对纤维素酶产量和酶活力影响[J].中国饲料,1998,18:10-11
    [149]邬敏辰,李江华.里氏木霉固体发酵生产纤维素酶的研究[J].江苏食品与发酵,1998,2:2-6
    [150]胡智猛.木霉纤维素酶产生条件的研究.西昌农业科技,1998,2:10-12
    [151]王沁,赵学慧.纤维素酶水解稻草生产单细胞蛋白(SCP):Ⅱ稻草酶解液生产SCP的研究.微生物学杂志,1993,13(2):8-12
    [152]王瑞红,侯靖宇.纤维素酶在金银花提取工艺中的应用[J].黑龙江医药,2003,16(4):286-287
    [153]奚奇辉,李士敏.纤维素酶在竹叶总黄酮提取中的应用[J].中草药,2004,35(2):166-167
    [154]Monreal J,Reese ET.Thechitinase of Serratia marcescens[J].CanJMicrobiol,1969,(15):689-696
    [155]Omumasaba C A,Yoshida N,Ogawa K.Purification and characterization of a chitinase from Trichoderma viride[J].J Gen Appl Microbiol,2001,47(2):53-61
    [156]Vyas P.D.V M.Enzymatic hydrolysis of chitin by Microthecium verraaria chitinase complex and utilization to produce SCP[J].J Gen Appl Microbiol,1991,(37):267-275
    [157]Cody R M.Screening microorganisms for chitin hydrolysis and production of ethanol from aminosugar[J].Biomass,1990,21(4):285-295
    [158]Sunna A,Antrnikikian G.,Xylanolytic enzymes from fungi and bacteria[J].Biotechnology,1997,17(1):39-67
    [159]Wong K K Y,Saddler J.N.Trichoderma xylanses,their properties and application[J].Biotechnology,1992,12(5/6):413-435
    [160]吴克,刘斌,张洁,等.绿色木霉木聚糖酶的纯化和性质[J].生物学杂志,2001,18(6):16-17
    [161]Mitsuro Ishihara,Masanobu Nojiri,Noriko Hayashi,et al.Screening of gungal β-xylanases for production of acidic xylooligosaccharides using in suit reduced 4-o-methylglucuronoxylan as sustrate[J].Enzyme and microbial Technology,1997,(21):170-175
    [162]Jean-Paul Vincken,Alexandra J M W,et al.Potato xylogcanis buil from XXGG-type subunits[J].Carbohyrate Research,1996,(288):219-232
    [163]白爱枝,梁运章,李市场,等.离子注入选育高产木聚糖酶黑曲霉及其发酵条件研究[J].中国饲料,2004,(14):5-7
    [164]Mongkol Sukwattanasinitt,Hong Zhu,Hitoshi Sashiwa,et al.Utilization of commercial non-chitinase enzymes from fungi for preparation of 2-acetamido-2-deoxy-D-glucose from β-chitin[J].Carbohydrae Research,2002,(337):133-137
    [165]Kulminskaya AA,Thomsen KK,Shabalin KA,et al.Isolation,enzymatic properties,and mode of action of an exo-1,3-beta-glucanase from Trichoderma viride[J].Eur J Biochem,2001,268(23):6123-6131
    [166]willianm H S.Forest occurrence of Trichoderma species:Emphasis on Porential Oganochlorine(Xenobiotic) Degradation[J].Ecotoxicology and environmental,1995,(32):179-183
    [167]Paul Bayman,Gauri V.R.Transformation and Tolerance of TNT (2,4,6-trinitrotoluene) by Fungi[J].Internatonal Biodeterioraton & Biodegradation,1997,39(1):45-53
    [168]王政逸,李德葆.限制酶介导的插入突变及其在丝状真菌中的应用[J].菌物系统,2001,20(1):142-147
    [169]莫明和,徐进,张克勤.REMI及其相关技术在丝状真菌基因克隆中的应用[J].生物技术,2004,14(1):51-54
    [170]刘士旺,王政逸,郭泽建.绿色木霉的原生质体制备与转化条件[J].农业生物技术报,2004,12(1):96-101
    [171]伏建国,强胜,朱云.链格孢菌原生质体的制备与限制性内切酶介导整合(REMI)转化的致病性诱变[J].菌物学报,2005,24(3):407-413
    [172]王刚.稻瘟菌插入突变体库的构建及产孢缺陷兼生长缓慢型突变体的分子遗传学研究[D].西北农林科技大学,2002
    [173]Kim Sunkyung,Jaemahn Song,Hyoung T.Choi.Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration[J].FEMS Microbiology Letters,2004,233(2):201-204
    [174]Irie T,Honda Y,Hirano T.Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals[J].Applied Microbiology and Biotechnology,2001,56:707-709
    [175]Nelson E B,Harman G E,Nash G T.Enhancement of Trichoderma -induced biological control of Pythium seed rot and pre-emergence damping-off of peas[J].Soil Biology and Biochemistry,1988,20(2):145-150
    [176]Tronsmo A.Trichoderma harzianum in biological control of fungal diseases.Principles and Practice of Managing Soilborne Plant Pathogens.1996,22(2):213-236
