用户名: 密码: 验证码:
深水油气钻探井筒多相流动与井控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深水油气钻探过程中的井控工艺技术是深水油气钻探的核心技术之一。井筒多相流动规律是井控理论重要组成部分。由于深水井筒温度场复杂,易形成天然气水合物,使得目前的多相流动模型无法满足工程计算的要求。研究深水油气钻探井筒中的多相流动问题很有必要,对深海油气钻探开发技术具有重要的意义。
     本文通过对海水温度数据回归分析,得到了中国南海海水温度场随深度的分布规律。在传热学、热力学基本理论的基础上,通过理论推导,得到了井筒温度场在循环及停止循环条件下的温度场理论公式。计算结果表明,循环钻进期间,为了使隔水管内的温度不能太低,应保证隔水管的保温层完好,并尽量增大循环排量。停止循环时,随着关井时间的增加,井筒内流体温度逐渐接近外界环境温度。
     通过实验与数据分析,得到了水合物分解时在不同温度及压力条件下的气体生成量随时间的变化,得到了水合物分解速度模型。
     考虑油气和水合物相变、岩屑以及地层产出等参数的影响,针对井筒、隔水管及节流管线,建立了正常钻进、井涌、关井、压井条件下的多相流动控制方程组,方程组主要由各相连续性方程、动量方程以及能量方程组成。并用数值方法对方程组进行了求解。考虑粗糙度的影响,通过实验,修正了环空气液两相流在泡状流和段塞流流型条件下的摩阻系数及其摩擦压降计算公式,给出了不同流型条件下,井筒、隔水管及节流管线的沿程流动阻力计算方法。对建立的方程组进行求解,能够对深水钻井时从发生井涌到压井完成进行全过程模拟,可以得到井控过程的如下参数:环空井筒及节流管线内任意一点任意时刻的温度、压力、各相体积分数分布、流动速度,从井涌开始的地层流体产量,从井涌直到压井结束过程中的立压、套压值,压耗等。
     编制了深水井控软件,软件综合考虑了深水井控的特征,突出深水特点,建立了适合深水井涌及压井的流动控制方程和计算模块,设计模块包括:井涌模拟、压井模拟、水合物生成预测、水合物生成区域预测等。
     利用所编制的深水井控软件对模拟深水井进行计算,分析了井筒气相体积分数及井控参数随溢流时间的变化规律,讨论了地层渗透率、地层与井底初始压差、节流管线尺寸、水深以及水合物生成与分解对井控水力参数的影响。结果表明,溢流时间越长、地层渗透率越大、地层与井底初始压差越大,则泥浆池增量越大,井底压力降低越明显,压井过程中需要节流压力的调整越灵敏,井控难度越大;循环摩阻同节流管线长度成正比,而节流管线内径减小,循环摩阻值迅速增加;如果循环摩阻值太大,采用常规压井方法无法有效压井,可采用动力压井法、附加流速法等适合深水的压井方法;水合物生成与分解对井筒及节流管线的流动有影响,尤其对已存在的较多水合物采取措施促使其分解时,对节流管线内的气相体积分数影响很大,进而影响压力分布及节流压力的调节。
Well control is one of the most important problems in deepwater drilling. The theory of multi-phase flow in wellbore is an important part of the well control theorty. As the temperature field is complicate and hydrates form easily, the existent multi-phase flow models can not be used satisfactorily in well control calculation in deepwater drilling operation. So the study on multi-phase flow in wellbore in deep water drilling is very important. The temperature distribution with depth of Nanhai is obtained by regression analysis.
     And the temperature distribution formulas in wellbore during circulation or non-circulation terms are established based on the thermodynamics theory. Calculation results indicate that the insulating layer should be undamaged and large delivery capacity should be used for maintaining the temperature under circulation condition. When the pumps stop, the temperature in wellbore will be closing to the extraneous temperature with time. The gas production function of hydrate dissolution with time is obtained under the conditions of different temperature and pressure by experiment and data analysis. And the model of hydrate dissolution rate is established.
