用户名: 密码: 验证码:
低能耗多功能轻小型移动式喷灌机组优化设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家高技术研究发展计划(863计划)《精确喷灌技术与产品》(2011AA100506)和江苏省2011年度普通高校研究生科研创新计划《基于能耗及均匀度的多喷软管喷灌系统的建立》(CXZZ11_0565)。
     水资源短缺和能耗问题的加剧使得低能耗成为喷灌发展的主要方向之一。在我国,地形条件及种植作物的多样性、农村经济条件复杂性等因素使得轻小型移动式喷灌机组的多元化配置成为必然。而农村劳动力转移、土地适度规模经营等对喷灌机组的管道布置及组合模式提出了新的要求。因而提高轻小型移动式喷灌机组构成方式的灵活性、降低机组能耗、提高单位机组功率的灌溉面积成为喷灌机组应用推广中亟待解决的问题。本文采用优化模拟、试验验证等方法,开展了低能耗多功能轻小型移动式喷灌机组优化设计与试验研究。
     主要研究工作及创新点分为以下几个方面:
     (1)低能耗多功能轻小型移动式喷灌机组设计
     提出一种移动固定多目标喷灌系统,它使机组灵活性提高,且对作物的适应性增强。为了提高机组的便捷性,发明了一种快速连接管件和一种喷灌用喷头及管道固定装置。
     提出一种组合式双支管多喷喷灌系统,理论分析结果表明,该系统与传统的“一”字型支管和两条支管布置相比,操作时间和总费用最低,喷灌均匀性最高,单位能耗居中。
     依据上述两种喷灌机组的支管布置方式、机组各部件移动模式,总结出11种适用于不同面积的管道布置方式,为用户提供多元化选择。
     (2)机组综合评价体系建立及各指标影响因素研究
     基于灰色关联法,建立了涵盖技术、经济、环境、社会等4大类10个指标的喷灌机组综合评价模型,权值确定采用层次分析法与熵权法相结合的综合赋权法来集成主观和客观两方面的因素。计算结果表明该评价体系可以根据需要进行调整,为喷灌机组多因素多目标的选择提供有效的分析工具。
     对机组评价指标的影响因素及规律进行分析。技术指标方面,就喷头工作压力、喷头间距等因素对均匀性的影响进行理论研究,为机组组合喷灌均匀性的分析及机组优化配置提供参考。经济指标方面,对机组生命周期成本(LCC)的组成部分进行分析。结果表明,能耗费在LCC中所占比例最大,其次是初投资和人工费,因此喷灌机组的优化配置对机组的节约成本、降低能耗十分关键。环境指标方面,采用含交互作用的正交表L27(313)对喷灌机组的能耗影响因素进行研究。结果表明,轻小型喷灌机组能耗对喷头工作压力的变化最敏感,其次为管道管径,喷头间距对能耗的影响主要体现在与其他参数的交互作用中。因此,需对喷灌机组进行多目标配置优化。
     (3)轻小型喷灌机组管道水力设计及多目标优化配置研究
     根据轻小型喷灌机组水泵-管路-喷头协同运行的特点,借鉴微灌管道水力计算方法,对现有喷灌机组管道水力计算方法进行改进。提出了考虑流量约束的后退法、前进法,和将前进法、后退法与黄金分割法相结合的轻小型喷灌机组管道水力计算方法。计算结果表明:前进法与后退法相比,更能反映喷灌管道与微灌管道相比由于出水口较少且每个孔口流量较大,而呈现的管道沿程一定位置上出现的压力骤降的特点;新提出的前进后退法多级管道水力计算方法与前人的方法相比,更能满足各支管末端的最低喷头工作压力要求,使计算结果更加可靠。
     以单位能耗为目标,首次将蚁群算法应用于喷灌机组的配置优化中,并与遗传算法优化及试验结果进行比较。结果表明,蚁群算法计算得到的最佳喷头数和管道沿程工作压力,与遗传算法相比更接近实验值。同时基于评价指标及影响因素研究,采用线性加权和法初步建立了轻小型喷灌机组多目标配置优化模型。
     (4)机组能耗及均匀性影响因素田间试验研究
     机组能耗及均匀性是机组综合评价中主要的环境指标和技术指标,分别反映机组运行状态及喷灌质量,且对机组配置参数的变化较为敏感。因此,采用田间试验的方法对机组能耗及均匀性影响因素及规律进行分析,对管道水力计算方法和优化方法进行验证,并对试验条件下特定喷灌机组的最优配置方式进行探讨。机组能耗影响因素研究结果表明,理论计算方法总体可行,但试验中当管径增大时,由于此时使水泵提供给喷头的工作压力增大,间接导致机组能耗上升,反映了水泵-管路-喷头间的协同作用,而理论方法对这一因素考虑不足。
     喷灌均匀性影响因素研究结果表明,喷灌机组田间应用时,在风速<2.7m/s(试验最大风速)的场合,可以采用矩形布置,喷头间距及支管间距适中,工作压力取低值以降低系统能耗,同时保证较高的均匀性。但在多风的场合,宜采用三角形布置,布置间距取小值,喷头工作压力维持在较高水平(对于15PY喷头),提高机组的抗风性能。喷灌机组能耗及均匀性影响因素之间都存在交互作用,实际应用需综合考虑。
The research in this thesis is supported by the National Hi-Tech Research&Development Program (863Program)-Precision Sprinkler Irrigation Technologies and Products (No.2011AA100506), and the Jiangsu Scientific Research and Innovation Program for Graduates in the Universities-Fixed-movable Duple-purpose Hose Sprinkler Irrigation System Based on Minimum Energy Consumption and Best Water Distribution (No. CXZZ110565)
     The low energy consumption has become one of the focuses in the development of sprinkler irrigation systems under the growing water shortage and energy consumption problem worldwide. In China, the terrain conditions, the crops and the rural economic levels are various across the land. Hence, the diversity in the configuration of Small-Scale Sprinkler Irrigation Systems is a trend. The increasingly shrinking farm labor as a result of urbanization, combined with the large-scale operations of farmland have challenged the present sprinkler irrigation machines with one-line pipe layout which is accompanied with inconvenience in transferring the pipeline to the next location. Therefore, the flexibility in the combination of components and the possibility in the application of larger areas within limited power need to be improved, and the energy consumption needs to be reduced so as to provide some basis for the further promotion of Small-Scale Sprinkler Irrigation Systems. The theoretical simulation and experimental validation were used in the optimization design and experimental study of Small-Scale Sprinkler Irrigation Systems with Low Energy Consumption and Multi Purposes.
