用户名: 密码: 验证码:
水中气泡图像处理方法及运动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液两相流场的测量是目前多相流体力学研究中的一个难点。其中,水中气泡的运动机理和规律是气液两相流中的基本问题。研究气泡的特征参数及运动特性,对于指导两相流实验系统的设计、有效控制各种化学反应过程具有重要意义,并有助于进一步深入理解两相流的内部流动机理。本课题运用数字图像处理与分析技术,研究了对水中上升气泡的多种运动特性,主要研究工作包括以下几个方面:
     (1)为了获得不同生成条件下水中气泡的2D平面和3D空间的图像序列,建立了一套可视化两相流场图像采集实验系统;分别对图像的去噪、二值化、填充、边缘检测等预处理算法进行了讨论,并提出了一种基于图像背景像素点传染的气泡填充算法,实现了对边缘不闭合气泡的良好填充,进而实现了气泡特征参数的顺利提取;并通过对实验图像进行标定处理,计算了图像的缩放系数。在此基础上,对气泡的运动特性进行了研究和讨论。
     (2)利用图像技术对初始生成气泡的体积进行了计算,通过分析实验测量数据,提出了改进的气泡生成体积预测模型,解决了气体体积流量由小到大过渡时期的气泡体积难预测的问题,并提高了预测精度;通过对稳定上升时的单气泡进行受力分析,建立受力平衡方程,并结合数字图像测量到的气泡速度、加速度等参数,推导出了稳态上升气泡的体积计算公式;对于存在较弱相互作用的上升气泡,则介绍了一种基于Hough变换的3D气泡椭球体重构的方法,从而可以估测气泡体积。
     (3)提出了一种将贴标签法、互相关算法和小波多尺度分析法相结合的轨迹跟踪方法,对多个气泡同时上升的情况实现了良好的跟踪,在提高运算速度的同时保证了跟踪精度;观察了气泡轨迹的由线性上升到“之”字形上升,再到螺旋上升的转变过程,并讨论了气泡脱离频率对稳态上升时刻气泡轨迹的影响;通过观察气泡初始生成时期的上升速度曲线的震荡特性,将其划分为4个区域:气泡生长区、速度增长区、速度下降区和气泡稳态上升区,且同一工况下生成的气泡的初始速度在前三个区域具有较好的重复性;并进一步讨论气泡大小、气泡纵横比和气泡脱离频率对气泡末速度的影响,表明气泡的末速度与气泡的生成条件和气泡上升时的变形程度密切相关。
     (4)通过观察不同气体流量下生成气泡的高速图像,以气泡生成的周期性和气泡间相互作用的表现形式为依据,将气泡的生成流型分为5类:单气泡上升、气泡间存在相互作用但不发生聚并、气泡间存在聚并与破碎、间歇性喷射流、喷射流,对各种流型的运动特征进行了详细的描述;提取了基于GLCM和GLGCM的多种图像纹理特征,通过特征选择寻找最优的特征组合方式,并利用SVM多分类器对气泡的生成流型进行识别,实验结果表明StARMiner算法选择的纹理特征组合效果最佳,用于气泡生成流型时的识别率可达96%。
The measurement of gas-liquid two-phase flow is one of the difficult issues in hydromechanics research field. The dynamic motion and mechanism of bubble rising in water is a basic subject for gas-liquid two-phase flow. The research of bubble parameter and behavior is significant for experimental system design and chemical reaction control and also helpful for the further understand of the gas-liquid two-phase flow mechanism. In the present work, the dynamic characteristics of bubble rising in water were studied based on digital image processing technique. The main conclusions can be draw as follows:
     (1) In order to get the image sequences with 2D plane and 3D space of bubbles generated at different situation, a suit of visible gas-liquid two-phase flow filed with video systems is established. Digital image processing methods of removing noises, binaryzation, filling bubbles and detecting edges were studied. Especially, the bubble filled method was improved to fill the bubbles with edge opening. And several bubble parameters can be extracted from the images. The scale coefficient, which is the ratio of the real distance and pixel distance, was acquired by images calibration method. Then, several bubble characters were studied based on the digital image processing method.
