用户名: 密码: 验证码:
部分大气分子同位素的高分辨光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子光谱学自诞生以来,一直是一门重要的学科,而且也随着科技的飞速发展在不断地进步,帮助人们不断了解分子的结构和性质。现在这门学科已被广泛地应用于光化学、天文和环境科学等研究领域。特别关于大气分子的研究对于更好地了解温室效应的产生细节,大气分子的光化学性质和对臭氧层的影响,以及大气污染机制都有重要的影响。本论文的主要工作将致力于部分大气分子的同位素研究,我们的结果将有助于完善现有的光谱数据库,并修正分子的有效哈密顿量模型。
     在第一章中我们将简单介绍分子振转光谱的基本原理,以及利用有效算符来全局拟合分子振转光谱的方法。
     第二章里将介绍红外傅里叶变换光谱仪(FTS)的原理和本实验室所使用的FTS谱仪的结构;然后介绍光腔衰荡光谱(CRDS)的基本思想以及本实验室自行搭建的一套CW-CRDS装置的结构。通过对痕量乙炔气的光谱测量对装置性能进行了测试。结果表明,其在光谱分辨率达到10-4cm-1的同时,测量灵敏度也好于10-10/cm,具有定量测量和痕量检测的能力。在目前工作的0.8微米波段对乙炔气体的检测限为0.2ppmv。
     第三章研究集中于大气分子N20的几种同位素。用傅立叶变换光谱仪测量了15N14N16O(546)同位素分子在3500-9000cm-1的红外光谱,经过数据的处理和分析,获得并归属了超过15000条的N20-546谱线。获得133个谱带,其中超过100个为新观测到的谱带。通过CW-CRDS装置先后测量了14N15N16O(456)、15N14N16O(546)和15N216O(556)在6v3带附近的光谱,获得了这三个同位素分子各213、86和191条谱线,其中对N20-456和556,我们还同时观测到了它们的v2+6v3←v2热带,对这些谱带用最小二乘法获得了它们的振转光谱参数,通过对谱线线形的拟合得到了6v3冷带的谱线强度,大部分强度数据的误差估计为4%,与强度相关的跃迁偶极矩平方以及Herman-Wallis系数也一并给出。这些谱带中除N20-556的v2+6v3态未观测到微扰以外,其它的谱带都发现被微扰。通过将我们观测到的谱线位置与当前有效哈密顿量模型参数预测的数据相比较,可以认为目前的有效哈密顿模型必须进一步修正。
     第四章我们测量了自然丰度的C02气体在7123-7917cm-1波段的CW-CRDS光谱,在灵敏度(噪声等效吸收水平αmin约2×10-10cm-1)下,可以归属共2478条谱线为12C16O2、16O12C17O和16O12C18O分子的吸收线,谱线的强度从1.22×10-29到4.11×10-25cm/molecule不等,大部分谱线的强度数据精度为3%左右。在我们工作的范围内,我们观测到的谱线大大超过了Mandin获得的金星光谱(384条谱线);这些数据中的大部分也是第一次被观测到。我们也同时拟合了16012C18O的ΔP=10的有效偶极矩参数,通过对大量新数据的拟合,修正了12C16O2和16O12C18Ooe△p=11的有效偶极矩参数,这些新的参数将有助于CO2光谱数据库(CDSD)数据的更新。通过对比我们的结果与最新版本的CDSD数据,种种超过实验误差范围以外的差异表明,我们观测到的数据对进一步修正不同的EH模型参数是非常有价值的。我们还测量了自然丰度的CO2在12543-12784cm-1范围内的光谱,获得了12C16O2的4个泛频谱带,其中包括2个热带。光谱参数及跃迁偶极矩均已给出。本实验的数据与CDSD、Campargue等人的数据(仅有谱线位置)比较发现,我们的谱线位置跟Campargue是吻合的,但与CDSD差异较大,这很有可能是由于CDSD未考虑在高波数范围(>9650cm-1)的光谱数据,我们的数据将十分有助于CDSD的修正。
The molecular spectroscopy has long been an important field and achieved great progress owing to the rapid development of scientific instruments in recent years. It helps to understand the structures and properties of molecules and plays an important role in photochemistry, astrophysical and environmental applications. In particular, the studies on the atmospheric molecules is essential for a better understanding of the details of the green house effect, the influences to the ozonosphere from atmospheric photochemistry, and also the mechanism of the air pollution. The present thesis is de-voted to the studies of several atmospheric molecules including their isotopologues. The results can be applied to improve the present spectroscopy database of these im-portant molecules, and also to improve the effective Hamiltonian model.
