用户名: 密码: 验证码:
深海油气管道法兰连接系统及样机实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国对石油资源需求不断增长,在陆上油气资源大幅增加困难的情况下,开发海洋油气资源已成为保障我国能源安全的重要策略。海底输油气管道是海上油田水下生产系统的重要组成部分,为了满足海洋石油开发的需要,将进一步加大海底管道的铺设规模。海底管道水下连接技术是管道铺设技术的重要组成部分,该技术可用于开发边际油田、深水油田以及水下生产管道的维修等。在水下连接技术中,螺栓法兰式连接是一种应用广泛而高效的连接方式,由于深水区潜水员无法到达,只能通过自动法兰连接系统完成,目前国内并没有相关产品应用于工程实际,因此对其关键技术研究对促进该系统的国产化具有重要的现实意义。
     本课题来源于十一五期间国家“863”重大专项《深水海底管道铺设技术》的子课题《深水海底管道水下回接技术及AUT检验设备国产化技术研究》。本文对海底管道水下连接方法和管道法兰连接系统的国内外发展现状进行了综述,对法兰连接系统设计中涉及的相关技术进行了介绍。借鉴国外相关产品的设计经验并结合国内实际条件,设计了法兰连接系统的总体技术方案,该方案包括管道粗调整H架,管道对接机具和法兰连接机具三个功能模块,分析了系统的作业流程,研究了其虚拟样机,轴向对准工具和法兰连接机具液压伺服控制系统。
     首先,本文依据管道对接机具工作过程中轴向对准工具夹紧装置需要合适夹紧力的问题,分析了夹紧机构受力及结构参数对管道强度的影响,推导了管道的强度计算公式,建立了夹紧机构优化的数学模型,进行了改进的粒子群算法的夹紧机构单目标和多目标优化设计。
     其次,针对法兰连接机具螺母库20个螺母引入机构马达较高的同步控制精度问题,通过对几种常用的闭环同步控制策略的分析,确定了一种基于最小相关轴控制思想的多个马达的相邻交叉耦合同步控制方案,建立了单通道阀控马达位置伺服系统的数学模型,采用新型指数趋近律的滑模控制方法,以四个马达同步系统为例进行仿真,验证了其同步控制性能。
     再次,根据工程要求螺栓法兰连接结构中,各个螺栓具有合适及相等的预紧力问题,本文对常用的三种螺栓预紧力的计算方法进行对比分析,依据美国ASME新规范计算法兰连接螺栓所需预紧力,采用有限元和弹性相关性系数方法,对螺栓的预紧过程进行了数值模拟,得到了改善螺栓预紧力的一轮和两轮预紧方案,并开展了样机的实验研究。
     最后,本文建立了法兰连接机具的实验台架,做了法兰连接机具系统调试实验,多个马达的同步控制实验,并采用管道底架来模拟H架,进行了管道法兰的陆上连接试验。
With China’s growing demand for oil resources and the difficulty of substantial increaseof onshore oil and gas resource,the development of marine oil and gas resources has becomean important strategy to ensure our energy security. Subsea oil and gas pipeline is animportant part of offshore oilfield subsea production system,in order to meet the need ofoffshore oil development,the laying scale of subsea pipeline will further increase. Subseapipeline underwater connection technology is an important part of the pipeline layingtechnology,which can be used to develop marginal oilfields,deepwater fields and mainten ofunderwater production pipeline. Among underwater connection technology,the bolt flangeconnection is a kind of widely used and effective way of connection, divers can not reach thedeepwater area,so it only can be done by automatic flange connection system,at present Chinadoesn’t have related products used in practical engineering,so research on its key technologyhas important practical significance to promote the localization of the system.