     Considered the effect of gas/oil and gas/hydrate phase change, cuttings, and formation fluids et al., multi-phase flow models in the wellbore, riser, and choke line are established under the condition of drilling, shut in and well killing process. The models are comprised of continuity equations, momentum equations and energy equations. And the models are solved by numerical method. Considered the influence of the roughness, the friction factors and frictional pressure drop equations in annulus are obtained under the conditions of gas-liquid two-phase flow. The equations are suitable for both bubble flow and slug flow. The methods for calculating frictional pressure of wellbore, riser, and choke line under the conditions of various flow patterns are also presented. The results of the models can simulate the whole process of well control from kick to well killing. And the parameters can be obtained, such as temperature, pressure in wellbore, volume fraction, flow rate, formation production, stand pipe pressure, choke line pressure and frictional pressure drop et al.
     On basis of the characters of well control in deepwater, the well control software is developed, and the software is comprised of four modules, which are kick simulation module, kill simulation module, hydrate formation forecasting module and hydrate formation region forecasting module.
     The well control parameters in deepwater are calculated with the software and the variation of the parameters with the continuance time of kick are analyzed. The influence of many factors on the well control parameters are also studied, such as permeability, initial pressure difference between the wellbore bottom and formation, size and length of the choke line, depth of the water, and the formation or decomposition of the hydrate. The results indicate that the longer continuance kick time is and the larger permeability and initial pressure difference are, the larger pit gain is and the quiker bottom pressure drops, and the rapider adjustment of the choke valve is and the difficulter well control is.
     Friction loss is proportion to the length of the choke line, and increase rapidly when the diameter of the choke line decreases. Large diameter choke line should be used at specified water depth to decrease the friction loss. If the friction loss of the choke line is too large to using the conventional kill method, dynamic kill method and additional flow rate well control method should be used. The flow pattens in wellbore and choke line are influenced by the formation and the decomposition of the hydrate. The volume faction of gas is influenced effectively by the decomposition of the hydrate when there are large amounts of hydrate in BOP or lines. And the pressure distribution in wellbore and the adjustment of the choke valve are also affected subsequently.
引文
[1]李清平.我国海洋深水油气开发面临的挑战[J].中国海上油气,2006,18(2):130-133.
    [2] Rolv Rommetveit, Knut S. Bj?rkevoll, Jan Einar Gravdal et al. Ultra-Deepwater Hydraulics and Well Control Tests with Extensive Instrumentation: Field Tests and Data Analysis[C]. SPE 84316, presented at the SPE Annual Technical Conference and Exhibition held in Denver, Colorado, U.S.A., 5– 8 October 2003.
    [3] Bourgoyne Jr., Hise, W. R. , and Holden, W. R. Well Control Procedures for Deepwater Drilling Part 3– Initiation of Well Control Operation[J]. Ocean Resource Engineering, December 1978, 23(1): 26-37.
    [4] J. W. Barker, R. K. Gomez. Formation of Hydrates During Deepwater Drilling Operations[J]. Journal of Petroleum Technology, March 1989, 41 (3): 297-301.
    [5] Thierry Botrel, Patrick Lsambourg, Total Fina Elf. Off Setting Kill and Choke Lines FrictionLosses, a New Method for DeepWater Well Control[C]. SPE67813, presentate at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, 27 February–1 March 2001.
    [6]胡友林,王建华,张岩等.海洋深水钻井的钻井液研究进展[J].海洋石油,2004, 24(4):83-86.
    [7]许明标,唐海雄,刘正礼等.海洋深水水泥浆体系性能室内研究[J].石油天然气学报,2005, 27(5):613-616.
    [8] N. Zuber and J. A. Findlay. Average volumetric concentration in two-phase flow systems [J]. Trans. ASME, J. of Heat Transfer; 1965,.87(2): 453-468.
    [9] R. M. Thomas. Bubble coalescence in turbulent flows [J]. Int. J. Multiphase Flow, 1981, . 7(6):709-717.
    [10] I. Zun. Space-time Evolution of the Nonhomogeneous Bubble Distribution in Upward Flow[J]. Int. J. Multiphase Flow, 1993, 19(1): 151-172.
