用户名: 密码: 验证码:
含参变量非线性方程求解方法及其在水力计算中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
明渠各种特征水深的计算是进行渠道断面设计、渠道闸门运行、渠道消能防冲的重要依据。这些特征水深一般包括明渠恒定均匀流正常水深、恒定非均匀流临界水深、共轭水深和收缩断面水深,其基本方程一般为含参变量的非线性方程,理论上多无解析解。应用数学方法探求含参变量的非线性方程的解法,提出形式简捷、理论性强、计算精度高、适用范围广的计算方法,不仅对解决工程实际问题具有非常重要的作用,而且对进一步完善水力学计算方法及计算理论体系有重要意义。
     含参变量非线性方程的常规解法有试算法、图表法、迭代法、计算机编程求解法。试算法具有盲目性,图表法不便于应用且精度不高;随着计算机技术的飞速发展,计算机编程求解几乎可以解决一切复杂的计算问题,但是在含参变量非线性方程的求过程中,有许多科学规律和方法值得探索,如果只依靠编制计算机程序进行求解,那么无论从数学思想还是对计算水力学的发展而言就失去了科学意义;同时,水力学各种特征水深中的典型水深---共轭水深、收缩断面水深的基本方程均为复杂的含参变量的非线性方程,采用计算机编程计算,工程设计单位在应用中,常因物理概念不明确或编程复杂而受到限制。在众多求解非线性方程的方法中,迭代法是最常用最基础的方法,但常因迭代初值不合理或迭代方程收敛慢,导致迭代计算中存在较多困难。
     本文首先根据计算迭代理论对求解含参变量的非线性方程的迭代法进行了分析,以参变量定义域内收敛速度最慢处方程的解为一次初值,并将该含参变量的超越方程或高次方程在此处进行二阶泰勒级数展开,舍去高阶余量,进一步求解该二次方程得到初值,将初值代入迭代公式仅需迭代一次即可得到精度较高的近似计算公式;同时,通过对迭代方程收敛过程的进一步分析和分类,分别对交错迭代和单调迭代提出了相应的快速迭代方法;对迭代初值选取策略及迭代加速技术进行了深入研究,提出了该类方程求解的新理论及方法,给出了高效迭代公式及与之配套的合理迭代初值。
     其次,在全面分析总结各种断面共轭水深、收缩断面水深计算方法的基础上,应用本文提出的含参变量非线性方程求解方法——合理迭代初值及高效迭代方程配套,通过对特征水深基本方程进行变换处理,得到了快速收敛的迭代公式,再通过采用最小二乘法及优化计算得到合理的迭代初值,创新性地提出了二次抛物线形渠道共轭水深的计算公式、以及标准U形渠道和三次抛物线形渠道收缩断面水深的直接计算公式;提出的这三套公式的误差分析表明:在工程常用范围内,跃前水深、跃后水深直接计算公式的最大相对误差分别为0.47%和0.55%;三次抛物线形渠道收缩断面水深的最大相对误差小于0.16%;标准U形渠道收缩断面水深的最大相对误差小于0.55%:三套公式形式比较简捷、精度高、适用范围涵盖了工程常用范围。
     最后,对近年来工程中常用的7种几何断面(即矩形断面、梯形断面、圆形断面、U形断面、二次抛物线形断面、三次抛物线形断面、城门洞形断面)的2种特征水深(即明渠共轭水深、收缩断面水深)的水力计算研究成果进行了分析、归类和总结,分析评价各家公式的推理过程及优越性、误差和工程实用性,通过比较评价分析推荐了具有理论性强、公式简捷、精度高、适用范围广的计算公式,使各种断面2种特征水深---共轭水深和收缩断面水深的计算理论体系更加完善系统,计算更加简便实用。
The calculation of characteristic depths of open channels is the important reference in the design of channel sections, operation of channel gates, and energy dissipation and erosion control of channels. Characteristic depths consist of four types of water depths, i.e., normal depth for uniform flow in open channel, critical depth for non-uniform flow, conjugate depths, and contracted depth. Governing equations for characteristic depths are normally nonlinear equations with parameters and no analytical solutions exist. By using mathematical methods, solving methods for nonlinear equations with parameters were developed. Explicit equations for characteristic depths with simple forms, high accuracy, and wide application ranges were obtained. These equations will play an important role in practical engineering and in the development of hydraulics and also will improve the calculation method and theory system of hydraulics.