     This project comes from the sub-topics of the Eleventh Five-Year national "863" majorprojects "deepwater pipeline laying technology",which is "deepwater subsea pipelineunderwater tie-ins technology and AUT inspection equipment localization technologyresearch ". In this paper,the domestic and foreign development situation of subsea pipelineunderwater connection method and pipe flange connection system are reviewed,andcorrelation technology involved in the design of the flange connection system is introduced.Learning from design experience of foreign related products and combining with the actualconditions,overall technical scheme of the flange connection system is designed whichincludes pipeline rough adjustment H frame,pipeline connection tool and flange connectiontool three functional modules,its operating process is analyzed,its virtual prototype and thehydraulic servo control system of the axial force and alignment tool and flange connectiontool are studied.
     First of all,in accordance with the clamping device of the axial force and alignment toolneed appropriate clamping force problem during the work process of pipeline connectiontool,in this article,the force of clamping mechanism and its structure parameters’ influenceon strength of pipeline are analyzed,strength calculation formula of pipeline is deduced,clamping mechanism optimization mathematical model is established and its single objective and multi-objective optimization design are done based on an improved particle swarmalgorithm.
     Secondly, aimming at the problem of20nut introduced mechanism motor highersynchronization control precision of the flange connection tool nut magazine,through theanalysis of several commonly used closed loop synchronous control strategy,multiple motoradjacent cross coupling synchronization control scheme based on the least relevant axiscontrol thought is determined,a single channel mathematical model of valve-controlled motorposition servo system is built,and simulation is done on four motor synchronization system asan example based on sliding mode control method with new exponential reaching law,thesynchronization control performance is verified.
     Again,according to the engineering requirement that each bolt should has appropriateand equal preload in bolt flange connection structure,in this paper,comparative analysis isdone on the commonly used three kinds of preload calculation method,the U.S ASME newspecification is used for computing flange connecting bolt preload needed, the process of boltpreload is simulated by adopting the method of finite element and elastic coefficient ofcorrelation,the preloaded scheme that one round and two rounds which improving boltpreload is given,and experimental study of the prototype is carried.
     Finally,experiment platform of the flange connection tool is established in the paper,the flange connection tool system debugging experiment and multiple motors synchronizationcontrol experiment are done,and pipeline flange onshore connection test is carried by usingpipeline chassis to simulate the H frame.
引文
[1]于文金,邹欣庆,朱大奎,等.南海开发与中国能源安全问题研究[J].地域研究与开发,2007,26(2):6-9.
    [2]李铭,王高尚,于汶加,等.中国石油资源安全评价[J].地球学报,2010,31(5):686-692.
    [3]郭越,宋维玲.海洋油气助推中国经济发展[J].海洋经济,2011,1(2):52-56.
    [4]于文金,朱大奎.中国能源安全与南海开发[J].世界地理研究,2006,15(4):11-16.
    [5]常城,舒先林.中国石油资源安全评价[J].石油化工技术经济,2007,23(2):1-6.
    [6]罗佐县.海洋油气期待大发展[J].中国石油石化,2009,(11):51-53.
    [7]潘继平,张大伟,岳来群.全球海洋油气勘探开发状况与发展趋势[J].国生资源情报,2006,(7):1-4.
    [8]李璐.海洋石油工业的发展[J].科技创新导报,2007,(33):153.
    [9]吴时国,袁圣强.世界深水油气勘探进展与我国南海深水油气前景[J].天然气地球科学,2005,16(6):693-699.
    [10]连琏,孙清,陈宏民.海洋油气资源开发技术发展战略研究[J].中国人口.资源与环境,2006,16(1):66-70.
    [11]张位平.加快中国深海油气资源的经济开发[J].国际石油经济,2007,(10):59-62.
    [12]张凤成.中国海洋油气产业发展战略研究[J].海洋开发与管理,2007,(3):99-102.
    [13]张庆营,张新明,孟令枫,等.我国海洋石油工程行业发展现状及趋势[J].中国水运,2010,10(4):60-61.
    [14] Li Z G, Lin Q H, Zhao D Y, et al. The structural design and optimization for theinner-frame of subsea flange connection tool[J]. Key Engineering Materials,2009:197-200.