     In chapter 1 the fundamentals of the ro-vibrational spectroscopy will be intro-duced. The basic ideas of the effective operator method toward the global fitting of the molecular spectra will be also presented.
     In chapter 2 the principle of Fourier-transform (FT) spectrometer which was ap-plied in our lab will be presented. The idea and configuration of the continues-wave (cw) cavity ring down spectroscopy (CRDS) is given. To test the performance of the cw-CRDS built in our lab, the spectroscopy of trace acetylene gas was measured. The results shows that a sensitivity of 10-10/cm, has been achieved accompanied with a spectral resolution of 10-4cm-1. The quantitative measurement and trace detection capabilities are also demonstrated. At the present working frequency of 0.8μm, the detection limit of C2H2 was determined to 0.2ppmv.
     In chapter 3 we focused on several isotopologues of the atmospheric molecule N2O. The FT spectra of 15N14N16O-enriched nitrous oxide has been recorded at the Doppler limited resolution in the 3500-9000cm-1 region. More than 15000 tran-sitions of 15N14N16O have been observed and assigned based on the global effective Hamiltonian mode. The band-by-band analysis led to the determination of the ro-vibrational parameters of totally 133 bands, in which more than 100 bands were ob-served for the first time. Then the CRDS spectra of 14N15N16O(456),15N14N16O(546) and 15N216O(556) near the 6v3 band have been recorded. In total 213,86 and 191 transi- tions were observed for the three isotopologues respectively. For N2O-456 and 556, the v2+6v3←v2 hot band was also observed. The ro-vibrational spectroscopic parame-ters of the upper states are determined from least squares fitting of the transitions. The absolute line intensities of the 6v3 cold bands have been also retrieved by a multi-line fitting procedure from the spectra with an estimated accuracy of 4%for majority of the unblened lines. The vibrational transition dipole moment values and the empirical Herman-Wallis coefficients are also presented. Except the v2+6v3 band of N2O-556, other four bands studied in this work are found to be perturbed. The comparison of the observed line positions to those predicted using effective Hamiltonian models indicates that the effective Hamiltonian model can be further improved with taking into account of the present results.
     In chapter 4, it will be presented the study of the spectra of CO2 (with natu-ral abundance)in the 7123-7917cm-1 region using a cw-CRDS spectrometer. The achieved sensitivity (noise equivalent absorption) in the order ofαmin~2×10-10cm-1) has allowed to assign 2478 transitions to the 12C16O2,16O12C17O and 16O12C18O iso-topologues, with intensities ranging from 1.22×10-29 to 4.11×10-25cm/molecule. An average uncertainty for the intensities was estimated to be 3%. It represents an impor-tant improvement as in the considered region, the most extensive set of experimental data was the early measurements from Venus spectra by Mandin which only includes 384 transitions. The majority of these lines were measured for the first time. The ef-fective dipole moment parameters of the△P=10 series of transitions in 16O12C18O were also retrieved from the fitting. The previous set of effective dipole moment pa-rameters of the△P=11 series of transitions in the principle isotopologue was refined leading to important differences for the parameters describing the vibrational and rota-tional dependencies. The obtained results will be used to improve the CDSD databank. We also compared our results to the current version of CDSD, the deviation which be-yond the experimental uncertainties illustrated that the obtained results will be valuable to improve different EH models used to generate the CDSD. The CRDS spectrum of 12C16O2 in the region of 12543-12784cm-1 has also been studied.4 overtone bands were observed, including 2 hot bands. The spectral parameters and transition dipole moments were also retrieved. The comparison with CDSD and Campargue's line posi-tion data shows that our data was in good agreement with Campargue's data, but with larger deviation from the data of CDSD. This can be a result from that the present model used in the CDSD database has not include the spectral data over> 9650cm-1. It indicates that the present data will be of particular importance to improve the quality of the CDSD database.
