用户名: 密码: 验证码:
亚熔盐法钒渣多元体系分离基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统钠化焙烧提钒工艺资源利用率低、能耗高、废水废气环境污染严重等急切需求,中国科学院过程工程研究所基于亚熔盐化工冶金清洁生产技术平台的长期积累,提出了具有重大原创性的亚熔盐法钒渣清洁生产工艺,新工艺可在相对温和的反应条件下,实现钒渣中钒、铬资源的高效同步提取。本研究在钒渣亚熔盐法反应转化研究的前期工作基础上,针对钒、铬组分的后续分离问题,依据相平衡是物质结晶分离的基础,用等温法测定了新工艺所涉及体系的溶解度数据,构建了溶解度相图,建立了亚熔盐法多元复杂体系中钒酸钠、硝酸钠、铬酸钠的结晶分离方法,为亚熔盐法钒渣清洁生产分离工艺设计及优化提供了理论依据。论文主要研究内容如下:
     (1)针对亚熔盐新工艺中钒酸钠、硝酸钠和铬酸钠的分离工艺设计,测定了40℃和80℃时NaOH-NaNO_3-Na_3VO_4-Na_2CrO_4-Na_2SiO_3-H_2O体系及其子体系的溶解度数据,并绘制了相应的溶解度相图。基于上述基础数据,设计提出了钒酸钠、硝酸钠和铬酸钠的结晶分离方法,即在NaOH浓度小于300g/L时采用冷却结晶的方法可实现钒酸钠分离;将分离钒酸钠后的溶液蒸发至400g/L,然后降温至40℃进行冷却结晶可实现硝酸钠分离,将结晶母液继续蒸发至NaOH浓度为500g/L,在80℃时结晶分离,可实现铬酸钠的分离。
     (2)对所设计的钒酸钠、硝酸钠和铬酸钠结晶分离方法进行了工艺模拟。通过测定40℃、60℃和80℃三个温度下混合溶液在蒸发和冷却过程的浓度变化,证实了上述结晶工艺方案的可行性。
     (3)基于所研究溶解度数据和溶解度相图,用图表示了多元体系中物质间存在的相互影响,探讨了其对结晶分离工艺的影响。
     (4)模拟了NaOH-H_2O、NaOH-NaNO_3-H_2O和NaOH-Na_3VO_4-H_2O体系离子的水合作用,得出了各个离子的水合半径和水合数,并根据所得出的数据,解释了NaOH溶液中硝酸钠和钒酸钠的溶解度随碱浓度增加逐渐减小的趋势。
There are many disadvantages in the traditional roasting technology for extracting vanadium, such as low vanadium and chromium extraction efficiency, serious environmental pollution and etc. The sub-molten salt clean production process for processing vanadium-slag was proposed by the Institute of Process Engineering, Chinese Academy of Sciences, which can achieve high efficiency extraction of vanadium and chromium at relatively mild reaction conditions, and eliminate the pollution of waste gas at the source. Based on the previous work on the conversion of vanadium-slag by sub-molten salt method, the gold of this research is to solve the following separation problem. As phase equilibrium is the foundation of crystallization separation, this dissertation studied the separation method of sodium chromate, sodium nitrate, sodium silicate in the sub-molten salt medium by using isothermal method to determine the solubility of the involved system, which can provide the theoretical basis for the process design and optimization of the sub-molten salt technology.
     This paper mainly studies the following contents:
     (1) For the separation of sodium vanadate, sodium chromateand sodium nitrate in the sub-molten salt process, the solubility of NaOH-NaNO_3-Na_3VO_4-Na_2CrO_4-Na_2SiO_3-H_2O system and its sub-systems were determined at 40℃and 80℃. Based on the solubility, a specific crystallization separation method was proposed, which is to separate sodium vanadate via cooling crystallization when the NaOH concentration is below 300g/L, then to evaporate the solution at 80℃to NaOH 400g/L, and then cooling to 40℃for sodium nitrate crystallization. Sodium chromate can be separated by evaporating the solution to NaOH about 500g/L and separating at 80℃.