    [15] Guo B, Song S, Chacko J,et al.Offshore Pipelines[M].Burlington:Gulf ProfessionalPublishing,2005:1-2.
    [16]周延东,刘日柱.我国深海油气管道的发展状况与前景[J].中国海上油气(工程),1998,10(4):1-5.
    [17]刘梁华,张世富.深海油气管道发展现状浅述[J].中国储运,2011(11):108-109.
    [18]潘东民,马洪新,梁光辉,等.海底油气管道水下修复技术开发及工程应用[J].天津科技,2009(2):17-20.
    [19]燕奎臣,俞建成,张奇峰.深水油气开发中的水下机界人[J].自动化博览,2005(10):86-88.
    [20]李春润,郑树森.深海油气管道焊接技术现状及对策[J].金属加工(热加工),2009(4):14-16.
    [21] Wang L Q, Wang W M, Wang C D. Design of a Novel Deep-Sea FlangeConnection Tool[C].2009International Conference on Measuring Technology andMechatronics Automation,2009:47-48.
    [22]王立权,王文明,赵冬岩,等.深海管道法兰连接方案研究[J].天然气工业,2009,29(10):89-92.
    [23]王立权,安少军,王刚.深水海底管道套筒连接器设计与分析[J].哈尔滨工程大学学报,2011,32(9):1103-1104.
    [24]时黎霞,李志刚,赵冬岩,等.海底管道回接技术[J].天然气工业,2008,28(5):106-108.
    [25]唐德渝,龙斌,郑树森.海洋石油工程水下焊接技术的现状及发展[J].金属加工:热加工,2009(4):24-28.
    [26] Davis, M.Trolling the depths with a new system[J].Welding&Metal Fabrication,1996,64(8):20-22.
    [27] Berge J O, Armstrong M, Verley R. Deep water remote pipeline repair usingwelded sleeve technique.[C]2004International Pipeline Conference (IPC2004),2004:1919-1923.
    [28] Xue L, Jiao X D, Zhou C F. Study on the tester control system for t he hyperbaricwelding o f underwater pipeline[J].Zhongguo Jixie Gongcheng.2006,17(9):881-884.
    [29] Yamashita Y, Kawano T, Mann K.Underwater laser welding by4kW CW YAGlaser [J]. Journal of Nuclear Science and Technology,2001,38(10):891-895.
    [30]伦冠德,刘衍聪,伊鹏,等.海洋工程管道对接方法及技术[J].石油机械,2011,39(10):151-153.
    [31] Hart P, Richardson I M,Nixon J H. The effects of pressure on electricalperformance and weld bead geometry in high pressure GMA welding[J].Welding in theworld2001,45(11):25-33.
    [32]周灿丰,焦向东,陈家庆,等.海洋工程水下连接新技术[J].北京石油化工学院学报,2006,14(3):20-24.
    [33] Corbetta G, Cruden R, Mock C.Brutus tie-in system for rigid and fexible line:operstional feedback[C]. OMC2001,2001:1-10.
    [34] API RP17A.Design and operation of subsea production systems-General requirementsand recommendations[S].
    [35]王立权,王文明,何宁,等.深海管道法兰连接机具的设计与仿真分析[J].哈尔滨工程大学学报,2010,31(5):559-563.
    [36] Sonsub International Ltd.Method and apparatus for connecting underwater conduits[P].United States:6767165.2004-07-27.
    [37] Allseas Group S.A.(CH).Method and apparatus for underwater connection of pipepieces and bolt therefor[P].United States:6439807B1.2002-8-27.
    [38] Corbetta G., Cruden R. A new approach to capex and opex reducation: An integratedsystem for remote tie-ins and pipeline repair[C]. Offshore Technology Conference,2000,313-319.
    [39] Corbetta G, Cox D S. Deepwater tie-ins of rigid lines:Horizontal spools or verticaljumpers [J]. SPE Production&Facilities,2001,16(3):145-150.