     (2)The formed volume of bubble were calculated by digital image processing. An improved model for the formed volume of bubble, with high accuracy and wide adaptive flow rate, was proposed based on the experimental data analysis. For the steady rising bubble, a volume computing formula was derived based on the force balance equation. The parameters (such as rising velocity and acceleration) used in the formula were measured from the bubble image by digital image processing method. And a 3D ellipsoid model was established based on Hough transition, which can be used to calculate the volume of bubbles with weak interaction.
     (3) In order to get the tracks of multi-bubble rising in the tank, an improved method based on the combination of labeling method, cross correlation method and wavelet multi-scale transform is proposed. This method not only saves the computing time, but also ensures the tracking accuracy. The process of bubble rising begin from linear to zigzag, and then to helical was investigated. And, the correlation between the detachment frequency and the bubble track was analyzed. The rising velocity of the formed bubble was divided into four regions based on the oscillating characteristics: bubble growing region, velocity increasing region, velocity decreasing region and the steady rising region. The first three regions have good repeatability when the bubbles generated at the same working situation. By discussing the impacts of the bubble size, aspect ratio and detachment frequency on the terminal velocity, we found that the terminal velocity is close related to the generating conditions and the distorting extent.
     (4) According to the periodicity of bubble formation and the appearance of bubble interaction at different gas flow rate, the bubble formed phenomena was classified into 5 regimes: single bubbling, bubbling in groups without coalescence, bubbling with coalescence and break up, chaining and jetting. And the main characteristics of each regime were detailed based on the image sequences. Several textural features based on GLCM and GLGCM were extracted and the best feature combination approach was selected by feature selection method. Then, bubble formed regimes were identified based on SVM multi-classifier. The Experimental results have shown that the feature combination selected by the StARMiner algorithm is most efficient for bubble formed regime recognition, the recognizing rate of which can reach up to 96%.
引文
[1]陈学俊,陈立勋,周方德,气液两相流与传热基础,北京:科学出版社,1995
    [2]周云龙,孙斌,陈飞,气液两相流流型智能识别理论及方法,北京:科学出版社,2007
    [3]刘春嵘,周显初,胡和敖德,气泡在波浪中运动的实验研究,水动力学研究与进展,1997,12(3):315-321
    [4]李正彬,李泰源,宋广哲等,采用气泡流动装置的蜂窝型SCR催化剂的再生方法,韩国,发明,200510117054,2006年5月10日。
    [5]李新海,陈新民,莫鼎成等,液-液界面上反应生成气泡时的传质,有色金属(冶炼部分),1992,3:27-30
    [6]张瑞英,杨贵林,流化床催化反应器放大及其临界直径的探讨,化学工程师,1989,1:35-37
    [7]陈致泰,李世刚,韩光瑶等,微气泡纯氧曝气技术用于河湖复氧治理,水科学与工程技术,2008,1:17-19
    [8]郭瑾珑,曝气两相流中氧传质的研究:[硕士学位论文],西安;西安理工大学,2000
    [9]赵晓飞,尾流光特性研究中气泡图像的处理算法:[硕士学位论文],西安;中国科学院研究生院,2005
    [10] Cole R, Rohsenow W M, Correlation of bubble departure diameters for boiling of saturated liquids, Chemical Engineers Progress Symposium Series, 1966, 65(92): 211-213