     The main contributions and possible innovations of this work are presented as follows.
     (1) Development of Small-Scale Sprinkler Irrigation Systems with low energy consumption and multi purposes
     A Fixed-Movable Multi-Purpose Sprinkler Irrigation System was proposed to improve the flexibility of the small-scale sprinkler irrigation system and the adaptability to the crops. The key parts in the system were designed and produced including a quick-connect coupling for connection of the riser and the pipe tee, and a fixture for the sprinkler and the pipe in the system.
     A Multiple-Sprinkler Irrigation System with Pairs of Laterals was developed. Theoretical analyses show that it has the minimal operation time, the minimal total cost in the life span, the highest irrigation uniformity coefficient and proper energy consumption compared to the traditional systems with one pipeline or two parallel lines.
     Eleven kinds of pipe layouts were summarized for different areas according to the combination of different lateral layouts used in the two new irrigation systems, and the mobility of components of the system. These will provide various alternatives of pipe networks for different users and applications.
     (2) Establishment of comprehensive evaluation model of Small-Scale Irrigation System and investigation on the impact factors of different indicators
     A multi-criteria evaluation model of small-scale irrigation system considering technical, economic, environmental and social aspects with ten sub-criteria and processed with Grey Relational Analysis (GRA) was developed. The Analytical Hierarchy Process (AHP) and entropy method was employed in the evaluation of irrigation systems to take into account the subjective and objective aspects. Analyses indicate that the evaluation model can be adjusted easily and will provide an efficient method for the multi-criteria and multi-objective evaluation of irrigation systems.
     And the impact factors of the evaluation indicators of irrigation system were explored. For the technical aspect, the impact of working pressure and sprinkler spacing on the overlapping irrigation uniformity were investigated to provide a basis for the optimization of the system. For the economic aspect, the components of Life Cycle Cost of irrigation systems were analyzed. Results show that:the energy consumption accounts for the major part of LCC of the systems, followed by the initial cost and the labor cost. Thus, the configuration optimization of irrigation system is very important to the reduction of cost and energy consumption. For the environmental aspect, the orthogonal design L27(3'3) of four factors on three levels considering the interaction between factors was applied in the study of impacts of configuration parameters on the energy consumption. The results demonstrate that the impact of working pressure at the end sprinkler comes first, followed by that of pipe diameter, the impact of number of sprinklers is also obvious, and that of sprinkler spacing is manifested in the interactions with the other factors. Therefore, the multi-objective optimization of irrigation systems is needed.
     (3) Hydraulic calculation and multi-objective optimization of Small-Scale Irrigation Systems
     The traditional hydraulic model was improved. And three models were developed according to the co-operation characteristics of pump-pipeline-sprinkler in the Small-Scale Irrigation Systems for there were generally no pressure regulators in the systems. They are the back step method, and the forward method considering the constraint of discharge of pump for the system with one line. And combination of both with the Golden Section Search was first used for the complicated networks. Results show that:the forward method will reflect the characteristics of irrigation pipelines better compared with the back step method. In a sprinkler irrigation system, the outlets are far less and the flow rate for each is far higher compared to a micro-irrigation lateral, thus there is an abrupt pressure drop at some length along the pipeline, not as continuous as that calculated by the back step method. The newly-designed forward-backward method will better meet the requirement of minimal pressure at the end sprinkler on each lateral in a pipe network compared to previous researches.
     Ant Colony Optimization (ACO) was originally introduced in the optimization of sprinkler irrigation systems for the lowest specific energy consumption and compared with Genetic Algorithm (GA) and the field tests. Results show that the optimal number of sprinklers and pressure profiles along the pipeline calculated with ACO are closer to the experimental results compared to that by GA. The multi-objective optimization model of small-scale irrigation systems was then built with Linear Weight Sum Method based on the analyses of impact factors of indicators.