引文
[1]张允武,陆庆正,刘玉申:分子光谱学,2003版,中国科学技术大学出版社
    [2]I.N. Levine:Quantum Chemistry (1974)
    [3]G. Herzberg:Molecular Spectra And Molecular Structure. VolumeⅠ.1st edi-tion, Van Nostrand Reinhold Company (1944)
    [4]G. Herzberg:Molecular Spectra And Molecular Structure. VolumeⅡ.1st edition, Van Nostrand Reinhold Company (1945)
    [5]D. Papousek and M.R. Aliev, Molecular Vibrational-Rotatioal Spectra, Elsevier, Amsterdam (1982)
    [6]B. A. Andreev, A.V. Burenin, E.N. Karyakin, A.F. Krupnov, and S.M. Shapin, J. Mol. Spectrosc.62 (1976) 125-148.
    [7]Perevalov VI, Lobodenko EI, Lyulin OM, Teffo JL. Effective dipole moment and band intensities problem for carbondioxide. J Mol Spectrosc 1995; 171:435-52.
    [8]Teffo JL, Lyulin OM,Perevalov VI,Lobodenko El. Application of the effective operator approach to the calculation of 12C16O2 line intensities.J Mol Spectrosc 1998; 187:28-41.
    [9]Tashkun SA,Perevalov VI,Teffo JL,Tyuterev VG. Global fit of 12C16O2 vibrational-rotational line intensities using the effective operator approach. JQSRT 1999; 62:571-98.
    [1]吴谨光主编:近代傅里叶变换红外光谱技术及应用上卷,科学技术文献出版社,ISBN,7-5023-2214-0
    [2]M. Birk, D. Hausamann, G. Wagner, and J.W. Johns, Appl. Opt. (1996)35,2971
    [3]A. Yariv, Quantum Electronics. New York:John Wiley and Sons, third ed.1989.
    [4]Lehmann K.K, Romanini D. J. Chem. Phys.1996.105:10,263.
    [5]Kenneth W.B,editor, Marianna A.B,editor. Cavity-ringdown spectroscopy:an unltratrace-absorption measurement technique. ACS symposium series, ISSN 0097-6156:720
    [6]Born M,Wolf E. Principles of Optics[B].1999. Cambridge University Press,7th edition. ISBNO-521-642221.
    [7]O'Keefe A, Deacon D A G, Rev. Sci. Instrum.,1988,59:2544.
    [8]Pradhan M, Lindley R E, Grilli R, White I R, Martin D, Orr-Ewing A J, Appl. Phys. B.,2008,90:1.
    [9]Awtry A R, Miller J H, Appl. Phys. B.,2002,75:255.
    [10]Langridge J M, Ball S M., Shillings A J L, et al, Rev. Sci. Instrum.,2008,79: 123110.
    [11]Fiadzomor P A Y, Baker D M, Keen A M, et al, Appl. Spec.,2008,62:1354.
    [12]Welzel S, Lombardi G, Davies P B, Engeln R, et al, J. Appl. Phys.,2008,104: 093115.
    [13]Yan W B, Chen Y, Chen H, Krusen C, Woods P T, Int. J. Thermophysics.,2008, 29:1567.
    [14]Buzaianu M D, Makarov VI I, Morell G, Weiner B R, Chem. Phys. Lett.,2008, 455:26.
    [15]Scherer J J, Paul J B, O'Keefe A, Saykally R J, Chem. Rev.,1997,97:25.
    [16]Berden G, Peeters R, Meijer G, Int. Rev. Phys. Chem.,2000,172:565.
    [17]Brown S S, Chem. Rev.,2003,103:5219.
    [18]Ball S M, Jones R L, Chem. Rev,2003,103:5239.
    [19]Paldus B A, Kachanov A A, Can. J. Phys.,2005,83:975.
    [20]Mazurenka M, Orr-Ewing A J, Peverall R, et al, Annu. Rep. Prog. Chem. C,2005, 101:100.
    [21]Gao B, Jiang W, Liu A W, et al, Rev. Sci. Instrum.,2010,81:043105.
    [22]Allan D W, Proc. IEEE,1966,54:221.
    [23]Herregodts F, Kerrinckx E, Huet T R, et al, Mole. Phys.,2003,101:3427.
    [24]Rothman L S, Gordon I E, Barbe A, et al, J. Quant. Spectrosc. Radiat. Transfer, 2009,110:533.
    [25]Bruker Corporation. IFS 120HR Instrument Manual.
    [1]F.K. Tittel, A.A. Kosterev (guest eds.), Appl. Phys. B 85 (2006),171.
    [2]T. Rockmann, J. Kaiser, C. A. M. Brenninkmeijer, W. A. Brand, Gas-chromatography/isotope-ratio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide Rapid Commun. Mass Spectrom.17 (2003),1897-1908.