    [177]张汉波,沙涛,程立忠,等.出芽短梗霉原生质体再生变异菌株的同工酶及可溶性蛋白的研究[J].生物技术,2000,10(4):17-19
    [178]李新凤,刘慧平,程麦芳,等.核盘菌不同水平抗药性菌株可溶性蛋白和酯酶的电泳图谱比较研究[J].山西农业大学学报,2003,23(2):106-108
    [179]刘伟成,吕国忠,周永力,等.球壳孢目真菌同工酶电泳研究-Ⅰ分类学意义的评价[J].沈阳农业大学学报,2001,32(2):102-106
    [180]肖舸,雷芳,喻东,等.一株产纤维素酶绿色木霉的筛选及发酵条件优化[J].四川大学学报(自然科学版),2004,41(2):422-425
    [181]Ghose T K.Measurement of cellulase activities[J].Pure Appl.Chem.,1987,59: 257-268
    [182]Guerin N A,Larochelle D A.A user's guide to restriction enzyme-mediated integration in Dictyostelium[J].Journal of Muscle Research and Cell Motility,2002,23(7-8):597-604
    [183]Rudresh,D L,Shivaprakash,M K,Prasad,R D.Tricalcium phosphate solubilizing abilities of Trichoderma spp.in relation to P uptake and growth and yield parameters of chickpea(Cicer arietinum L.)[J].Canadian Journal of Microbiology,2005,51(3):217-222
    [184]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,166-185
    [185]Wang Guanghua,Zhou Derui,Yang Qian,et al.Effect of lanthanum on solubilization of rock phosphate in liquid culture by Aspergillus Niger and Penicillium Oxalicum[J].Journal of Rare Earths,2004,22/S1(12):177-180
    [186]陆文龙,王敬国,曹一平,等.低分子量有机酸对土壤磷释放动力学的影响[J].土壤学报,1998,35(4):493-500
    [187]刘志海,朱全让.鲁保一号菌[M].济南:山东科技出版社.1987.
    [188]Kenney D S.Devine-the way it was develop-an industrialist's view[J].Weed Sci.,1986,(34):15-16
    [189]Sudisha J et al.Transmission of seed-borne infection of muskmelon by Didymella bryoniae and effect of seed treatments on disease incidence and fruit yield[J].Biological Control,2006,37:196-205
    [190]Chad M Hutchinson.Trichoderma virens-Inoculated Composed Chicken Manure for Biological Weed Control[J].Biological Control,1999,16:217-222.
    [191]Farah M G,Héraux et al.Combining Trichoderma virens-inoculated compost and a rye cover crop for weed control in transplanted vegetables[J].Biological Control.2005,34:21-26
    [192]Bilgtami K S.Widespread occurrence of toxigenic Alternaria in cereals and oilseeds[J].Indian Phytopathol,1995,48(2):150-153
    [193]Richard W Jones,Joseph G Hancock.Conversion of viridin to viridiol by viridin-producing fungi[J].Can.J.Microbiol.1987,33:963-966
    [194]Richard W Jones,W Thomas Lanini,Joseph G Hancock.Plant growth response to the phytotoxin viridiol produced by the fungus Gliocladium virens [J].1988,Weed Sci.36:683-687
    [195]Maria Michail,Maria Vasiliadou et al.2006.Partial purification and comparison of precipitation techniques of proteolytic enzymes from trout(Salmo gairdnerii)heads[J].Food Chemistry,97:50-55
    [196]Robert A.Methods for protein analysis[J].New York London,1993,33-35
    [197]陈巨莲,Ge2zhi WENG2,倪汉祥.G蛋白及其偶联信号传导途径的研究进展[J].生物工程学报,2001,17(2):113-117
    [198]van Biesen T M,Luttrell L M,Hawes B E et al.Mitogenic signaling via G protein-coupled receptors[J].Endocr Rev,1996,17:698-714
    [199]Post G R,Brown J H.G protein2coupled receptors and signaling pathways regulating growth responses[J].FAS EB J,1996,10:741-749
    [200]Lachaise F,Somme G,Carpenter G,et al.A transaldolase:An enzyme implicated in crab strroidogenesis[J].J Endocrine,1996,15(1):1-9
    [201]Katalin B,Eliza H,Nich JG,et al.Elevation of mitochondriol transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in fas signaling[J].J Immunol,1999,162:1466-1479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700