     (4) Field experiment on the specific energy consumption and irrigation uniformity of sprinkler irrigation system
     The specific energy consumption and the irrigation uniformity are the major criteria in the environmental and technical aspects, and will reflect the operation condition and the irrigation quality of the system, respectively. Moreover, they are more sensitive to the change of configuration parameters. Hence, the field experiment was carried out on the system typed PC45-4.4equipped with sprinklers15PY to investigate the impact of configuration parameters of system on the energy consumption and irrigation uniformity, to validate the practicability of hydraulic model and optimization method, and to derive the optimal configuration in the test condition. The analyses on the impact factors of energy consumption demonstrate that: the theoretical analysis method is generally practical. But in the field test the energy consumption rises when the pipe diameter is increased for the pressure head of sprinklers provided by the pump are higher. This indicates the interaction between the pump-pipeline-sprinkler, which is neglected in the theoretical analyses
     The analyses on the impact factors of irrigation uniformity coefficient show that: for the application of irrigation systems in the areas with wind speed lower than2.7m/s (the maximum value in the experiment), the combination of rectangle layout, proper sprinkler spacing and lateral spacing, and lower pressure can be used to ensure a high irrigation uniformity and a lower energy consumption. But for the application of irrigation systems in the areas with more frequent wind or higher wind speed, the combination of triangle layout, closer sprinkler and lateral intervals and higher sprinkler pressure is suggested to minimize the effect of wind on the irrigation uniformity. The interactions between the impact factors of specific energy consumption and irrigation uniformity are obvious, thus the configuration parameters should be chosen considering different aspects.
引文
[1]发展节水农业,破解粮食安全危局[EB/OL]. http://zt.irrigation.com.cn/crops灌溉网
    [2]张梦华.拖拉机节能认证势在必行[J].农机质量与监督,2012,(5):32-33.
    [3]李仰斌.新时期我国节水灌溉发展战略与对策思考[J].节水灌溉,2011(9):1-3.
    [4]Colaizzi P D, Evett S R, Howell T A. Crop production comparison with spray, LEPA, and Subsurface Drip Irrigation in the Texas high plains[C].5th National Decennial Irrigation CD-ROM Proceedings, Sponsored jointly by ASABE and the Irrigation Association, Phoenix, Arizona, USA, Dec.5-8,2010.
    [5]吴景社.国外节水灌溉技术发展现状与趋势(上)[J].世界农业,1994,(1):20-30.
    [6]陈卯.小型恒压喷灌系统机泵的设计[J].福建农机,2009,(3):45-48.
    [7]吴永成.华北地区冬小麦-夏玉米节水种植体系氮肥高效利用机理研究[博士学位论文].北京:中国农业大学,2005.
    [8]王晖,杨伟球.稻麦轮作条件下土壤硝态氮残留分析[J].现代农业科技,2011,(1):280-282.
    [9]张红.烟稻轮作与稻稻连作对稻田土壤养分的影响[硕士学位论文].长沙:湖南农业大学,2011.
    [10]曾永跃.机械微喷灌节水技术应用初探[J].广西农业机械化,2009,(4):27-28.
    [11]Walter K, Bilanski. Factors that affect distribution of water from a medium pressure rotator irrigation sprinkler[Ph.D. thesis]. School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science. Department of Agricultural Engineering. 1956.
    [12]Guy O. Woodward. Sprinkler Irrigation (Second Edition)[M]. Washington, D.C:Sprinkler Irrigation Association, Darby Printing Company,1959.
    [13]Sprinkler& Trickle Irrigation-Lecture Notes[R]. Civil and Environmental Engineering Department, Utah State University, Logan, Utah, America:No. CEE 5001/6001,2011.
    [14]美国国家灌溉工程手册(水利部国际合作司水利部农村水利司编译)[M].北京:中国水利水电出版社,1998.
    [15]移动软管式喷灌[EB/OL]. [2012-06-10]. http://www.jtdwsb.com江苏旺达喷灌机有限公司.
    [16]轻小型喷灌机[S]..JB/T 8399-96.
    [17]轻小型喷灌机[S].GB/T 25406-2010.
    [18]高网大.轻小型喷灌机在我国发展的前景[R]中国水务高峰论坛.北京.2011.10.
    [19]Rodriguez D J A, Montesinos P, Camacho P. Detecting critical points in on-demand irrigation pressurized networks-A new methodology[J]. Water Resources Management, 2012,(26):1693-1713.
    [20]Moreno M A, Ortega, Corcoles J I, et al. Energy analysis of irrigation delivery systems: monitoring and evaluation of proposed measures for improving energy efficiency [J]. Irrigation Science,2010, (28):445-460.
    [21]Chen D, Webber M, Chen J, et al. Energy evaluation perspectives of an irrigation improvement project proposal in China[J].. Ecological Economics,2011, (70):2154-2162.
    [22]涂琴,李红,王新坤等.轻小型喷灌机组能耗分析与多元回归模型[J].排灌机械工程学报,2014,32(2):162-166,178.
    [23]王新坤,袁寿其,刘建瑞等.轻小型喷灌机组能耗计算与评价方法[J].排灌机械工程学报,2010,28(3):247-250.
    [24]牛连和,纪瑞森.喷灌系统机组效率及耗电测试[J].北京水利,1994,(3):95.
    [25]刘柱国.喷灌能源消耗对比分析[J].喷灌技术,2000,(1):15-17.
    [26]DeBoer D W and Monnens M J. Application characteristics of rotating-plate sprinklers[C]. St. Joseph. Mich. ASSE, ASABE Paper No.93-1312.1993.