    [11]孙宝江,颜大椿.垂直气-液两相管流中的流型转化机制与控制[J].北京大学学报,2000;36(3):382-388.
    [12]夏国栋,胡明胜,周芳德.两相弹状流中液弹及气泡合并情况的研究[J].西安交通大学学报,1997, 31(6):52-56.
    [13]陈家琅.石油气液两相管流[M].北京:石油工业出版社1989:18-23.
    [14] HagedornAR, BrownKE. Experimental Study o Pressure Gradients Occurring During Continuou Two-Phase Flow in Small-DiameterVertical Conduits[J]. J Pet Tech, 1965, 17(4):475-484.
    [15] Orkiszewski J. Prediction Two-phase Pressur Drops in Vertical Pipe [J]. J Pet Tech, 1967, 19 (6): 829-838.
    [16] G. K. Batchelor. A new theory of the instability of a uniform fluidized bed [J]. J. Fluid Mech., 1988, 193: 75-110.
    [17] Biesheuvel, A. & Gorissen, W. C. M. Void fraction disturbances in a uniform bubbly fluid [J]. Int. J. Multiphase Flow, 1990, 16(2): 211-231.
    [18]范军,王西安,韩松.油气层渗流与井筒多相流动的耦合及应用[J].重庆大学学报(自然科学版),2000, 23(10):154-157.
    [19]李相方,庄湘琦,隋秀香等.气侵期间环空气液两相流动研究[J].工热物理学报,2004, 25(1):73-76.
    [20]孙宝江,高永海,李昊等.深水钻井井控理论[C].中国深水油气开发工程技术论坛论文集,上海,2005:172-177.
    [21] Leblanc, J. L. and Leuis, R. L. A Mathematical Model of a Gas Kick[J]. Journal of Petroleum Technology, 1968, 20(4): 888-898.
    [22] Records, L. R. Mud system and Well Control[J]. Petroleum Engineering, 1972, 44(2): 97-108.
    [23] Hoberock, L. L. and Stanbery, S. R. Pressure Dynamics in Wells During Gas Kick: Part 1—Fluid Lines Dynamics [J]. Journal of Petroleum Technology, 1981, 33(6): 1357-1366.
    [24] Santos, O L. A. A Mathematical Model of a Gas Kick When Drilling in Deep Waters [R]. MS Thesis, Colorado School of Mines 1982.
    [25] Nickens, H. V. A Dynamic Computer Model of Kick Well [J]. SPE Drilling Engineering, June 1987, 2(2): 158-173.
    [26] Santos, O. L. A. Well Operations in Horizontal Wells [J]. SPE Drilling Engineering, 1991, 6(1): 111~117.
    [27] Ohara, S. Improved Method for Selecting Kick Tolerance During Deepwater Drilling Oerations [R]. Baton Rouge: Louisiana State University, 1995.
    [28] Nunes, JOL, Mathematical Model of a Gas Kick in Deep Water Scenario [C], IADC/SPE 77253, presented at the IADC/SPE Asia Pacific Drilling Technology held in Jakarta, Indonesia, 9–11 September 2002.
    [29]李相方,齐明明,许寒冰,深水钻井井控工艺技术研究[C].中国深水油气田开发工程高技术论坛论文集,上海,2005.4:123.
    [30]. Ramey, H. J, Jr. Wellbore Heat Transmission [J]. Journal of Petroleum Technology, 1962,14 (4): 427-435.
    [31] Willhite, G. P. Over-all Heat Transfer Coefficients in Stream and Hot Water Injection Wells [J]. Journal of Petroleum Technology, 1967, 19(5): 607-615.
    [32] Nowak, T. J. The Estimation of Water Injection Profiles from Temperature Surveys [J]. Journal of Petroleum Technology,1953, 5(2):203-212.
    [33] Bird, J. M. Interpretation of Temperature Logs in Water-and Gas-Injection Wells and Gas Producing Wells [J]. Drill.& Prod. Prac, 1954, 259: 187-195.