    [11] Stewart J K, Cole R, Bubble growth rates during nucleate pool boiling at high jakob numbers, International Journal of Heat and Mass Transfer, 1972, 15(4): 655-663
    [12] McFadden P W, Grassmann P, The relation between bubble frequency and diameter during nucleate pool boiling. International Journal of Heat and Mass Transfer, 1962, 5(3-4): 169-172
    [13]董少敏,单个气泡在静水中近壁区域运动规律的图像测量研究:[硕士学位论文],西安;西安理工大学,2008
    [14]陈祖茂,郑冲,冯元鼎,用于测定多相流体系内气泡特性的微型电导测针,石油化工,1994,23(1):46-50
    [15] Brattberg T, Chchanson H, Toombes L, Experimental investigations of free-surface aeration in the developing flow of two-dimensional water jets,Journal of Fluids Engineering, 1998, 120(4): 738-744
    [16] Hunag J Q, Li F X, Dissipative effects of an isolated bubble in water on the sound wave, Applied Mathematics and Mechanics, 1994, 15(6): 579-584
    [17]戴光清,杨永全,吴持恭,掺气射流水气两相流测试研究,四川联合大学学报(工程科学版),1997,1(1):1-6
    [18] Han J H, Kim S D, Radial dispersion and bubble characteristics in three-phase fluidized beds, Chemical Engineering Communications, 1990, 94(1): 9-26
    [19]施丽莲,基于数字图像识别技术的气液两相流参数检测的研究:[博士毕业论文],浙江;浙江大学,2004
    [20]杨春信,吴玉庭,袁修干等,核态池沸腾中气泡生长和脱离的动力学特性——气泡动力学研究回顾,热能动力工程,1999,14(82):246-249
    [21]张炎,黄为民,气泡大小对反应器内氧传递系数的影响,应用化工,2005,34(12):734-740
    [22]彭健新,周光平,梁召峰,气泡体积比对流体中超声声场分布的影响,华南理工大学学报(自然科学版),2008,36(8):128-131
    [23] Kogawa H, Shobu T, Futakawa M, et al., Effect of wettability on bubble formation at gas nozzle under stagnant condition, Journal of Nuclear Materials, 2008, 377(1): 189-194
    [24] Peng Y, Chen F, Song Y Z, et al., Single bubble behavior in direct current electric field, Chinese Journal of Chemical Engineering, 2008, 16(2): 178-183
    [25] Jiang S K, Fan W Y, Zhu C Y, et al., Bubble formation in Non-Newtonian using laser image measurement system, Chinese Journal of Chemical Engineering, 2007, 15(4): 611-615
    [26] Sina G, Payam R, David S N, The effect of gas-injector location on bubble formation in liquid cross flow, Physics of Fluids, 2010, 22(4): 1-15
    [27] Busciglio A, Vella G, Micale G, et al., Experimental analysis of bubble size distributions in 2D gas fluidized beds, Chemical Engineering Science, 2010, 65(16): 4782-4791
    [28] David A, Two-phase flows in chemical engineering, New York: Cambridge University Press, 1981 (沈庆阳等译,化学工程中的两相流,北京:化学工业出版社,1987)
    [29] Kasimsetty S K, Theoretical modeling and correlational analysis of single bubble dynamics from submerged orifices in liquid pools: [Master of Science (MS)], Pilani, India: Division of Research and Advanced Studies of the University of Cincinnati, 2008
    [30] Krevelen D W V, Hoftijzer P J, Studies of gas-bubble formation: calculation of interfacial area in bubble contactors, Chemical Engineering and Progressing, 1950, 46 (1): 29-35
    [31] Datta R L, NAPIER D H, Newitt D M, The properties and behavior of gas bubbles formed at a circular orifice, Transactions of the Institution of Chemical Engineers, 1950, 28: 14-26
    [32] Coppock P D, Meiklejohn G T, The behavior of gas bubbles in relation to mass transfer, Transactions of the Institution of Chemical Engineers, 1951, 29: 75-86.