    [27]Fukui Y, Nakanishi K, Okamura S. Computer evaluation of sprinkler irrigation uniformity [J]. Irrigation Science,1980, (2):23-32.
    [28]Soares A A, Wilardson L S, Keller J. Surface-slope effects on sprinkler uniformity [J]. Journal of Irrigation and Drainage Engineering-ASCE,1991,117(6):870-879.
    [29]Howell T A, Phene C J. Distribution of irrigation water from a low pressure, lateral-moving irrigation system[J]. Transactions of the ASAE,1983,26(5):1422-1429.
    [30]Mateos L. Assessing whole-field uniformity of stationary sprinkler irrigation system[J]. Irrigation. Science,1998, (18):73-81.
    [31]Burt C M, Clements A J, Solomon K H. Identification and qualification of efficiency and uniformity components[C]. Proceedings of the ASCE Water Conference in San Antonio, Texas,1995. ITRC Paper:P92-005.
    [32]Burt C M. Rapid field evaluation of drip and microspray distribution uniformity [J]. Irrigation and Drainage Systems,2004, (18):275-297.
    [33]Edling R J. Kinetic energy, evaporation, and wind drift of droplets from low-pressure irrigation nozzles[J].Transactions of the ASAE,1985,28(5):1543-1550.
    [34]Hanson B R and Orloff S B. Rotator nozzles more uniform than spray nozzles on center-pivot sprinklers [J]. California Agriculture,1996,50(1):32-35.
    [35]Dukes, Michael D, Perry, et al. Uniformity testing of variable-rate center-pivot control systems[J]. Precision Agriculture,2006, (7):205-218.
    [36]Grusse P L, Mailhol J C, Bouaziz A, et al. Indicators and framework for analysing the technical and economic performance of irrigation systems at farm level[J]. Irrigation. and Drainage,2009, (58):S307-S319.
    [37]Mateos L. A simulation study of comparison of the evaluation procedures for three irrigation methods[J]. Irrigation Science,2006, (25):75-83.
    [38]Bekele Z and Tilahun K. On-farm performance evaluation of improved traditional small-scale irrigation practices:A case study from Dire Dawa area[J]. Ethiopia. Irrigation and Drainage Systems,2006, (20):83-98.
    [39]Ali M H. Chapter 4:Performance evaluation of irrigation projects. Practices of Irrigation and On-farm Water Management:Volume 2[M]. Springer Science and Business Media, LLC,2011:111-138.
    [40]李久生,灌水均匀度与深层渗漏量关系的研究[J].农田水利与小水电,1993,(1):1-4.
    [41]Martinez J M, Martinez R S, Tarjuelo J M, et al. Analysis of water application cost with permanent set sprinkler irrigation systems[J]. Irrigation Science,2004, (23):103-110.
    [42]Morankar D V, Raju K S, Kumar D N. Integrated sustainable irrigation planning with multiobjective fuzzy optimization approach[J]. Water Resources Management,2013, (27): 3981-4004.
    [43]Burt C M, Clemmens A J, Strelkoff T S, et al. Irrigation performance measures:efficiency and uniformity [J]. Journal Of Irrigation And Drainage Engineering-ASCE 1997,123, (6). DOI:10.1061/(ASCE)0733-9437 (1997)123:6(423).
    [44]Srivastava R C, Mohanty S, Singandhuppe R B, et al. Feasibility evaluation of pressurized irrigation in canal commands[J]. Water Resources Management,2010, (24):3017-3032
    [45]Carrion P, Tarjuelo J M, Montero J. SIRIAS:a simulation model for sprinkler irrigation [J]. Irrigation Science,2001, (20):73-84.
    [46]Playan E, Zapata N, Faci, et al. Assessing sprinkler irrigation uniformity using a ballistic simulation model[J]. Agricultural Water Management,2006,84, (1-2):89-100.
    [47]Anane M, Bouziri L, Limam A, et al. Ranking suitable sites for irrigation with reclaimed water in the Nabeul-Hammamet region (Tunisia) using GIS and AHP-multicriteria decision analysis[J].. Resources Conservation And Recycling,2012, (65):36-46.
    [48]Koklu R, Sengorur B, Topal B. Water quality assessment using multivariate statistical methods-a case study:Melen River System (Turkey)[J]. Water Resources Management, 2010, (24):959-978.
    [49]陈俊英,张智韬,Leionid G影响土壤斥水性的污灌水质主成分分析[J].排灌机械工程学报,2013,31(5):434-439.
    [50]Khan Z A, Kamaruddin S, Siddiquee A N. Feasibility study of use of recycled High Density Polyethylene and multi response optimization of injection moulding parameters using combined grey relational and principal component analyses[J]. Material and Design, 2010, (31):2925-2931.
    [51]Deng J L. The control problems of grey systems[J]. Systems and Control Letters,1982, (5): 288-294.
    [52]冷慧敏.基于灰色关联分析法的四川农业产业化项目优选决策研究[硕士学位论文].成都:西南财经大学,2012.
    [53]曹明霞.灰色关联分析模型及其应用的研究[硕士学位论文].南京:南京航空航天大学,2007.
    [54]Siddiquee A N, Khan Z A, Mallick Z. Grey Relational Analysis coupled with principal component analysis for optimization design of the process parameters in in-feed centerless cylindrical grinding[J]. International Journal of Advanced Manufacture Technology,2010, (46):983-992.