    [34] Kirkpatrick, C. V. Advances in Gas-lift Technology [J]. Drill.& Prod.Prac, 1959, 264: 24-60.
    [35] Lesem, I.B.et al. A Method of Calculating the Distribution of Temperature in Flowing Gas Wells [J]. Trans., AIME, 1957, 210: 169.
    [36] Moss, J. T. and White, P. D. How to Calculate Temperature Profiles in a Water-Injection Well [J] . OGJ, 1959; 57(11): 174.
    [37] Carslaw, H. S. and Jaeger, J. C. Conduction of Heat in Solids (Second Edition) [R]. Oxford University Press, 1959.
    [38] Squier, D. P. Smith, D. D. and Dougherty, E. L. Calculated Temperature Behavior of Hot Water Injection Wells [J]. Journal of Petroleum Technology, 1962, 14(2): 436-440.
    [39]. Sater, A. Heat Losses of Steam Down a Wellbore [J]. Journal of Petroleum Technology,. 1965, 17(4): 845-851.
    [40] Coulter, D. M. and Bardon, M.F. Revised Equation Improves Flowing Gas Temperature Prediction[J]. OGJ. 1979, 77(1): 107-108.
    [41] Shiu, K. C.and Beggs, H. D. Predicting Temperatures in Flowing Oil Wells [J]. JERT, 1980, 3(2): 1-11.
    [42] Farouq Ali, S. M. A Comprehensive Wellbore Steam/Water Flow Model for Steam Injection and Geothermal Applications [J]. SPEJ, Oct.1981, 21(5): 527-534.
    [43] Durrant,A.J.and Thambynayagam,R.K.M.: "Wellbore Heat Transmission and Pressure Drop for Steam/Water Injection and Geothermal Production: A Simple Solution Technique [J]. SPERE, 1986, 1(2): 148.
    [44] Griston,s.and Willhite, G. P. Numerical Model for Concentric Steam Injection Wells [C]. SPE 16337. presented at the SPE California Regional Meeting, Ventura, CA, April 1987.
    [45] Sagar, R. K. , Doty, D. R. and Schmidt, Z. Predicting Temperature Profiles in a Flowing Well [J]. SPEPE, 1991, 6(4): 441-448.
    [46] Alves, I. N., Alhanatl, F. J. S. and Shoham O.A Unfied Model for Predicting Flowing Temperature Distribution in Wellbores and Pipelines [J]. SPEPF, 1992, 7(4): 363-367.
    [47] Chiu,K.and Thakur,S.C. Modeling of Wellbore Heat Losses in Directional Wells under Changing Injection Conditions[C]. SPE 22870, presented at the Annual Technical Conference and Exhibtion of the SPE held in Dalllas, TX, October 6-9, 1991.
    [48] Gullot.F. A Cementing Temperature Simulator to Improve Field Practice [C]. SPE/IADC 25696 presented at the SPE/IADC Drilling Conference, 22-25 February 1993, Amsterdam, Netherlands.
    [49] Hasan, A. R.and Kabir, C. S. Heat Transfer during Two-Phase Flow in Wellbores: Part I Formation Temperature [C]. SPE 22866, presented at the Annual Technical Conference and Exhibtion of the SPE held in Dalllas, TX, October 6-9, 1991.
    [50] Hasan, A. R.and Kabir, C. S. Heat Transfer during Two-Phase Flow in Wellbores: Part 11一Wellbore Fluid Temperature [C]. SPE 22948, presented at the Annual Technical Conference and Exhibtion of the SPE held in Dalllas, TX, October 6-9, 1991.
    [51] Kabir, C. S. Hasan, A.R. Determining Circulating Fluid Temperature in Drilling, Workover, and Well-Control Operations [J]. SPE Drilling & Completion, 1996,9(1):74-79.
    [52] Hasan, A. R.and Kabir, C. S. Predicting Fluid Temperature Profiles in Gas-Lift Wells[C]. SPE 26098, presented at the Western Regional Meeting, Anchorage,. Alaska, May 26-28, 1993.
    [53] Hasan, A. R. ,Kabir, C. S. and Ameen, M. M. et al. A Fluid Circulating Temperature Model for Workover Operations [J]. SPE Journal, 1996, 1(2): 133-144.