    [40] Hals B E, Reddy S K, Douglas L D. Diverless tie-in and connection ofpipelines/flowlines by use of hard pipe spools[C].The199615th InternationalConference on Offshore Mechanics and Arctic Engineering,1996:3.
    [41] Al1iot V, Frazer I. Tie in system uses low-cost flanges on deepwater girassoldevelopment[J]. Oil&Gas Journal,2002,100(18):96-104.
    [42] Acergy UK Limited. Remote bolted flange connection apparatus and methods ofoperation thereof [P]. United States:7445404,2008-11-04.
    [43]王文明.深水管道初对准与连接技术的分析与研究[D].哈尔滨工程大学硕士学位论文.2008:23-28.
    [44]李伟.深水法兰连接机具的结构设计及水下稳定性分析[D].哈尔滨工程大学硕士学位论文.2009:43-48.
    [45]刘明珠.深水法兰连接机具结构与液压控制系统设计[D].哈尔滨工程大学硕士学位论文.2009:12-18.
    [46]牟伟.新型水下法兰连接机具试验样机关键技术研究[D].哈尔滨工程大学硕士学位论文.2010:21-30.
    [47]林秋红.水下法兰连接机具优化设计与仿真研究[D].哈尔滨工程大学硕士学位论文.2010:20-24.
    [48]刘忠伟,邓英剑.巨型模锻液压机同步控制性能影响因素研究[J].机械设计与制造,2012,(3):250-252.
    [49]董亮,王恒亮,韩贺永,等.液压矫直机四缸同步预紧系统建模与仿真[J].流体传动与控制,2012,(3):7-10.
    [50]李鄂民,王中龙,李怀印,等.铜板自动包装生产线整形机液压同步控制系统的设计与改进[J].液压与气动,2010,(1):75-77.
    [51]罗艳蕾.液压同步回路及同步控制系统实现的方法[J].液压与气动,2004,(4):65-67.
    [52]黄海涛.液压缸同步回路的设计与应用[J].流体传动与控制,2006,(5):39-41.
    [53]王仁福.几种典型液压同步系统探讨[J].四川冶金,2007,29(3):44-47.
    [54]郭治富.液压仿真转台同步控制器定量反馈设计方法研究[D].哈尔滨大学博士学位论文:2010:2-4.
    [55] Hunter Engineering Company, Bridgeton, MO (US). Automotive lift hydraulic fluidcontrol circuit[P]. United States:6189432B1,2001-2-20.
    [56] Komatsu Ltd, Tokyo(JP).Hydraulic control apparatus for work machines[P]. UnitedStates:7059124B2,2006-1-13.
    [57]田勇,沈祖诒.双吊点闸门液压启闭机同步方法与策略[J].液压与气动,2004,(5):60-61.
    [58]李志锋.电液位置伺服系统的多缸同步控制方法研究[D].太原科技大学硕士学位论文,2010:1-2.
    [59] Perez-Pinal, Nunez C, Alvarez R, et al. Comparison of multi-motorsynchronization techniques [C]. The30th Annual Conference of IEEE IndustrialElectronics Society,2004,1670-1675.
    [60]董春芳,孟庆鑫.多缸电液调平系统相邻交叉耦合同步控制[J].哈尔滨工程大学学报,2012,33(3):1-3.
    [61] Zhang Y F, Xiao X, Gong J L, et al.Design of robot master-slave control systembased on labview [C].2011International Conference on Recent Trends in Materialsand Mechanical Engineering,2011,654-657.
    [62] Shen X,Xu G H,Yu K,et al. Development of a deep ocean master-slave electricmanipulator control system [C].4th International Conference on Intelligent Roboticsand Applications,2011,412-419.
    [63] Li X H, Liu J.Harmonic vibration synchronization analysis of the double motorsbased on equivalent control synchronization strategy[C].2012International Conferenceon Metallurgy Technology and Materials,2012,208-211.