    [55]李小东.层次-灰色关联法及其在污水处理方案优选中的应用[硕士学位论文].太原:太原理工大学,2006.
    [56]周明耀,陈朝如,彭怀英.灌溉管理的递阶多层次灰色评价方法[J].系统工程理论与实践,2000,(4):120-126.
    [57]Kang Y, Nishiyama S. Hydraulic analysis of microirrigation submain units[J]. Transactions of the ASAE,1995,38(5):1377-1384.
    [58]Trung M C, Nishiyama S, Anyoji H. Application of unsteady flow analysis in designing a multiple outlets sprinkler irrigation system[J]. Paddy Water Environment,2007, (5): 181-187.
    [59]Wu P T, Zhu D L, Wang J. Gravity-fed drip irrigation procedure for single-manifold subunit[J]. Irrigation Science (2010) 28:359-369.
    [60]Vallesquino P. An Approach for simulating the hydraulic performance of irrigation laterals[J]. Irrigation Science,2008, (26):475-486.
    [61]Wu I P. Energy gradient line approach for direct hydraulic calculation in drip irrigation design[J]. Irrigation Science,1992, (13):21-29.
    [62]Mohtar R H, Bralts V F, Shayya W H. A finite model for the analysis and optimization of pipe networks[J]. Transactions of the ASAE, (1991) 34(2):393-401.
    [63]Andrade C L T, Allen R G, Wells R D. SPRINKLRTMOD-Pressure and discharge simulation model for pressurized irrigation systems.3. Sensitivity to lateral hydraulic parameters and leakage[J]. Irrigation Science,1999, (18):157-161.
    [64]Gerrish P J, BraltsV F, Shayya W H. An improved analysis of microirrigation hydraulics using a virtual emitter system[J]. Transactions of the ASAE,1996,39(4):1403-110.
    [65]Barthelemy J P. NP-hard approximation problems in overlapping clustering[J]. Journal of Classification,2001, (18):159-183.
    [66]王新坤.微灌管网水力解析及优化设计研究[博士学位论文].陕西杨凌:西北农林科技大学,2004.
    [67]程小娟.随机规划在输水管及树状管网优化中的应用[硕士学位论文].西安:西安理工大学,2005.
    [68]徐翠兰.微灌系统随机规划数学模型研究[硕士学位论文].南京:河海大学,2003.
    [69]许刚,朱汶迁,吴金民.基于蚁群算法的给水管网改扩建优化[J].中国农村水利水电,2006,(3):67-69.
    [70]Zecchin A C, Simpsona A R, Maier H R, et al. Application of two ant colony optimization algorithms to water distribution system optimization[J]. Mathematical and Computer Modeling,2006, (44):451-468.
    [71]Moeini R, Afshar M H. Layout and size optimization of sanitary sewer network using intelligent ants[J]. Advances in Engineering Software,2012, (51):49-62.
    [72]Goldberg D E, Koza J R. Genetic Algorithms in pipeline optimization[J]. Journal of Computing in Civil Engineering,1987,1(2):128-141.
    [73]周荣敏,林性粹.应用单亲遗传算法进行树状管网优化布置[J].水利学报,2001,(6):14-18.
    [74]储诚山.改进混合遗传算法用于给水管网优化设计的研究[博士学位论文].天津:天津大学,2006.
    [75]赵文举,马孝义,张建兴等.基于模拟退火遗传算法的渠系配水优化编组模型研究[J].水力发电学报,2009,28(5):210-214,113.
    [76]Pais M S, Ferreira J C, Teixeira M B, et al. Cost optimization of a localized irrigation system using Genetic Algorithms[J]. IDEAL 2010, (6283):29-36.
    [77]Hassanli A M, Dandy G C. Optimization layout and hydraulic design of branched networks using Genetic Algorithms[J]. Applied Engineering in Agriculture,2005,21(1): 55-62.
    [78]Goncalves G M, Pato M V. A three-phase procedure for designing an irrigation system's water distribution network[J]. Annals of Operations Research,2000, (94):163-129.
    [79]Dorigo M. Optimization, learning and natural algorithms[Ph. D. Thesis]. Department of Electronics Polotecnico diMilano, Italy,1992.
    [80]Gill C, Banosl R, Ortega J, et al. Ant colony optimization for water distribution network design:a comparative study[C]. International Work-Conference on Artificial and Natural Neural Networks (IWANN) 2011, Part Ⅱ, LNCS 6692:300-307.
    [81]Kumar D N and Reddy M J. Ant colony optimization for multi-purpose reservoir operation[J]. Water Resources Management,2006, (20):79-898.
    [82]Cross S. Aron S. Deneubourg J L, et al. Self-organized shortcuts in the argtime ant[J]. Naturwissenschaften,1989,76:579-581.
    [83]Dorigo M, Maniezzo V, Colorni. The ant system:optimization by a colony of cooperating agents[C]. IEEE Transactions on Systems, Man and Cybernetics, Part B:Cybernetics, 1996,26(1):29-41.
    [84]Blum C, Merkle.D. Swarm intelligence-introduction and application(龙飞译)[M].北京:国防工业出版社,2011:46.
    [85]刘振.蚁群算法的性能分析及其应用[硕士学位论文].广州:华南理工大学,2010.