    [54] C.S. Kabir, A.R. Hasan, D.L. Jordan et al.,. A Wellbore/Reservoir Simulator for Testing Gas Wells in High-Temperature Reservoirs [J]. SPE Formation Evaluation, 1996, 11(2): 128-134.
    [55] Kabir, C. S. , Hasan, A. R. and Jordan, D. L. et al. A Transient Wellbore/Reservoir Model for Testing Gas Wells in High-Temperature Reservoirs, Part 11—Field Application [C]. SPE 28403, presented at the SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana., 25-28 September 1994. 56毛伟.高温高压气井完井测试井筒压力、温度预测模型与计算方法的应用基础理论研究[D].南充:西南石油学院,1999.
    [57] J. Rornero, and E. Touboul. Temperature Prediction for Deepwater Wells: A Field Validated Methodology [C],SPE 49056, presented at the 1998 SPE Annual Technical Conference and Exhibition held in Naw Orleans, Louisiana, 27-30 Sepmmber 1998.
    [58]周燕遐,李炳兰,张义钧等.世界大洋冬夏季温度跃层特征[J].海洋通报,2002, 21(1):16-22.
    [59]邱章,蔡树群.与南沙深水区温跃层有关的海水平均温度的分布特征[J].热带海洋,2000, 19(4):10-13.
    [60] Levitus S, Boyer T. World Ocean Atlas 1994, 4:Temperature[R]. Wash., D. C. NOAA Atlas NESDIS 4, U. S. Gov. Printing Office, 1994:117.
    [61]曾维平,周蒂. GIS辅助估算南海南部天然气水合物资源量[J].热带海洋学报,2003, 22(6):35-44.
    [62]栾锡武,秦蕴珊,张训华等.东海陆坡及相邻槽底天然气水合物的稳定域分析[J].地球物理学报,2003, 46(4):467-475.
    [63]郭春秋,李颖川.气井压力温度预测综合数值模拟.石油学报,2001;22(3):100-104.
    [64] Hasan, A. R. and Kabir, C. S. Aspects of Wellbore Heat Transfer During Two-Phase Flow[J]. SPE Production & Facilities, 1994, 9(4): 211-216.
    [65]张勇,宋金初.井眼循环温度分布规律.内蒙古石油化工,2005;12:127-128.
    [66]何世明.井内液体温度的预测及分布规律的研究[D].南充:西南石油学院,1998.
    [67] M.A. Peavy, J.L. Cayias. Hydrate Formation/Inhibition During Deepwater Subsea Completion Operations [C]. SPE 28477, presentated at the SPE 69th Annual Technical Conference and Exhibition held in New Orlaans, LA, U.S.A., 2S-28 September 1994.
    [68] C. Dalmazzone, B. Herzhaft, L. Rousseau et al. Prediction of Gas Hdrates Formation With DSC Techniue[C]. SPE 84315, presentated at the SPE Annual Technical Conference and Exhihition held in Denver, Colorado, USA, 5-8 October 2003.
    [69]邹德永,王瑞和.气井油管中水合物的形成及预测[J].石油钻采工艺, 2001, 23(6):46-49.
    [70] Didier Dalmazzone, Christina Dalmauone, Benjamin Herzhaft. Differential Scanning Calorimetry: A New Technique to Characterize Hydrate Formation in Drilling Muds [J]. SPE Journal, 2002, 7(2): 196-202.
    [71]喻西崇,赵金州.天然气水合物生成条件预测模型的比较[J],油气储运,2002,21(1):20~24.
    [72]杜亚和,郭天民.天然气水合物生成条件的预测Ⅰ,不含抑制剂体系[J].石油学报:石油加工,1988, 4(3): 82-91.
    [73] Madsen, J. and Pedersen, K. S. Modeling of Stucture Hydrates Using a Langmuir Adsorption Model [J], Ind. Eng. Chem. Res., 39 (4): 1111 -1114.