    [3]S.-M. Hu, O. N. Ulenikov, E. S. Bekhtereva, G. A. Onopenko, S.-G. He, H. Lin, J.-X. Cheng, and Q.-S. Zhu, J. Mol. Spectrosc.212 (2002),89.
    [4]A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin and S.-M. Hu, J. Mol. Spec-trosc.236 (2006),127.
    [5]A.-W. Liu, S.-M. Hu, C. Campy-Peyret, J.-Y. Mandin, O. Naumenko, B. Voronin, J. Mol. Spectrosc.237 (2006),53.
    [6]A.-W. Liu, J.-H. Du, K.-F. Song, L. Wang, L. Wan, and S.-M. Hu, J. Mol. Spec-trosc.238 (2006),11.
    [7]L. Wang, V. I. Perevalov, S. A. Tashkun, A.-W. Liu, S.-M. Liu, J. Mol. Spectrosc. 233 (2005),297.
    [8]L. Wang, V. I. Perevalov, S. A. Tashkun, S.-M. Liu, J. Mol. Spectrosc.234 (2005), 84.
    [9]L. Wang, V. I. Perevalov, S. A. Tashkun, K.-F. Song, S.-M. Hu, J. Mol. Spectrosc. 247 (2008),64.
    [10]A.-W. Liu, O. N. Ulenikov, G. A. Onopenko, O. V. Gromova, E. S. Bekhtereva, L. Wan, L.-Y. Hao, S.-M. Hu, and J.-M. Flaud, J. Mol. Spectrosc.238 (2006),11.
    [11]J.-L. Teffo, V. I. Perevalov, and O. M. Lyulin, J. Mol. Spectrosc.168 (1994), 390-403.
    [12]A.V. Vlasova, B.V. Perevalov, S.A. Tashkun, V.I. Perevalov, Fifteenth Symposium on High Resolution Molecular Spectroscopy, Nizhnii Novgorod (Russia).18-21 July 2006, Poster D20, p.86.
    [13]G. Guelachvili, "Proceedings of A.M.C.O.V", Paris 1975, Plenum Press.
    [14]K.-F. Song, A.-W. Liu, H.-Y. Ni, S.-M. Hu, J. Mol. Spectrosc.255 (2009),24.
    [15]Andreev B A, Burenin A V, Karyakin E N, Krupnov A F and Shapin S M. Submillimeter wave spectrum and molecular constants of N2O. J Mol Spectrosc 1976;62:125-148.
    [16]Morino I, Fabian M, Takeo H and Yamada K M T. High-Jrotational transi-tions of NNO measured with the NAIR Terahertz spectrometer. J Mol Spectrosc 1997;185:142-146.
    [17]Drouin and Maiwald F W, Extended THz measurements of nitrous oxide, N2O. J Mol Spectrosc 2006;236:260-262.
    [18]Krell J M and Sams R L, Vibration-rotation bands of 14N216O:1.2 micron-3.3 mi-cron region. J Mol Spectrosc 1974;51:492-507.
    [19]Amiot C, Vibration-rotation bands of 14N15N16O:1.6-5.7μm region. J Mol Spec-trosc 1976;59:191-208.
    [20]Guelachvili G, Absolute N2O wavenumbers between 1118 and 1343 cm-1 by Fourier transform spectroscopy. Can J Phys 1982;60:1334-1347.
    [21]Toth R A, Frequencies of N2O in the 1100 to 1440 cm-1 region. J Opt Soc Am 1986;B3:1263-1281.
    [22]Toth R A, Line-frequency measurements and analysis of N2O between 900 and 4700 cm-1. Appl Opt 1991;30:5289-5315.
    [23]Toth R A, Line positions and strengths of N2O between 3515 and 7800 cm-1. J Mol Spectrosc 1999;197:158-187.
    [24]Wang L, Perevalov V I, Tashkun S A, Gao B, Hao L Y and Hu S M, Fourier transform spectroscopy of N2O weak overtone transitions in the 1-2 μm region. J Mol Spectrosc 2006;237:129-136.
    [25]Herbin H, Picque N, Guelachvili G, Sorokin E and Sorokina I, N2O weak lines observed between 3900 and 4050 cm-1 from long path absorption spectra. J Mol Spectrosc 2006;238:256-259.