     The common solving methods for nonlinear equations with parameters include trial and error method, chart method, iterative method, and computer programming method. Trial and error method is time-consuming while chart method has low accuracy. With the development of the computer technology, computer programming can solve almost all the complex problems in the world. However, in the solving process of nonlinear equations with parameters, there exist a large number of science laws and methods to examine. Therefore, it maybe make none sense from viewpoint of hydraulics and mathematical system only for application of computer programming. Moreover, the governing equations for conjugate and contracted depths are complicated nonlinear equations with parameters. Thus, the computer programming is restricted without clear physical concept in practical engineering. Among these methods, iterative method is the most fundamental way to obtain equations of nonlinear equations. However, it is not easy to select appropriate initial value for iterative method which will lead to slow converging rates.
     First of all, this paper presents the iterative methods for nonlinear equations with parameters on the basis of iterative theory. The initial guess was given by solving the equations with parameters to obtain the solution with the lowest convergence, where we expanded the transcendental equations or high orders equations in the form of Taylor series and removed high order quantities. The final initial guess was obtained by solving the second order equation. Approximate equations will be developed by carrying out only the first iteration. In the meantime, the acceleration methods for staggered and monotony iteration were developed by analyzing the converging processes of iterative equation. Hence the selected method of initial guess and the accelerative technology were discussed in detail. New theory and method for the equations of this type were developed. Also, the iterative equations with high efficiency and the corresponding initial guess were given.
     Secondly, based on the summary of present calculation methods for conjugate depths and contracted depths of various channel sections, the theory provided in this paper for nonlinear equations with parameters were applied to carrying out the transformation of fundamental equations for characteristic depths. The transformations result in iterative equations with high efficiency. The appropriate initial guess was obtained by means of least square method and optimal calculation. Based on the theory described above, the method for computing the conjugate depths of quadric parabola section were developed, and as well as the methods for the contracted depths of U-shaped section and cubic parabola section. Error analysis of these three sets of equations shows that the maximum relative errors of the depth before the jump and the depth after the jump are0.47%and0.55%, respectively in the practical range; the maximum errors in the equations for the contracted depth of cubic parabola and U-shaped are less than0.16%and0.55%respectively. The recommended equations in this study have simple forms and high accuracy and can be used in wide application ranges.
     Finally, this paper presents previous results of explicit equations of two types of characteristic depths (conjugate depths and contracted depth) of seven types of sections including rectangular, trapezoidal, circular, U-shaped, quadric parabola, cubic parabola, and city-gate sections. The derivation processes of these equations were presented and relative errors and advantages were also analyzed. By means of comprehensive analysis, the explicit equations with simple forms, high accuracy, and wide application range were recommended. The theory presented in this paper will improve the theoretical system of two types of characteristic depths and also make the determination of conjugate and contracted depths much simpler.
引文
柴泉玺.1982.柱体渠槽水流收缩水深与共轭水深综合解析计算.水利学报,(01):33-39.
    陈东平.1989.共轭水深的数值算法.水利水电技术,(03):26-28.
    陈应华,袁晓辉,袁艳斌.2006.粒子群优化在临界水深计算中的应用.水电能源科学,24(1):55-57.
    陈永昌.1991.平面闸门临界水跃第二共轭水深的计算式.水文,(03):51-52.
    邓建中.1998.加速迭代收敛的二次插值法.工程数学学报,15(1):117-120.
    邓建中,刘之行.2001.计算方法[M].西安:西安交通大学出版社.
    邓建中,刘之行.2004.计算方法(第2版)[M].西安:西安交通大学出版社.
    邓建中.1993Steffensen迭代加速法的改进.西安交通大学学报,27(3):99-104.
    邸书灵,刘展威,刘玉宏.2002.关于非线性方程加速迭代的注记.工科数学,18(5):82-86.
    樊建军.1990.梯形渠道水跃共轭水深计算的迭代法.力学与实践,(06):42-44.
    冯德平.1986.求解水流收缩水深一个的简捷方法.人民长江,(04):52-53.
    冯德平.1984.用迭代法求水流收缩水深农田水利与小水电,(03):31-32.
    冯新龙,曾红玉.2003.加速牛顿迭代收敛的新方法.新疆大学学报(自然科学版),20(2):122-124.
    郭营之,相树珍,李向友.1990.梯形明渠水跃共轭水深的简化计算.水利水电技术,(08):30-34.
    谷欣,高汝江,白继华.2003.平底棱柱体梯形断面明渠水跃计算的数值方法.黑龙江水专学报,(03):61-62.