    [74] Arthur H. Hale, Ashok K. R. Dewan, Inhibition of Gas Hydrates in Deepwater Drilling [C]. Presentated at the SPE/IADC Drilling Conference New Orleans, Feb.28-March 3.
    [75]程小娇,宫敬.天然气管道内水合物形成的预测[J].油田地面工程,2003,22(2):4-5.
    [76]刘武、陈才林、阳朝晖等.海底凝析天然气管道水合物形成条件预测[J].海洋石油,2004,24(3):98-101.
    [77]刘宝玉、郝敏、陈宝东.长输管道内天然气最大允许含水量的预测[J].石油化工高等学校校报, 2004,17(2):75-78.
    [78]陈多福、张跃中、徐文新.天然气输送管线中水合物形成的边界条件[J].矿物岩石地球化学通报,2003,22(3):197-201.
    [79]樊友宏、蒲春生.天然气水合物堵塞预测技术研究[J].石油与天然气化工,2001,30(1):9~11.
    [80]史斗,孙成权.国外天然气水合物研究进展[M].兰州:兰州人学出版社,1992:23-40.
    [81]方银霞,金翔龙,杨树锋.海底天然气水合物的研究进展[J] ,海洋科学,2000,24(4):18-21.
    [82]史斗,郑军卫.世界天然气水合物研究开发现状和前景[J],地球科学进展,1999,14(4): 330- 338.
    [83]雷怀彦,王先彬,房玄.天然气水合物研究现状与未来来挑战[J],沉积学报,1999,17(3): 493-498.
    [84]陈光进,郭天民.水合物生成过程的热力学研究[[J],石油大学学报(自然科学版),1995, 19(增刊):88~91.
    [85]李长俊.天然气水合物形成条件预测及防止技术[J].管道技术与设备,2002, (1):8.
    [86]裘俊红,郭天民.甲烷水合物在纯水中的生成动力学[J].化工学报,1998;49(3):383-386.
    [87]孙长宇,陈光进,郭天民.水合物成核动力学研究现状[J].石油学报,2001;22(4):82-86.
    [88]裘俊红,郭天民.甲烷水合物在含抑制剂体系中的生成动力学[J].石油学报(石油加工),1998;14(1):1-4.
    [89] Vysniauskas A., Bishnoi P. R. A kinetic study of methane hydrate formation [J]. Chemical Engineering Science, 1983, 38(6): 1061-1072.
    [90]陈孝彦,何小社,何晓霞等.天然气水合物生成动力学机理的研究[J].西安交通大学学报,2004, 38(1):85-88.
    [91]林微,陈光进.气体水合物分解动力学研究现状.过程工程学报[J],2004, 4(1):69-74.
    [92] Selim M S, Sloan E D. Heat and Mass Transfer During the Dissociation of Hydrates in Porous Media [J]. American Institute of Chemical Engineers Journal, 1989, 35(6): 1049–1052.
    [93] Ullerich J W, Selim M S, Sloan E D. Theory and Measurement of Hydrate Dissociation [J]. AIChE J, 1987, 33(5): 747–752.
    [94] Kamath V A, Holder G D, Angert P F. Three Phase Interfacial Heat Transfer During the Dissociation of Propane Hydrates [J]. Chem. Eng. Sci, 1984, 39(10): 1435–1442.
    [95] Kamath V A, Holder G D. Dissociation Heat Transfer Characteristics Methane Hydrates [J]. AIChE J, 1987, 33(2): 347–350.
    [96] Kim H C, Bishnoi P R, Heidemann R A. Kinetics of Methane Hydrate Decomposition [J]. Chem. Eng. Sci., 1987, 42(7):1645–1653.
    [97] Jamaluddin AK M, Kalogerakis N, Bishnoi P R. Modeling of Decomposition of A Synthetic Core of Methane Gas Hydrate by Coupling Intrinsic Kinetics with Heat Transfer Rates [J]. Phys. Chem., 1989, 67(6): 948–954.
    [98] Matthew A C, Bishnoi P R. Measuring and Modeling the Rate of Decomposition of Gas Hydrates Formed from Mixtures of Methane and Ethane [J]. Chem. Eng. Sci., 2001, 56(16): 4715–4724.