    [33] Davidson L, Amick E H, Formation of gas bubbles at horizontal orifices, American Institute of Chemical Engineering Journal, 1956, 2(3): 337-342
    [34] Davidson J F, Schüler B O G, Bubble formation at an orifice in a viscous liquid, Transactions of the Institution of Chemical Engineers, 1960, 38: 144-154
    [35] Wraith A E, Two Stage Bubble Growth at a Submerged Plate Orifice, Chemical Engineering Science, 1971, 26(10): 1659-1671
    [36] Anagbo P E, Brimacombe J K, Wraith A E, Formation of ellipsoidal bubbles at a free-standing nozzle, Chemical Engineering Science, 1991, 46(3): 781-788
    [37] Gnyloskurenko S V, Byakova A V, Raychenko O I, Influence of wetting conditions on bubble formation at orifice in an inviscid liquid: Mechanism of bubble evolution, Colloids and Surfaces, 2003, 229(1-3): 19-32
    [38]郭烈锦,两相流与多相流动力学,西安交通大学出版社,2002,410-415
    [39] Jackob M, Heat transfer, Wiley, New york, 1949, 1: 536-539
    [40] Zuber N, Hydrodrodynamic aspects of boiling heat transfer: [Ph. D. Thesis], Los Angeles; University of California, 1959
    [41] Ivey H J, Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling, International Journal of Heat and Mass Transfer, 1967, 10(8): 1023-1040
    [42] Tomiyama A, Zun I, Higaki H, et al., A three-dimensional particle tracking method for bubbly flow simulation, Nuclear Engineering and Design, 1997, 175(1-2): 77-86
    [43] Takagi S, Matsumoto Y, Huang H X, Numerical analysis of a single rising bubble using boundary-fitted coordinate system, The Japan Society of Mechanical Engineers (JSME International Journal), 1997, 40(1): 42-50
    [44] Takada N, Misawa M, Tomiyama A, et al., Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method, Computer Physics Communications, 2000, 129(1-3): 233-246
    [45] Olmos E, Gentric C, Vial C, et al., Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up, Chemical Engineering Science, 2001, 56(21-22): 6359-6365
    [46] Pozrikidis C, Three-dimensional oscillations of rising bubbles, Engineering Analysis with Boundary Elements, 2004, 28(4): 315-323
    [47]陈斌,Kawamura T, Kodama Y,静止水中单个上升气泡的直接数值模拟,工程热物理学报,2005,26(6):980-982
    [48] Ohta M, Imura T, Yoshida Y, et al., A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids, International Journal of Multiphase Flow, 2005, 31(2): 223-237
    [49] Han L C, Liu Y J, Luo H A, Numerical simulation of gas holdup distribution in a standard rushton stirred tank using discrete particle method, Chinese Journal of Chemical Engineering, 2007, 15(6): 808-813
    [50] D′?az M E, Iranzo A, Cuadra D, et al., Numerical simulation of the gas–liquid flow in a laboratory scale bubble column- Influence of bubble size distribution and non-drag forces, Chemical Engineering Journal, 2008, 139(2): 363-379
    [51] Suffman P G, On the rise of small air bubbles in water, Journal of Fluid Mechanics, 1956, 1(3): 249-275
    [52] Benjamin T B, Hamiltonian theory for motions of bubbles in an infinite liquid. Journal of Fluid Mechanics, 1987, 181: 349-379.
    [53] de Vries A W G, Path and wake of a rising bubble: [Ph.D. Thesis], The Netherlands; University of Twente, 2001
    [54] Zun I, Groselj J, The structure of bubble non-equilibrium movement in free-rise and agitated-rise conditions, Nucllear Engineering and Design, 1996, 163(1): 99-115
    [55]程文,周孝德,郭瑾珑,李华,水中气泡上升速度的实验研究,西安理工大学学报,2000,16(1):57-60
    [56] Ellingsen K, Risso F, On the rise of an ellipsoidal bubble in water, oscillatory paths and liquid-induced velocity, Journal of Fluid Mechanics, 2001, 440: 235-268..
    [57] Tomiyama A, Celata G P, Hosokawa S, et al., Terminal velocity of single bubbles in surface tension force dominant regime, Int J Multiphase Flow 2002, 28(9): 1497-1519
    [58] Brenn G, Kolobaric V, Durst F, Shape oscillations and path transition of bubbles rising in a model bubble column, Chemical Engineering Science, 2006, 61(12): 3795-3805
    [59] Celata G P, D’Annibale F, Marco P D, et al., Measurements of rising velocity of a small bubble in a stagnant fluid in one and two-component systems, Expermental Thermal and Fluid Science, 2007, 31(6): 609-923
    [60] Stokes G G, Mathematical and Physical Papers, London: Cambridge University Press, 1880
    [61] Davies R M, Taylor G I, The mechanics of large bubbles rising through liquids in tubes, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1950, 200(1062): 375-390
    [62] Mendelson H D, The prediction of bubble terminal velocities from wave theory, American Institute of Chemical Engineering Journal, 1967, 13(2): 250-253
    [63] Jamialahmadi M, Branch C, Muller-Steinhagen H, Terminal bubble rise velocity in liquids, Chemical Engineering Research and Design, 1994, 72: 119-122
    [64] Fan L S, Tsuchiya K, Bubble wake dynamics in liquids and liquid–solid suspensions, Boston, Mass: Butterworth–Heinemann, 1990.