     (2) The proposed crystallization process for sodium vanadate, sodium chromateand sodium nitrate was simulated to verify its feasibility by determining the concentration changes in the evaporating and cooling process.
     (3) The interaction between various substances and its effects on the separation process were analyzed on the basis of the above-determined solubility.
     (4) Hydration effects of the NaOH-H_2O, NaOH-NaNO_3-H_2O and NaOH-Na_3VO_4-H_2O were simulated, and the hydration radius and hydration numbers of the ions were obtained, which can explain the decreasing tendency of the solubility of sodium nitrate and sodium vanadate as the NaOH concentration increasing.
引文
[1]刘世友,钒的应用与展望,稀有金属与硬质合金, 2000, (2), 58-61
    [2]云正宽,冶金工程设计,北京:冶金工业出版社, 2006
    [3]姬云波,童雄,叶国华,提钒技术的研究现状和背景,国外金属矿选矿,2007, 44(5), 10-13, 37
    [4] R.R. Moskalyk, A.M. Alfantazi, Processing of vanadium: a review, Minerals Engineering, 2003(16),793-805
    [5]漆明鉴,从石煤中提钒现状及前景,湿法冶金, 1999(4), 1-10
    [6]汪会生,石煤提钒钠化焙烧技术分析,矿冶工程, 1994, 14(2), 49-52
    [7]肖松文,梁经东,钠化焙烧提钒机理研究的新进展,矿冶工程, 1994,14(2), 53-55
    [8]陈厚生,钒渣石灰焙烧提取V2O5工艺研究,钢铁钒钛, 1992, 13(6), 1-9
    [9]杨静翎,酸浸法提钒新工艺的研究,北京化工大学学报, 2007, 34(3),254-257
    [10]潘勇,于吉顺,吴红丹,石煤提钒的工艺评价,矿业快报, 2007, 23(4), 10-13
    [11]谭爱华,某石煤钒矿空白焙烧-碱浸提钒工艺研究,湖南有色金属, 2008,24(1), 24-26,57
    [12]张德芳,无污染提钒工艺试验研究,湖南有色金属, 2008, 21(6), 16-17
    [13]王雪松,钒钛磁铁矿直接还原技术探讨,攀枝花科技与信息, 2005, 30(1), 3-8
    [14]董元篪,武杏荣,余亮,含钒钢渣中钒再资源化的基础研究,中国工程科学, 2007, 9(1), 63-68
    [15]张蕴华,五氧化二钒的生产工艺及其污染治理,广东化工, 2006, 33(4), 77-79
    [16]恩.阿.瓦托林,钒渣的氧化,北京:冶金工业出版社, 1982
    [17] L.Luo, T.Miyazaki, A.Shibayama, W.Yen T.Fujita, A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap, Minerals Engineering, 2003
    [18] B.Voglauer, A.Grausam, Reaction-kinetics of the vanadium roast processusing steel slag as secondary raw material, Proceedings of the Conference on Processing & Disposal of Mineral Industry Wastes’03’, 2003
    [19] K. Murase, K-I Nishikawa, T Ozaki, K-I Machida, Recovery of vanadium, nickl and magnesium from a fly ash of bitumenin-water emulsion by chlorination and chemical transport, Journal of Alloys and Compounds ,1998
    [20]彭明福,邓孝伯,多膛炉焙烧转炉钒渣炉料结构的优化,钢铁钒钛, 1998, 19(4), 36-40
    [21]张中豪,王彦恒,硅质钒矿氧化钙化焙烧提钒新工艺,化学世界, 2000, 41(6), 290-292