    [99] Matthew A C, Bishnoi P R. Determination of the Intrinsic Rate of Ethane Gas Hydrate Decomposition [J]. Chem. Eng. Sci., 2000, 55(21): 4869–4883.
    [100] Matthew A C, Bishnoi P R. Determination of the Activation Energy and Intrinsic Rate Constant of Methane Gas Hydrate Decomposition [J]. Can. J. Chem. Eng., 2001, 79 (2): 143–147.
    [101] Kazunari Ohgaki, Shinya Nakano. Decomposition of CO2, CH4 and CO2–CH4 Mixed Gas Hydrates [J]. J. Chem. Eng. Japan, 1997, 30(2): 310–314.
    [102]徐开放.欠平衡钻井环空多相流压力控制[D].南充:西南石油学院,1999.
    [103] Dranchuk P M, Purvis R A, Robinson D B. Computer Calculations of natural gas compressibility factors using the standing and katz correlation [J]. Inst of Petroleum Technical Series, 1974, 36 (4): 76-80.
    [104]罗世应.欠平衡钻井理论研究及数模[D].南充:西南石油学院,1999.
    [105] hasan, A. R. and Kabir, C. S. A Study of Multiphase Flow Behavior in Vertical Wells [J].SPEPE. 1988, 3(3): 263.
    [106] Z. Bilicki & J. Kestin, Transition criteria for two-phase flow patterns in vertical upward flow [J]. Int. J. Multiphase Flow, 1987, 13(3): .283-294.
    [107] Kaichiro Mishima and Mamoru Ishii, Flow regime transition criteria for upward two-phase flow in vertical tubes [J]. Int. J. Heat Mass Transfer, 1984, 27(5): 723-737.
    [108]苏新军,王祺.垂直下降管内油气水三相流的摩擦压降研究[J].油气储运,2002;21(11):40-44.
    [109]陈家琅.石油气液两相管流[M].北京:石油工业出版社,1989:34-56.
    [110]章龙江.国外油气水三相流流动型态研究的最新进展[J].油气田地面工程,1998, 6:6-8.
    [111]李安,万邦烈,楼浩良.铅直气液两相管流研究现状综述[J].石油钻采工艺,2004, 22(4): 45-47.
    [112]陈宣政.垂直上升管内油气水三相流动特性的研究[D].西安:西安交通大学,1991.
    [113]张军,陈听宽.垂直同心环形管内气液两相环状流含气率与压降预测[J].化工学报,2003;54(1):47-50.
    [114] C. Omurlu and M. E. Ozbayoglu. Friction Factors For Two-Phase Annuli Fluids in CT Applictions [C]. SPE 100145, presentated at the SPE/ICoTA Coiled Tubing Conference & Exhibition held in Woodlands, Texas, USA, 4-5 April 2006.
    [115]于立军,王经.油气水三相流动不同流型摩擦阻力的实验研究[J].上海交通大学学报,1999, 33(3):259-261.
    [116]王友华,吴彬,徐绍成.水基钻井液体系在低温条件下的流变性探讨[J].石油天然气学报,2005, 27(4):640-641.
    [117]徐壁华,郝俊芳.海洋井控计算[J].石油钻探技术,1984, 4:2-11.
    [118]张昌元.海洋工程师法井控计算[J].钻采工艺,1989, 12(2):5-14.
    [119] Q.E. Kouba, Advancements in Dynamic Kill Calculations for Blowout Wells [J]. SPE Drilling & Completion, 1993, 6(2): 189-194.
    [120]邓大伟,周开吉,动力压井法与计算方法研究[J].天然气工业,2004,24(9):83-85.
    [121]黄炜,郝俊芳,压井动态过程的理论分析及模拟计算[J].石油学报,1994,15(2):147-153.
    [122] Thierry Botrel, Patrick Isambourg, Total Fina Elf. Off Setting Kill and Choke Lines Friction Losses, a New Method for Deep Water Well Control [C]. SPE/IADC 67813,presentated at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, 27 February–1 March 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700