    [26]Liu A W, Kassi S, Malara P, Romanini D, Perevalov V I and Tashkun S A et al, High sensitivity CW-Cavity Ring Down Spectroscopy of N2O near 1.5 μm (Ⅰ). J Mol Spectrosc 2007;244:33-47.
    [27]Liu A W, Kassi S, Perevalov V I, Tashkun S A and Campargue A, High sensitivity CW-Cavity Ring Down Spectroscopy of N2O near 1.5 μm (Ⅱ). J Mol Spectrosc 2007;244:48-62.
    [28]Liu A W, Kassi S, Perevalov V I, Hu S M and Campargue A, High sensitivity CW-Cavity Ring Down Spectroscopy of N2O near 1.5μm (Ⅲ). J Mol Spectrosc 2009;254:20-27.
    [29]Ni Y H, Song K F, Perevalov, Tashkun S A, Liu A W, Wang L and Hu S M, Fourier-transform spectroscopy of 14N15N16O in the 3800-9000 cm-1 region and global modeling of its absorption spectrum. J Mol Spectrosc 2008;248:41-65.
    [30]Wang C Y, Liu A W, Perevalove, Tashkun S A, Song K F and Hu S M, High-resolution infrared spectroscopy of 14N15N16O and 15N14N16O in the 1200-3500 cm-1 region. J Mol Spectrosc 2009;257:91-104.
    [31]Song K F, Liu A W, Ni H Y and Hu S M, Fourier-transform spectroscopy of 15N14N16O in the 3500-9000 cm-1 region. J Mol Spectrosc 2009;255:24-31.
    [32]Gao B, Wang C Y, Lu Y, Liu A W and Hu S M, High-resolution Infrared Spec-troscopy of 15N216O in the 3500-9000 cm-1 Region. J Mol Spectrosc 2010;259:20-25.
    [33]Tashkun S A, Perevalov V I, Kochanov R V, Liu A W and Hu S M, Global fit-tings of 14N15N16O and 15N14N16O vibrational-rotational line positions using the effective Hamiltonian approach. JQSRT 2010;111:1089-1105.
    [34]Lyulin O M, Jacquemart D, Lacome N, Tashkun S A and Perevalov V I, Line parameters of 15N216O from Fourier transform measurements in the 5800-7600 cm-1 region and global fitting of line positions from 1000 to 7600 cm-1. JQSRT 2010;111:345-356.
    [35]Rothman LS, Jacquemart D, Barbe A, Benner DC, Birk M, Brown LR, Carleer MR, Chackerian JC, Chance K, Dana V, Devi VM, Flaud JM, Gamache RR, Goldman A, Hartmann JM, Jucks KW, Maki AG, Mandin JY, Massie ST, Orphal J, Perrin A, Rinsland CP, Smith MAH, Tennyson J, Tolchenov RN, Toth RA, Auwera JV, Varanasi P, The HITRAN 2004 molecular spectroscopy database. JQSRT 2005;96:139-204.
    [36]Gao B, Liu A W, Wu R X, Ning W and Hu S M, C2H2 overtones near 12300 cm-1 revisited with a very sensitive cavity ring-down spectrometer. Chin J Chem Phys 2009;22:663-667.
    [37]Gao B, Jiang W, Liu A W, Lu Y, Cheng C F, Cheng G S and Hu S M, Ultra sensitive near-infrared Cavity Ring Down Spectrometer for precise line profile measurement. Rev Sci Instrum, submitted.
    [38]Halmer D, Basum G V, Hering P and Muartz M, Fast exponential fitting algorithm for real-time instrumental use. Rev Sci Instrum 2004;75:2187-2191.
    [39]Toth R A, Available from:(http://mark4sun.jpl.nasa.gov/n2o.html).
    [40]Toth R A, Line strengthes (900-3600 cm-1), self-broadened linewidths, and fre-quency shifts (1800-2360 cm-1) of N2O. Appl Opt 1993;32:7326-7365.
    [41]K.-F. Song, B. Gao, A.-W. Liu, V. I. Perevalov, S. A. Tashkun, S.-M. Hu, Cavity ring-down spectroscopy of the 6v3 bands of 15N substituted N2O, Accepted
    [1]Majcherova Z, Macko P, Romanini D, Perevalov VI, Tashkun SA, Teffo JL, Cam-pargue A. High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 μm. J Mol Spectrosc 2005;230:1-21.