    [64]丁意,赵克定,于金盈.双缸同步控制系统的研究[J].流体传动与控制,2007(2):24-26.
    [65] Suan J Z,Liu R, Luo Y Q,et al. Research on multi-motor synchronization controlfor cutter head of shield machine based on the ring coupled control strategy [C].2ndInternational Conference on Intelligent Robotics and Applications,2009,345-354.
    [66] Shang W W,Cong S, Ge Y. Dynamic model based cross-coupled control of parallelmanipulators.[C].Proceedings of the World Congress on Intelligent Control andAutomation,2011,979-984.
    [67] Zhong Q,Shi, Y,Mo J, et al. A linear cross-coupled control system forhigh-speed machining[J] International Journal of Advanced ManufacturingTechnology,2002,19:558-563.
    [68] Koren.Y. Cross-coupled biaxial computer controls for manufacturing systems [J].Journal of Dynamic Systems, Measurerment, and Control.1980,102(12):265-272.
    [69]曲永印,赵希梅,郭庆鼎.基于零相位误差跟踪控制器的轮廓误差交叉耦合控制[J].中国机械工程,2006,17(11):1135-1137.
    [70]赵莉,郭秋鉴,温旭辉.双机械端口电机线性解耦控制[J].电工技术学报,2009,24(3):67-72.
    [71]王庆丰,路甬祥.电液多变量位置系统的解耦控制[J].中国机械工程,2000,11(7):729-732.
    [72] Liu X Q, Chen C, Liu G H, et al. Multi-motor synchronous system based on neuralnetwork decoupling control[C].27th Chinese Control Conference,2008,257-260.
    [73] Wang L M, Huang F. Research on synchrodrive technique of dual motor based ondecoupling control and internal model control [C].2009Chinese Control and DecisionConference,2009,5334-5337.
    [74] Ahmed Q, Bhatti A I, Iqbal S. Nonlinear robust decoupling control design for twinrotor system[C]20097th Asian Control Conference,2009,937-942.
    [75] Prempain E, Bergeon B. A multivariable two-degree-of-freedom controlmethodology[J]. Automatica,1998,34(12):1601-1606.
    [76] Jin B Q, Wang Y K,Tian, F. The research for electro-hydraulic servo control systembased on fuzzy PID[C].2011International Conference on Materials and ProductsManufacturing Technology,2011,209-213.
    [77] Yu L K, Zheng J M, Yuan Q L,et al. Fuzzy PID control for direct driveelectro-hydraulic position servo system [C].2011International Conference on ConsumerElectronics, Communications and Networks,2011,370-373.
    [78]雷聚超.一种新的自适应PID控制算法[J].工业仪表与自动化装置,2002(5):23-25.
    [79]蒋支运,欧干良,陈文宝.自适应PID控制系统仿真[J].飞机设计,2005(4):38-41.
    [80]苏东海,孙占文,单光坤.基于神经网络PID控制的被动式电液预紧系统[J].组合机床与自动化加工技术,2008(3):34-37.
    [81]李晓豁,谭兵.基于神经网络PID的刨煤机工作面液压支架控制系统[J].辽宁工程技术大学学报,2009,28(1):90-93.
    [82]施虎,龚国芳,杨华勇,等.盾构掘进机推进系统非线性PID控制仿真分析[J].机床与液压,2008,36(7):76-79.
    [83]倪敬,彭丽辉,陈国金.四缸驱动起模机非线性PID同步控制研究[J].中国机械工程,2011,22(14):1645-1650.
    [84]杨俭.液压压力机模型参考自适应控制系统的研究[J].机床与液压,2009,37(6):83-85.
    [85] Qu Z Y,Ye Z M. Model reference adaptive control on a hydraulic servo system[C]2011International Conference on Computational Materials Science,2011,505-508.
    [86] Kire ci A,Topalbekiroglu M,Eker I. Experimental evaluation of a model referenceadaptive control for a hydraulic robot: A case study[J]. Robotica,2003,21(1):71-78.