    [86]史峰,王辉,郁磊等.智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011:205-207.
    [87]Hernandez H, Blum C. Ant colony optimization for multicasting in static wireless ad-hoc networks[J]. Swarm Intelligence,2009,3(2):125-148.
    [88]Martens D, Backer D M, Haesen, R, et al. Classification with ant colony optimization[J]. IEEE Transactions on Evolutionary Computation 2007,11(5):651-665.
    [89]Fuellerer G, Doerner K F, Hartl R F, et al. Ant colony optimization for the two-dimensional loading vehicle routing problem[J]. Computers and Operations Research, 2009,36(3):655-673.
    [90]Dorigo M, Blum C. Ant colony optimization theory:A survey[J]. Theoretical Computer Science,2005, (344):243-278.
    [91]李士勇,陈永强,李研等.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社,2004:59-62.
    [92]张永华.基于蚁群算法的给水管网改扩建研究[硕士学位论文].杭州:浙江大学,2005.
    [93]我国各省人均耕地面积排名表[EB/OL]http://bbs.jxnews.com.cn/大江网2012-3-22.
    [94]高网大.喷灌管网的立式喷头插接安装结构:ZL201220126130.6[P].2012-12-19.
    [95]李红,涂琴,陈超等一种喷头及管道固定装置:ZL201310192217.2[P].2013-09-24.
    [96]李红,涂琴,陈超等.一种组合式双支管多喷喷灌系统:ZL201320339024.0[P].2013-11-06.
    [97]涂琴.轻小型移动式喷灌机组能耗评价体系研究[硕士学位论文].江苏镇江:江苏大学,2011.
    [98]崔毅.农业节水灌溉技术及应用实例[M].北京:化学工业出版社,2005.
    [99]韩文霆.变量喷洒可控域精确灌溉喷头及喷灌技术研究[博士学位论文].陕西杨凌:西北农林科技大学,2003.
    [100]薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2004.
    [101]白丹.给水输配水管网系统优化设计研究[博士学位论文].西安:西安理工大学,2003.
    [102]张令梅.管道灌溉管网工程优化规划模型研究[硕士学位论文].南京:河海大学,2005.
    [103]王新坤,袁寿其,朱兴业等.轻小型移动喷灌机组低能耗遗传算法优化设计[J].农业机械学报,2010,40(10):58-62.
    [104]朱兴业,蔡彬,涂琴.轻小型喷灌机组逐级阻力损失水力计算[J].排灌机械工程学报,2011,29(2):180-184.
    [105]Yildirim G. Total energy loss assessment for trickle lateral lines equipped with integrated in-line and on-line emitters[J]. Irrigation Science,2010, (28):341-352.
    [106]Zapata N, Playan E, Martinez-Cob A, et al. From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas[J]. Agricultural Water Management,2007, (87):187-199.
    [107]李刚,王晓愚,白丹.地下滴灌中毛管水力计算的数学模型与试验[J].2011,29(1):87-92.
    [108]涂琴,李红,王新坤等.不同指标轻小型喷灌机组配置优化[J].农业工程学报,2013,29(22):83-89.
    [109]郭珺,龙海游,郭振苗.对今后我国节水灌溉发展对策的思考[J].节水灌溉,2009,(2):47-48.
    [110]Lamaddalena N, Khila S. Efficiency-driven pumping station regulation in on-demand irrigation systems[J]. Irrigation Science,16 pages, DOI 10.1007/s00271-011-0314-0, published online Dec.27,2011.
    [111]Monreno M A, Coroles J I, Tarjuelo J M, et al. Energy efficiency of pressurized irrigation networks managed on-demand and under a rotation schedule[J]. Biosystems Engineering, 2010,(107):349-363.
    [112]Colaizzi P D, Evett S R, Howell T A. Crop production comparison with spray, LEPA, and subsurface drip irrigation in the Texas High Plains[C]. ASABE Annual International Meeting,2010:IRRI10-9704.
    [113]李红,徐德怀,李磊等.自吸泵自吸过程瞬态流动的数值模拟[J].排灌机械工程学报,2013,31(7):565-569.
    [114]吴大转,杨帅,孙幼波.多级副叶轮密封的性能分析与应用[J].排灌机械工程学报,2012,30(1):15-19.
    [115]何为,薛卫东,唐斌等.优化试验设计及数据分析[M].北京:化学工业出版社,2012.3:329.
    [116]Machiwal D, Jha M K, Singh P K, et al. Planning and design of cost-effective water harvesting structures for efficient utilization of scarce water resources in semi-arid regions of Rajasthan, India[J]. Water Resources Management,2004, (18):219-235.
    [117]陈守伦,徐青.各种折旧方法静态与动态特性探讨[J].河海大学学报,2000,28(2):40-44.
    [118]Tu Q, Wang X, Li H. Optimization of sprinkler irrigation machine based on Genetic Algorithms [C]. ASABE Annual International Meeting, Dallas, USA,2012:12-1341121.
    [119]白丹.机压喷灌干管管网优化[J].农业机械学报,1996,7(3):52-57.
    [120]International electrotechnical commission, Life Cycle Costing[Z]. International Standard 60300-3-3,2004.
    [121]崔新奇,尹来宾,范春菊等.变电站改造中变压器全生命周期费用(LCC)模型的研究[J].电力系统保护与控制,2010,38(7):69-73.