    [2]Ding Y, Macko P, Romanini D, Perevalov VI, Tashkun SA, Teffo JL, Hu SM, Campargue A. High sensitivity cw-cavity ringdown and Fourier transform ab-sorption spectroscopies of 13CO2. J Mol Spectrosc 2004;226:146-160.
    [3]Perevalov BV, Kassi S, Romanini D, Perevalov VI, Tashkun SA, Campargue A. CW-cavity ringdown spectroscopy of carbon dioxide isotopologues near 1.5μm. J Mol Spectrosc 2006;238:241-255.
    [4]Perevalov BV, Kassi S, Romanini D, Perevalov VI, Tashkun SA, Campargue A. Global effective Hamiltonians of 16O13C17O and 16O13C18O improved from CW-CRDS observations in the 5900-7000 cm-1 region. J Mol Spectrosc 2007;241:90-100.
    [5]Perevalov BV, Deleporte T, Liu AW, Kassi S, Campargue A, Vander Auwera J, Tashkun SA, and Perevalov VI. Global modeling of 13C16O2 absolute line in-tensities from CW-CRDS and FTS measurements in the 1.6 and 2.0 micrometer regions. JQSRT 2008;109:2009-26.
    [6]Perevalov BV, Perevalov VI, Campargue A. A (nearly) complete experimen-tal linelist for 13C16O2,16O13C18O,16O13C17O,13C18O2 and 17O13C18O by high sensitivity CW-CRDS spectroscopy between 5851 and 7045 cm-1. JQSRT 2008;109:2437-62.
    [7]Perevalov BV, Kassi S, Perevalov VI, Tashkun SA, Campargue A. High sensi-tivity CW-CRDS spectroscopy of 12C16O2,16O12C17O and 16O12C17O between 5851 and 7045 cm-1:Line positions analysis and critical review of the current databases. J Mol Spectrosc 2008;252:143-59.
    [8]Perevalov BV, Campargue A, Gao B, Kassi S, Tashkun SA, Perevalov VI. New CW-CRDS measurements and global modeling of 12C16O2 absolute line intensi-ties in the 1.6μm region. J Mol Spectrosc 2008;252:190-7.
    [9]Rothman LS, Gordon IE, Barbe A, Benner DC, Bernath PF, Birk M, et al. The HITRAN 2008 molecular spectroscopic database. JQSRT 2009; 110:533-572.
    [10]Miller CE, Brown LR. Near infrared spectroscopy of carbon dioxide Ⅰ.16O12C16O line positions. J Mol Spectrosc 2004;228:329-54.
    [11]Toth RA, Brown LR, Miller CE, Devi VM, Benner DC. Line strengths of 12C16O2: 4550-7000 cm-1. J Mol Spectrosc 2006;239:229-42.
    [12]Miller CE, Montgomery MA, Onorato RM, Johnstone C, McNicholas TP, Ko-varic B, Brown LR. Near infrared spectroscopy of carbon dioxide. Ⅱ16O13C16O and 16O13C18O line positions. J Mol Spectrosc 2004;228:355-74.
    [13]Toth RA, LR Brown, Miller CE, Devi VM, Benner DC. Self-broadened widths and shifts of 12C16O2:4550-7000 cm-1. J Mol Spectrosc 2006;239:243-71.
    [14]Toth RA, Miller CE, Brown LR, Devi VM, Benner DC. Line positions and strengths of 16O12C180,18O12C18O and 17O12C18O between 2200 and 7000 cm-1. J Mol Spectrosc 2007;243:43-61.
    [15]Toth RA, Brown LR, Miller CE, Devi VM, Benner DC. Air-broadened halfwidth and pressure shift coefficients of 12C16O2 bands:4750-7000 cm-1. J Mol Spec-trosc 2007; 242:131-57.
    [16]Toth RA, Miller CE, Brown LR, Devi VM, Benner DC. Line strengths of 16O13C16O,16O13C18O,16O13C17O and 18O13C18O between 2200 and 6800 cm-1. J Mol Spectrosc 2008;251:64-89.
    [17]Toth RA, Brown LR, Miller CE, Devi VM, Benner DC. Spectroscopic database of CO2 line parameters:4300-7000 cm-1. JQSRT 2008; 109:906-21.
    [18]Perevalov VI, Tashkun SA. CDSD-296 (Carbon Dioxide Spectroscopic Data-bank):Updated and Enlarged Version for Atmospheric Applications.10th HI-TRAN Database Conference, Cambridge MA, USA,2008. http://cdsd.iao.ru
    [19]Valero FPJ. Absolute intensity measurements of the CO2 bands 401Ⅲ ←000 and 411Ⅲ ←010. J Mol Spectrosc 1977;68:269-79.