    [65] Talaia M A R, Terminal velocity of a bubble rise in a liquid column, International Journal of Applied Science, Engineering and Technology, 2007, 28: 264-268
    [66] Miyahara T, Iwata M, Takahashi T, Bubble formation pattern with weeping at a submerged orifice, Journal of Chemical Engineering of Japan, 1984, 17(6): 592-597
    [67] Kyriakides N K, Kasterinakis E.G., Nychas S G, Bubbling from nozzles submerged in water transitions between bubbling regimes, The Canadian Journal of Chemical Engineering, 1997, 75(4): 684-691
    [68] Tufaile A, Sartorelli J C, Chaotic behavior in bubble formation dynamics, Physica A: Statistical Mechanics and its Applications, 2000, 275(3-4): 336-346
    [69] Badam V K, Buwa V, Durst F, Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition, The Canadian Journal of Chemical Engineering, 2007, 85(3): 257-267
    [70] Zhang L, Shoji M, A periodic bubble formation from a submerged orifice, Chemical Engineering Science, 2001, 56(18): 5371-5381
    [71] Mosdorf R, Shoji M, Chaos in bubbling-nonlinear analysis and modeling, Chemical Engineering Science, 2003, 58(17): 3837-3846
    [72] Tufaile A, Sartorelli J C, Bubble and spherical air shell formation dynamics, Physicals Review E, 2002, 66(5): 056204.1-056204.7
    [73]飞思科技产品研发中心编著,MATLAB 6.5辅助图像处理,北京:电子工业出版社,2003,163-169
    [74]李小燕,蔡晋辉,利用数字图像识别技术的两相流参数检测研究,原子能科学技术,2006,40:15-18
    [75]许联峰,水气两相流动的数字图像测量方法及应用研究:[博士学位论文],西安;西安理工大学,2004
    [76]李涛,小波理论及其在图像处理中的应用:[硕士学位论文],西安;西安电子科技大学,2001
    [77] Donoho D L, Johnstone I M, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 1994, 81(3): 425-455
    [78]吕洁,王金海,郑羽,基于图像边缘检测的小波去噪算法,天津工业大学学报,2007,26(5):64-67
    [79]陈武凡,小波分析及其在图像处理中的应用,北京:科学出版社,2002,156-159
    [80]高雪娟,高占国,图像小波阈值去噪算法研究,电光与控制,2007,14(6):148-151
    [81]王香菊,图像去噪方法及应用,科技情报开发与经济,2007,17(27):213-215
    [82]王爱玲,叶明生,邓秋香,MATLAB R2007图像处理技术与应用,电子工业出版社,北京,2008,256-257
    [83]付忠良,一种新的图像阈值选取方法,计算机应用,2000,20(10):13-15
    [84]施丽莲,周泽魁,任沙浦,垂直管道中气液两相流参数图像检测方法,流体机械,2004,32(9):4-9
    [85]张果,李晓娟,张宪,基于迭代阈值和形态学的图像边缘检测,微计算机信息,2007,23(9):298-299
    [86]吴冰,秦志远,自动确定图像二值化最佳阈值的新方法,绘测学院学报,2001,18(4):283-286
    [87]刘丽荣,戴光清,陈刚,掺气水流数字图像上气泡提取物的二值化阈值确定,水力发电,2002,11:59-61
    [88]曹莉华,图像边缘提取中的一种动态阈值获取法,小型微型计算机系统,1997,18(7):53-56
    [89] Wang H Y, Dong F, Track of rising bubble in bubbling tower based on image processing of high-speed video, Proceedings of SPIE-Sensors and Instruments, Computer Simulation, and Artificial Intelligence, Beijing, China, 2008, 7129: 07.1-6
    [90]张明亮,陈刚,许联峰等,水气两相流中稀疏气泡流动速度场的数字图像测量初探,力学季刊,2006,25(2):208-212
    [91] Zaruba A, Krepper E, Prasser H, Experimental study on bubble motion in a rectangular bubble column using high-speed video observations, Flow Measurement and Instrumentation, 2005, 16(5): 277-287
    [92] Marco P D, Grassi W, Memoli G, Experimental study on rising velocity of nitrogen bubbles in FC-72, International Journal of Thermal Sciences, 2003, 42(5): 435-446
    [93]邱茂林,马颂德,李毅,计算机视觉中摄像机定标综述,自动化学报,2000,26(1):43-55
    [94]霍龙,刘伟军,于光平,考虑径向畸变的摄像机标定及在三维重建中的应用,机械设计与制造,2005,1:1-3
    [95] Tsai R Y, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and Automation, 1987, RA-3(4): 323-344
    [96] Jennings B R, Parslow K, Particle size measurement: the equivalent spherical diameter. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1988, 419(1856): 137-149