    [122]Krozer Y. Life Cycle Costing for innovations in product chains[J]. Journal of Cleaner Production,2008, (16):310-321.
    [123]Halwatura R U, Jayasinghe M T R. Influence of insulated roof slabs on air conditioned spaces in tropical climatic conditions-A Life Cycle Cost approach[J]. Energyand Buildings,2009, (41):678-686.
    [124]蔡亦竹,柳璐,程浩忠等.全寿命周期成本(LCC)技术在电力系统中的应用综述[J].电力系统保护与控制,2011,39(7):149-154.
    [125]Ribeiro I, Pecas P, Henriques E. Comprehensive model to evaluate the impact of tooling design decisions on the Life Cycle Cost and environmental performance[C].19th CIRP International Conference on Life Cycle Engineering, Berkeley,2012.
    [126]韩文霆.喷灌分布均匀系数研究[J].节水灌溉,2008,(7):4-8.
    [127]Christiansen J E. Irrigation by sprinkling[R]. California Agricultural Experiment Station, Sacramento, California, October,124,1942.
    [128]Criddle W D, Davis, Sterling, et al. Methods for evaluating irrigation systems[M]. USDA Soil Conservation Service Handbook, No.82,1956.
    [129]Wilcox J C and Swailes G E. Uniformity of water distribution by some undertree orchard sprinklers[J]. Scientia Agricola,1947,27(11):565-583.
    [130]Pitts D, Peterson K, Gilbert G, et al. Field assessment of irrigation system performance[J]. Applied Engineering in Agriculture,1996,12(3):307-313.
    [131]Keller J, and Blisner R D. Sprinkle and the Trickle Irrigation[M]. New York.:Van Nostrand Reinhold,1990.
    [132]李小平.喷灌系统水量分布均匀度研究[博士学位论文].武汉:武汉大学,2005.
    [133]Sanchez I, Zapata N, Faci J M. Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation:Ⅱ. Modifications of the wind velocity and of the water interception plane by the crop canopy [J]. Agricultural Water Management, 2010, (97):1591-1601.
    [134]Sanchez I, Faci J M, Zapata N. The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers[J]. Agricultural Water Management,2011, (102):13-24.
    [135]李世英.PY1系列摇臂式喷头浅析[J].江苏工学院学报,1942,(4):34-47.
    [136]刘俊萍,袁寿其,李红等.全射流喷头射程与喷洒均匀性影响因素分析与试验[J].农业机械学报,2008,39(11):51-54.
    [137]陈超,李红,袁寿其等.出口可调式变量喷头喷灌均匀性[J].排灌机械工程学报,2011,29(6):536-542.
    [138]Chen D, Wallender W W. Economic sprinkler selection, spacing, and orientation[J]. Transactions of the ASAE,1984:737-743.
    [139]Wallender W W, Ohira S. Abbreviated sprinkle irrigation evaluation[J]. Transactions of the ASAE,1987,30(5):1430-1434.
    [140]梁卫东.轿车制造操作时间定额标准的编制研究及作用[J].工业工程与管理,1999,(6):55-60.
    [141]杜玉龙,徐大军.初级建筑消防员室内环境下标准操作时间[J].消防科学与技术,2011,30(1):79-81.
    [142]Garg M, Cascarini L, Coombes D M, et al. Multicentre study of operating time and inpatient stay for orthognathic surgery. British Journal of Oral and Maxillofacial Surgery, 2010, (48):360-363.
    [143]喷灌工程技术规范[S].GB50085-2007.
    [144]USDA. Irrigation systems evaluation procedures. National Engineering Handbook-Chapter 9[M]. Washington, D C:Natural Resources Conservation Service USDA,1997.
    [145]Montero J, Tarjuelo J M, Carrion. Sprinkler droplet size distribution measured with an optical spectropluviometer[J]. Irrigation Science,2003, (22):47-56.
    [146]King B A, Bjorneberg D L. Characterizing droplet kinetic energy applied by moving spray-plate center-pivot irrigation sprinklers[J]. Transactions of the ASABE,2010,53(1): 137-145.
    [147]Burt C M, Clemmens A J, Strelkoff T S, et al. Irrigation performance measures. Efficiency and uniformity [J]. Journal of Irrigation and Drainage Engineering,1997,123(6):423-442.
    [148]胡子义.基于AHP-SOFM的智能化决策模型研究与应用[硕十学位论文].北京:首都师范大学,2006.
    [149]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    [150]Abhang L B, Hameedullah M. Determination of optimum parameters for multi-performance characteristics in turning by using grey relational analysis[J]. International Journal of Advanced Manufacturing Technology,2012. DOI 10.1007/s00170-011-3857-6.
    [151]Datta S, Bandyopadhyay A, Pal P K. Grey-based taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding[J]. International Journal of Advanced Manufacturing Technology,2008, (39):1136-1143.
    [152]Zhai L Y, Khoo L P, Zhong Z W. Design concept evaluation in product development using rough sets and grey relation analysis[J]. Expert Systems With Applications,2009, (36): 7072-7079.
    [153]李靖华,郭耀煌.主成分分析用于多指标评价的方法研究为主成分评价[J].管理工程学报,2002,16(1):39-43.
    [154]Karami E. Appropriateness of farmers' adoption of irrigation methods- The application of the AHP model[J]. Agricultural Systems,2006, (87):101-119.