    [87]乔俊飞,孙稚明,柴天佑.液压系统中压力的自适应控制[J].电工技术学报,2000,15(3):36-39.
    [88]梁经芝,马国新.电液主动悬架的自校正控制[J].汽车工程,2005,27(2):209-211.
    [89] Niksefat N, Sepehri N,Wu Q. Design and experimental evaluation of a QFT contacttask controller for electro-hydraulic actuators[J].International Journal of Robust andNonlinear Control,2007,17(2-3):225-250.
    [90] Karpenko M, Sepehri N. Electrohydraulic force control design of a hardware-in-the-loop load emulator using a nonlinear QFT technique [J]. Control EngineeringPractice,2012,20(6):598-609.
    [91] Mili V, itum, Essert M. RobustH∞position control synthesis of anelectro-hydraulic servo system [J]. ISA Transactions,2010,49(4):535-542.
    [92] Deng Y J, Liu Z W. Research ofH∞robust control for the giant die forginghydraulic press's synchronous control system under the uncertainty coefficient[C].3rdInternational Conference on Digital Manufacturing and Automation,2012:819-824.
    [93] Yao B, Bu F, Chiu G T C. Non-linear adaptive robust control of electro-hydraulicsystems driven by double-rod actuators [J].International Journal of Control,2001,74(8):761-775.
    [94] Guan C, Pan S. Nonlinear adaptive robust control of single-rod electro-hydraulicactuator with unknown nonlinear parameters[J].IEEE Transactions on Control SystemsTechnology,2008,16(3):434-445.
    [95]王洪强,方洋旺,伍友利.滑模变结构控制在导弹制导中的应用综述[J].飞行力学,2009,27(02):11-15.
    [96]管成,潘双夏.电液伺服系统的微分与积分滑模变结构控制[J].光电工程,2006,33(08):140-144.
    [97]方一鸣,焦宗夏,王文宾,等.轧机液压伺服位置系统的自适应反步滑模控制[J].电机与控制学报,2011,15(10):95-100.
    [98]苗中华,王旭永,刘成良,等.基于滑模变结构控制的液压伺服系统超低速轨迹跟踪[J].上海交通大学学报,2008,42(7):1182-1186.
    [99]叶玮琼,余永权.液压伺服系统中模糊-滑模控制器的设计及应用[J].广东工业大学学报,2008,25(02):74-77.
    [100]黄茹楠,顾波.挖掘机轨迹跟踪的滑模变结构控制[J].控制工程,2010,17(02):132-134.
    [101]叶红,颜廷武,刘元胜.法兰连接中的螺栓预紧力[J].有色矿冶,2005,21(3):46-48.
    [102]黄坤平.高强度螺栓延伸法预紧的实际预紧力研究[J].冶金设备,2006,(1):46-49.
    [103]李伟,王芳,田玉江等.深水法兰连接机具螺栓预紧方法及装置研究[J].中国造船,2012,53(s1):91-92.
    [104]李永红.大直径联接螺栓预紧的一种新方法[J].山西冶金,2006,(4):26-27.
    [105]杨盛福.螺栓的液压拉伸预紧[J].机床与液压,2005,(8):149-150.
    [106] McMeeking R M, Landis C M, Jimenez S M A. A principle of virtual work forcombined electrostatic and mechanical loading of materials[J]. International Journal ofNon-Linear Mechanics.2007,42(6):831-838.
    [107]李冬霞.管道横截面上正应力的形状系数法分析.[J]郑州纺织工学院学报,1998,9(2):53-54.
    [108] Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE Int Conf on NeuralNetworks.1995:1942-1948.
    [109] Shi Y, Eberhart R. A modified particle swarm optimizer[C].IEEE World Conf onComputational Intelligence.1998:69-73.
    [110]张顶学,关治洪,刘新芝.基于动态种群结构的粒子群算法及仿真研究[J].系统仿真学报,2008,20(22):6151-6152.