    [20]Valero FPJ, Boese RW. The absorption spectrum of CO2 around 7740 cm-1. JQSRT 1977;18:391-8.
    [21]Valero FPJ, Boese RW. Comments on the note by Arie et al. On the transition moment of the CO2 band near 7740 cm-1. JQSRT 1978;20:427.
    [22]Giver LP, Chackerian C, Spencer MN, Brown LR, Wattson RB. The Rovibrational Intensities of the (4001)←(0000) Pentad Absorption Bands of 12C16O2 between 7284 and 7921 cm-1. J Mol Spectrosc 1996;175:104-11.
    [23]Teffo JL, Claveau C, Kou Q, Guelachvili G, Ubelmann A, Perevalov VI, Tashkun SA. Line Intensities of 12C16O2 in the 1.2-1.4 μm Spectral Region. J Mol Spec-trosc 2000;201:249-55.
    [24]Mandin JY. Interpretation of the CO2 absorption bands observed in the Venus infrared spectrum between 1 and 2.5μm. J Mol Spectrosc 1977;67:304-21.
    [25]Rothman LS, Jacquemart D, Barbe A, Benner DC, Birk M, Brown LR, Carleer MR, Chackerian C, Chance K, Dana V, Devi VM, Flaud J-M, Gamache RR, Gold-man A, Hartmann J-M, Jucks KW, Maki AG, Mandin J-Y, Massie ST, Orphal J, Perrin A, Rinsland CP, Smith MAH, Tennyson J, Tolchenov RN, Toth RA, Van-der Auwera J, Varanasi P, Wagner G, The HITRAN 2004 molecular spectroscopy database. J Quant Spectrosc Radiat Transfer 2005;96:139-204.
    [26]Tashkun SA, Perevalov VI, Teffo JL, Bykov AD, Lavrentieva NN. CDSD-296, the carbon dioxide spectroscopic databank:version for atmospheric applications. XIV Symposium on High Resolution Molecular Spectroscopy, Krasnoyarsk, Rus-sia, July 6-11,2003. http://cdsd.iao.ru.
    [27]Wang L, Perevalov VI, Tashkun SA, Song KF, Hu SM. Fourier transform spec-troscopy of 12C18O2 and 16O12C18O in the 3800-8500 cm-1 region and the global modeling of the absorption spectrum of 12C18O2. J Mol Spectrosc 2008;247:64-75.
    [28]Morville J, Romanini D, Kachanov AA, Chenevier M. Two schemes for trace detection using cavity ringdown spectroscopy. Appl Phys 2004;D78:465-76.
    [29]Rothman LS, Hawkins RL, Wattson RB, Gamache RR. Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands. JQSRT 1992;48:537-66.
    [30]Macko P, Romanini D, Mikhailenko SN, Naumenko OV, Kassi S, Jenouvrier A, Tyuterev VG. High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5 μm atmospheric window. J Mol Spectrosc 2004;227:90-108.
    [31]Wattson RB,Giver LP,Kshirsagar RJ,Freedman RS,Chackerian Jr C. Direct nu-merical diagonalization line-by-line calculations compared to line parameters in several weak interacting CO2 bands near 7901cm-1. In:Fifth Bienial HITRAN conference. Bedford, MA, USA,1998. p.29.
    [32]Song KF, Kassi S, Tashkun SA, Perevalov VI, Campargue A. High Sensitivity CW-Cavity Ring Down Spectroscopy of 12CO2 near 1.35 μm (Ⅱ):New observa-tions and Line intensities modeling. JQSRT 2010; 111:332-44.
    [33]A. Campargue, A. Charvat, D. Permogorov. Absolute intensity measurement of CO2 overtone transitions in the near-infrared. Chem Phys Lett 1994;223:567-572.
    [34]A. Campargue,* D. Bailly, J.-L. Teffo, S. A. Tashkun, V. I. Perevalov. The v1+5v3 Dyad of 12CO2 and 13CO2. J Mol Spectrosc 1999; 193:204-212.
    [35]Pollack JB, Dalton JB, Grinspoon D, Wattson RB, Freedman R, Crisp D, et al. Near-infrared light from venus'nightside:a spectroscopic analysis. Icarus 1993;103:1-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700