    [155]王书吉,费良军,雷雁斌等.综合集成赋权法在灌区节水改造效益评价中的应用[J].农业工程学报,2008,24(12):48-51.
    [156]陈强,杨晓华.基于熵权的TOPSIS法及其在水环境质量综合评价中的应用[J].环境工程,2007,25(4):75-77.
    [157]Montazar A, Zadbagher E. An analytical hierarchy model for assessing global water productivity of irrigation networks in Iran[J]. Water Resources Management,2010, (24): 2817-2832.
    [158]曾志强.基于熵权灰色关联分析法的供应商选择决策研究[硕士学位论文].武汉:武汉理工大学,2009.
    [159]Wang Z H, Zhan W. Dynamic engineering multi-criteria decision making model optimized by entropy weight for evaluating bid[J]. Systems Engineering Procedia,2012, (5):49-54.
    [160]邵光成,郭瑞琪,蓝晶晶等.避雨栽培条件下番茄灌排方案熵权系数评价[J].排灌机械工程学报,2012,30(6):733-736.
    [161]Rao R, Yadava V. Multi-objective optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement[J]. Optics And Laser Technology,2009, (41):922-930.
    [162]Chen Q, Yang X H. Comprehensive assessment of water environment quality by TOPSIS method based on entropy weight[J]. Environmental Engineering,2007,25(4),75-77.
    [163]牛豪震,刘战东,贾云茂.地下水埋深对春玉米需水量及需水系数的影响[J].灌溉排水学报,2010,29(4):110-113.
    [164]武永利,刘文平,马雅丽等.山西冬小麦作物需水量近45年变化特征[J].安徽农业科学,2009,37(16):7380-7383.
    [165]宋巨龙,钱富才.基于黄金分割的全局最优化方法[J].计算机工程与应用,2005,(4):94-95,130.
    [166]周云.管段造价函数中的参数确定[J].兰州铁道学院学报,1994,13(1):72-77.
    [167]王海平,孙常军.自压喷灌技术在茶园的应用[J].安徽农业科学,2003,31(3):492-493.
    [168]嵇庆才.江苏地区土壤持水性及水分有效性研究[硕士学位论文].扬州:扬州大学,2006.
    [169]白丹,王新.基于遗传算法的多孔变径管优化设计[J].农业工程学报,2005,21(2):42-45.
    [170]王新坤,蔡焕杰.微灌坡地双向毛管最佳支管位置遗传算法优化设计[J].农业工程学报,2007,23(2):31-35.
    [171]付玉娟,蔡焕杰,张旭东等.基于遗传算法的树状灌溉管网优化设计.人民黄河.2006,28(7):42-44.
    [172]宋松柏,吕宏兴.灌溉渠道轮灌配水优化模型与遗传算法求解[J].农业工程学报,2004,20(2):40-44.
    [173]梁芳.遗传算法的改进及其应用[硕士学位论文].武汉:武汉理工大学,2008.
    [174]Chebouba A, Yalaouia F, Smati A, et al. Optimization of natural gas pipeline transportation using ant colony optimization[J]. Computers and Operations Research,2009, (36):1916-1923.
    [175]Mohan B C, Baskaran R. A survey:Ant Colony Optimization based recent research and implementation on several engineering domain[J]. Expert Systems with Applications,2012, (39):4618-4627.
    [176]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2006:26-29.
    [177]Afshar M H. Improving the efficiency of ant algorithms using adaptive refinement: Application to storm water network design[J]. Advances in Water Resources,2006, (29): 1371-1382.
    [178]Dorigo M, Stutzle. Chapter 8-Ant Colony Optimization:overview and recent advances, 227-263. In Gendreau M, Potvin J Y (eds.), Handbook of Metaheuristics, International Series in Operations Research & Management Science 146, Springer Science+Business Media, LLC 2010.
    [179]焦李成,尚荣华,马文萍等.多目标优化免疫算法、理论和应用[M].北京:科学出版社,2010:3-9.
    [180]Raju K S, Duckstein L. Multiobjective fuzzy linear programming for sustainable irrigation planning:an Indian case study[J]. Soft Computing 2003, (7):412-418.
    [181]彭世彰,王莹,陈芸.灌区灌溉用水时空优化配置方法[J].排灌机械工程学报,2013,31(3):259-264.
    [182]魏静萱.解决单目标和多目标优化问题的进化算法[博士学位论文].西安:西安电子科技大学,2009.
    [183]张智韬,刘俊民,陈俊英等.基于遥感和蚁群算法的多目标种植结构优化[J].排灌机械工程学报,2011,29(2):149-154.
    [184]Zadeh L. Optimality and non-scalar-valued performance criteria[J]. IEEE Transactions on Automatic Control,1963,8(59):59-60.
    [185]刘桂萍.基于微型遗传算法的多目标优化方法及应用研究[博士学位论文].长沙:湖南大学,2007.
    [186]刘麟.基于粒子群算法的多目标函数优化问题研究[硕士学位论文].武汉:武汉理工大学,2005.
    [187]张新华,袁文兵.山东省低山丘陵区冬小麦节水灌溉模式的研究[J].喷灌技术,1995,(2):45-52.
    [188]张新华;肖俊夫,刘战东等.中国玉米需水量与需水规律研究[J].玉米科学,2008,16(4):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700