    [97]彭燕,张东辉,丁振新,中国实验快堆虹吸破坏装置取纳口结构流体力学分析,原子能科学技术,2011,45(1):25-28
    [98]车得福,李会雄,多相流及其应用,西安:西安交通大学出版社,2007
    [99] Sherwood J D, The force on a growing bubble in potential flow, International Journal of Multiphase Flow, 1999, 25(4): 705-713
    [100]王红一,董峰,气液两相流中上升气泡体积的计算方法,仪器仪表学报,2009,30(11):2444-2449
    [101] Krepper E, Vanga B N R, Zaruba A, et al., Experimental and numerical studies of void fraction distribution in rectangular bubble columns, Nuclear and Design, 2007, 237(4): 399-408
    [102] Clift R, Grace J R, Weber M E, Bubbles, Drops, and Particles, New York: Dover Publications, Academic Press, 1978
    [103] Peebles F N, Garber H J, Studies on the motion of gas bubbles in liquids, Chemical Engineering Progress, 1953, 49(2): 88-97
    [104] Ishii M, Chawla T C, Local drag laws in dispersed two-phase flow, Argonne National Laboratory Report, 1979, ANL-79-105, NUREG/CR-1230
    [105] Grace J R, Shapes and velocities of bubbles rising in infinite liquids, Transactions of the Institution of Chemical Engineering, 1973, 51(1): 116-120
    [106] Levich V G, Physicochemical Hydrodynamics, New Jersey: Prentice-Hall, 1962
    [107] Clift R., Gauvin W H, The motion of particles in turbulent gas streams, Proceedings of Chemeca 70, 1970, 1: 14
    [108] Grace J R, Wairegi T, Nguyen T H, Shapes and velocities of single drops and bubbles moving freely Through Immiscible Liquids, Transactions of the Institution of Chemical Engineering, 1976, 54: 167-173
    [109] Tomiyama A, Kataoka I, Zun I, et al., Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal, 1998, 41(2): 472-479
    [110] Chuag M S, Lee S J, Effect of interfacial pressure jump and virtual mass terms on sound wave propagation in the two-phase flow, Journal of Sound and Vibration, 2001, 244(4): 717-728
    [111] Hibiki T, Ishii M, Life force in bubbly flow systems, Chemical Engineering Science, 2007, 62(22): 6457-6474
    [112] Drew D A, Lahey T J, The virtual mass and lift force on a sphere in rotating and straining inviscid flow, International Journal of Multiphase Flow, 1987, 13(1): 113-121
    [113] http://wenku.baidu.com/view/ec36b3d280eb6294dd886c23.html
    [114] Lipton,图像处理技术:直线检测,2002
    [115] Bian Y C, Dong F, Wang H Y, Extraction of bubble shape parameters in two-phase flow based on diagital image processing, The 2011 International Conference on Electric Information and Control Engineering, 2011, 5: 4199-4202
    [116]李利,马颂德,从二维轮廓线重构三维二次曲面形状,计算机学报,1996,19(6):401-408
    [117] Wang H Y, Dong F, A effective image matching method for bubbly flow based on wavelet transform, The 2nd International Congress on Image and Signal Processing, Tianjin, China, 2009, 1912-1916
    [118] Liu Z X, An J B, A new algorithm of global feature matching based on triangle regions for image registration, International Conference on Signal Processing Proceedings, Bei Jing, China, 2010, 1248-1251
    [119] Li L C, Yu Q F, Shang Y, et al., A new navigation approach of terrain contour matching based on 3-D terrain reconstruction from onboard image sequence, Science China Technological Sciences, 2010, 53(5): 1176-1183