    [22]曹来宗,刘代俊,高丽花等,亚熔盐法浸取钒的试验研究,钢铁钒钛,2008, 29(2), 1-4
    [23]有色金属提取冶金手册,北京:冶金工业出版社, 2002
    [24]张懿,郑诗礼,原子经济性,见:宋瑞祥主编,零排放:后工业社会的梦想与现实,北京:中国环境科学出版社, 2003
    [25]张懿,绿色过程工程,第190次香山科学会议“过程工程中的复杂系统”学术研讨会,北京: 2002
    [26] Zhang Y, Li Z H, Qi T, Zheng S L, Li H Q, Xu H B, Green Manufacturing Process of Chromium Compounds, Environmental Progress (in press)
    [27]段淑贞,乔芝郁,熔盐化学,北京:冶金工业出版社, 1990
    [28]张懿,资源利用的原子节约反应新过程与循环系统,第198次香山科学会议“资源利用生态化和生态工业系统”学术研讨会,北京:2002
    [29]张懿,周思毅,刘英杰,电镀污泥及铬渣资源化实用技木指南,北京:中国环境科学出版杜, 1997
    [30]张蚌,李佐虎,王志宽,陈家镛,绿色化学与铬盐工业的新一代产业革命,化学进展, 1998, l0(2): 172
    [31]齐涛,铬盐清洁生产新工艺资源和能源综合利用,中国科学院化工冶金研究所博士后报告, 1997
    [32]胡庆福,提高镁回收率的逾径及效益分析,化工进展, 1997, (2), 62
    [33]张懿,绿色过程工程,过程工程学报, 2001, 1(1), 10-15
    [34]张懿,陈家镛,刘会洲,新一代资源回收-循环集成技术与生态化产业体系,化工进展, 2000, 19(12), 10-12
    [35] Manahan SE, Industrial ecology: environmental chemistry and hazardous waste. Boca Raton, FL: Lewis Publishers, 1999
    [36] Yang RC, The study on recovery of alkali and refinement of products in cleanproduction of chromate, PhD Thesis, Institute of Process Engineering, Chinese Academy of Sciences, Beijing; 2001
    [37] Li JW, Preparation of chromic oxide by reduction of potassium dichromate with carbon black, Postdoctoral report, Institute of Process Engineering, Chinese Academy of Sciences, Beijing; 2001
    [38]齐涛,张懿,铬渣零排放绿色化工新过程,化工冶金, 1999, 20(21): 92-97
    [39]李迎辉,亚熔盐反应-熟化新工艺溶出一水硬铝石矿的基础研究[硕士学位论文],北京:中国科学院过程工程研究所, 2002
    [40]元炯亮,高浓介质强化处理一水硬铝石矿新工艺的基础研究[博士学位论文],北京:中国科学院过程工程研究所, 1999
    [41]郭晋梅,活化—拜耳强化溶出工艺试验研究[硕士学位论文],沈阳:东北大学, 2002
    [42]郑诗礼,杜浩,王少娜等,一种液相氧化分解钒渣的方法,中国发明专利,申请号201010034089.5
    [43]郑诗礼,杜浩,王少娜等,一种使用氢氧化钠熔盐分解含铬钒渣的方法,中国发明专利,申请号201010034087.6
    [44]牛自得,程芳琴,水盐体系相图及其应用,天津:天津大学出版社, 2002
    [45]顾菡珍,叶于蒲,相平衡和相图基础,北京:北京大学出版社, 1991
    [46]赵天渊,曾之平,任宝增等,水盐体系相图,北京:化学工业出版社, 1995
    [47]梁葆民,水盐体系相图原理及应用,北京:轻工业出版社, 1996
    [48] Mullin J W, Crystallization,Oxford:Butterworth-Heinemann, 1993
    [49]黄子卿,电解质溶液理论导论,北京:科学出版社, 1964
    [50]白同春,卢锦梭,非水溶液盐效应的静电作用研究,河北师范大学学报,1989(2), 27-30
    [51]白同春,卢锦梭,全国第四届溶液化学及三热论文报告会论文集, 1988, 2, 45
    [52]王新华,林洁,周荣章等,平衡条件下铁水中硅与钒的氧化分离,钢铁, 1988(7),45-48
    [53]王新华,林洁,周荣章等,含钒铁水预脱硅时硅钒分离的数学模拟,钢铁, 1991(7), 32-35
    [54]张敏祥,朱鼎,彭锋等,上海有色金属工业志, 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700