    [111]张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法.[J]控制与决策,2008,23(11):1253-1257.
    [112] Riget J, Vesterstroem J S. A Diversity Guided Particle Swarm Optimizer-the ARPSO[R].Denmark: University of Aarhus,2002:1-4.
    [113]付丹丹.基于改进粒子群算法的多目标优化研究[D].哈尔滨工程大学硕士学位论文,2012:11-12
    [114]魏武,郭燕.基于拥挤距离的动态粒子群多目标优化算法[J].计算机工程与设计,2011,32(4):1422-1424.
    [115]刘衍民粒子群算法的研究及应用[D]山东师范大学博士学位论文,2011:72-73.
    [116]刘然,孙建忠,罗亚琴,等.多电机滑模环形耦合同步控制策略研究[J].中国机械工程,2010,21(22):2662-2664.
    [117] Perez-Pinal F J,Calderon G. Araujo-Vargas I. Relative coupling strategy[C].IEEEInternational Electric Machines and Drives Conference,2003,1162-1166.
    [118] Shih Y T,Chen C S, Lee A C.A novel cross-coupling control design for bi-axismotion[J].International Journal of Machine Tools and Manufacture,2002,42(14):1539-1548.
    [119]曹玲芝,李春文,牛超,等.基于相邻交叉耦合的多感应电机滑模同步控制[J].电机与控制学报,2008,12(5):586-592.
    [120]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007,27(15):59-63.
    [121]靳宝全.基于模糊滑模的电液位置伺服控制系统[M].北京:国防工业出版社,2011:16-19.
    [122]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:35-36.
    [123]张晓光,赵克,孙力,等.永磁同步电机滑模变结构调速系统动态品质控制[J].中国电机工程学报,2011,31(15):47-51.
    [124]赵春梅.垫片密封失效分析及垫片的选用[J].炼油与化工,2009,20(3):54-55.
    [125]陶宁.法兰密封及垫片选型[J].炼油技术与工程,2004,(10):39-41.
    [126]蔡仁良.压力容器螺栓法兰连接规范设计新方法[J].压力容器,1997(5):41-43.
    [127]马玉坤,陈斌武,张华.钢制法兰的应用与探讨[J].化工设备与管道,2010,47(2):45-48.
    [128]蔡仁良,张娅莉.压力容器及管道法兰新的计算方法[J].压力容器,2002,(5):5-9.
    [129]顾伯勤,李新华,田争.静密封设计技术[M].北京:中国标准出版社,2004:59-63.
    [130]蔡任良,周慧君,刘正弦.新的法兰螺栓载荷设计方法[J].化工设备设计,1994,(2):14-17.
    [131] Van Campen,D.H. A systematic bolt-tightening procedure for reactor vessel flange[J].Pressure Vessel Technology,1969(1):131-141.
    [132] Bibel G, Ezell R.Bolted flange assembly: Preliminary elastic interaction data andimproved bolt-up procedures[J]. Bulletin Welding Research Council,1996(408):1-13.
    [133] Bibel G, Ezell R. An improved flange bolt-up procedure using experimentallydetermined elastic interaction coefficient[J].Pressure Vessel Technoly,1992,114:439–443..
    [134] Fukuoka T, Takaki T. Finite element simulation of bolt-up process of pipe flangeconnections [J]. Journal of Pressure Vessel Technology,2001,123(3):282-286.
    [135] Nassar S A,Alkelani A A. Clamp Load Loss due to Elastic Interaction and GasketCreep Relaxation in Bolted Joints[J].Journal of pressure vessel technology2006,128(3):394-401.
    [136]谢林君,任欣,周深彪,等.高压容器封头螺柱预紧过程中的弹性相关性[J].动力工程学报,2010,30(9):720-725.
    [137]刘明.螺栓法兰密封结构优化预紧施工方案研究[D].大连理工大学硕士学位论文,2011:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700