    [120] Chen L J, Ren W T, Li Y K, Matching location algorithm of corn image projection based on over-segmentation, 2010 International Conference on Computer Design and Applications, 2010, 1: V1239-V1242
    [121] Zhao Z B, Wang R, A method of infrared/visible image matching based on edge extraction, Proceedings - 2010 3rd International Congress on Image and Signal Processing, 2010, 2: 871-874
    [122] Liu R, Zhang, Z X, Zhang J Q, et al., Multi-image matching technology and its application of investigation of traffic accident, International Forum on Information Technology and Applications, 2009, 1: 528-531
    [123] Madzin H, Zainuddin R, Feature extraction and image matching of 3D lung cancer cell image, Soft Computing and Pattern Recognition, 2009, 511-515
    [124]刘斌,杨小平,任涵文,基于图像匹配的自动点胶系统,机械设计与制造,2007,9:21-23
    [125]陈慧津,赵龙,陈哲,一种可靠的多光谱CCD遥感图像配准方法,微计算机信息,2010, 26(3-2):1-3
    [126] Zhu Y S, Guo C M, The research of correlation matching algorithm based on correlation coefficient, Signal Processing, 2003, 19(6): 531-534
    [127] Gui Z G, Bo Y F, Han Y, Fast algorithm of image matching by projection, Journal of Test and Measurement Technology of NCIT, 2000, 14(1): 18-20
    [128] Adrian M P, Anand R, Maximum likelihood wavelet density estimation with application to image and shape matching, IEEE Transaction Image Processing, 2008, 17(4): 458-468
    [129] Shalini G, Mehul P S, Mia K M, et al. Facial range image matching using the complex wavelet structural similarity metric, Proceedings-IEEE Workshop on Applications of Computer Vision, 2007, 21-22
    [130] Choi J E, Takei M, Doh D H, et al., Decompositions of bubbly flow PIV velocity fields using discrete wavelets multi-resolution and multi-section image method, Nuclear Engineering and Design, 2008, 238(8): 2055-2063
    [131]金上海,陈刚,许联锋等,基于小波多尺度分析的PIV互相关算法研究,水动力学研究与进展,2005,20(3):373-380
    [132]张东横,唐志航,叶鸿明等,一种气液两相流参数图像检测方法,计算机测量与控制,2006,14(5):597-599
    [133] Burch J M, Tokarski J M J, Production of multiple beam fringes from photographic scatterers, Journal of Modern Optics, 1968, 15(2): 101-111
    [134] Adrian R J, Multi-point optical measurement of simultaneous vectors in unsteady flow: A review, International Journal of Heat and Fluid Flow, 1986, 7(2): 127-146
    [135] Grant I, Liu A, Directional ambiguity resolution in particle image velocimetry by pulse tagging, Experiments in Fluids, 1990, 10(2-3): 71-76
    [136]程文,宋策,刘文洪,气液两相流中气泡速度的图像处理,工程热物理学报,2009,30(1):83-86
    [137]许自舟,曾苇,邵秘华等, DPIV技术测量流冰速度应用研究,海洋环境科学,2007,26(1):81-84
    [138] Weng W G, Liao G X , Wang X S, A diagnosing method by DPIV based on cross-correlation algorithm, Journal of Experimental Mechanics, 1999, 14(13): 323-329
    [139]胡旺,图像融合中的关键技术研究:[博士学位论文],成都:四川大学,2006
    [140] Szu H H, Telfer B A, Kadambe S L, Neural network adaptive wavelets for signal representation and classification, Optical Engineering, 1992, 31(9): 1007-1016
    [141] Zhang J, Walter G G, Miao Y B, et al., Wavelet neural networks for function learning, IEEE Transactions on Signal Processing, 1995, 43(6): 1485-1496
    [142]王红一,董峰,垂直管道水中气泡的生成尺寸与运动特性的研究,2010年中国工程热物理学会多相流学术年会,106051
    [143] Wang H Y, Dong F, Image texture features of gas/liquid two-phase flow in horizontal pipes, 7th International Conference on Multiphase Flow (ICMF), Tampa, FL USA, 2010, 7991-7997
    [144] Dutta S, Barber B J, Parameswaran S, Texture analysis of protein distribution images to find differences, Annals of Biomedical Engineering, 1995, 23(6): 772-786
    [145] Gipp M, Marcus G, Harder N, et al., Haralicks texture features computed by GPUs for biological applications, IAENG International Journal of Computer Science, 36(1): 1-10
    [146]朱福珍,吴斌,基于灰度共生矩阵的脂肪肝B超图像特征提取,中国医学影像技术,2006,22(2):287-289
    [147] Zhu H Q, Segmentation of blood vessels in retinal images using 2-d entropies of gray level-gradient co-occurrence matrix, IEEE International Conference on Acoustics, Speech and Signal Processing, 2004, 3: III509-III512,
    [148] Honeycutt C E, Plotnick R S, Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures, Computers & Geosciences, 2008, 34(11): 1461-1472
    [149] Kanda F, Kubo M, Muramoto K, Watershed segmentation and classification of tree species using high resolution forest imagery, International Geoscience and Remote Sensing Symposium (IGARSS), 2004, 6: 3822-3825
    [150]夏德深,金盛,王建,基于分数维与灰度梯度共生矩阵的气象云图识别(Ⅱ)——灰度梯度共生矩阵对纹理统计特征的描述,南京理工大学学报,1999,23(4):289-292
    [151]张崚,路威,基于小波尺度共生矩阵的分割算法在地物提取中的应用,安徽机电学院学报,2002,17(2):43-47
    [152]王振亚,金宁德,王淳等,基于图像纹理分析的两相流流型的时空演化特性,化工学报,2008,59(5):1122-1130
    [153]周云龙,陈飞,孙斌,基于灰度共生矩阵和支持向量机的气液两相流流型识别,化工学报,2007,58(9):2232-2237
    [154] Wang H Y, Dong F, Image features extraction of gas/liquid two-phase flow in horizontal pipeline by GLCM and GLGCM, 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 2009, 2-135-139
    [155]李彦鹏,张乾隆,白博峰,竖直通道内相邻气泡对上升的直接竖直模拟,热能动力工程,2007,22(4):375-379
    [156] Tramba A, Topalidou A, Visual study of an air-lift pump operating at low submergence ratios, Canadian Journal of Chemical Engineering, 1995, 73(5): 755-764
    [157] Haralick R M, Shanmugam K, Dinstein I, Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621
    [158]尹建伦,卫武迪,梁永贵,肿瘤超声图像灰度和纹理特征提取方法研究,通信技术,2009,42(9):168-170
    [159]陈静,基于纹理特征的土地利用分类研究,河北农业科学,2010,14(5):119-121
    [160]谢勤岚,胡晓勤,一种基于类内类间距离的ICA特征选择方法,通信与信息技术,现代电子技术,2009,21(308):105-108
    [161]杨翠茹,基于纹理特征的绝缘子检测方法,技术与应用,2010,7:46-52
    [162]黎维娟,卢振泰,冯前进等,基于支持向量机的脑部MR图像细分类,电路与系统学报,2010,15(1):5-9
    [163] Peng H, Long F, Ding C, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and machine redundancy, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238
    [164] Hsu C W, Lin C J, A comparaison of methods for multiclass support vector machines, IEEE Transaction on neural network, 2002, 13(2): 415-425
    [165] Zou Y X, Shi G Y, Shi H, et al., Traffic incident classification at intersections based on image sequences by HMM/SVM classifiers, Multimedia Tools and Applications, 2011, 52(1): 133-145
    [166] Nemmour H, Chibani Y, Handwritten digit recognition based on a neural SVM combination, International Journal of Computers and Applications, 2010, 32(1): 104-109
    [167] Celebi M E, Kingravi H A, Uddin B, et al., A methodological approach to the classification of dermoscopy of dermoscopy images, Computerized Medical Imaging and Graphics, 2007, 31(6): 362-373.
    [168] Keerthi S S, Lin C J, Asymptotic behaviors of support vector machines with Gaussian kernel, Neural Computation, 2003, 15(7): 1667-1689
    [169] Burges C J C, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 1998, 2(2): 121-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700