    金菊良,丁晶,杨晓华,等.2001.计算溢流坝下游断面收缩水深的方法.水利水电技术,(03):19-21.
    金菊良,付强,魏一鸣,等.2002.梯形明渠水跃共轭水深的优化计算.东北农业大学学报,(01):8-62.
    金菊良,张欣莉,丁晶.2001.用加速遗传算法计算梯形明渠的临界水深.四川大学学报(工程科学版),33(1):12-15.
    纪震,廖惠连,吴青华.2009.粒子群算法及应用[M].北京:科学出版社.
    冷畅俭,王正中.2011.三次抛物线形渠道断面收缩水深的计算公式.长江科学院院报,(04):29-31+35.
    梁勋,蔺慧敏.2005.近似计算梯形断面的共轭水深.黑龙江水利科技,(02):20-21.
    李崇智.1975.明流平底矩槽(园管)水跃计算的诺模图.陕西水利,(03):59-61.
    李风玲,文辉.2012.U形断面渠道收缩水深迭代计算初值的研究.人民黄河,(02):141-142.
    李佩成.1996.怎样建立经验公式[M].西安:西安地图出版社.
    李蕊,王正中,王乃信,等.2008.梯形明渠收缩水深直接计算公式.人民黄河,(05):80-81.
    李蕊,王正中,张宽地,等.2012.梯形明渠共轭水深计算方法.长江科学院院报,29(11):33-36.
    李若冰,张志昌.2012.标准Ⅰ型马蹄形断面水跃共轭水深的计算.西北农林科技大学学报(自然科学版),(08):230-234.
    李若冰,张志昌.2012.明渠六圆弧蛋形断面临界水深和断面收缩水深的计算.武汉大学学报(工学版),(04):463-467.
    刘玲,刘伊生.1999.梯形渠道水跃共轭水深计算方法.北方交通大学学报,(03):48-51.
    刘计良,王正中,杨晓松,等.2010.梯形渠道水跃共轭水深理论计算方法初探.水力发电学报,29(5):216-219.
    刘计良,王正中,赵延风.2010.马蹄形隧洞断面收缩水深的迭代法计算.农业工程学报,26(S2):167-171.
    刘庆国.1998.断面收缩水深的牛顿迭代解法.水利水电工程设计,(03):30-31.
    刘思光.1982.用优选法计算水流收缩水深.水利水电技术,(07):27-28.
    刘善综.1998.矩形断面收缩水深三角公式.江西水利科技,(01):42-43.
    刘善综.1995.梯形渠道临界水深的计算及讨论.水利学报,(6):83-85.
    龙伯璋.1981.矩形水平扩散槽中水跃的水力计算.合肥工业大学学报(自然科学版),(03):121-132.
    卢礼标.1985.求解矩形断面水流收缩水深之查表法.内蒙古水利科技,(03):23-24.
    芦琴.2005.明渠特征水深直接计算方法的研究.西北农林科技大学.
    芦琴,王正中,任武刚.2007.抛物线形渠道收缩水深简捷计算公式.干旱地区农业研究,(02):134-136.
    芦琴,王正中,杨健康,等.2005.准梯形及U形断面收缩水深简捷计算方法.中国农村水利水电,(08):67-69.
    卢士强,邹志业,程胜依.2002.突然扩散水跃共轭水深研究;proceedings of the第十六届全国水动力学研讨会,中国北京,F,[C].
    李占松,厉良辅.1990.空间水跃共轭水深公式综合分析.郑州工学院学报,(04):54-59.
    马吉明,谢省宗,梁元博.2000.城门洞形及马蹄形输入隧洞内的水跃.水利学报,(07):20-24.
    马文俊.2001.收缩水深的简化算式在工程设计中的应用小水电,(04):17-18.
    马子普,张根广,段文姣,等.2012.无压圆管过流水跃共轭水深计算方法.中国农村水利水电,(06):165-167.
    马子普,张根广,冯雪.2012.半立方抛物线形明渠共轭水深的迭代算法.西北农林科技大学学报(自然科学版),(11):1-5.
    马子普,张根广.2011.U形明渠收缩水深的迭代公式推求及程序实现.中国农村水利水电,(10):113-114,118.
    马子彦.1996.方程迭代求根加速收敛的算法研究.微机发展,(6):28-30.
    裴国霞,马太玲.1994.泄水建筑物下游矩形断面收缩水深直接求解法.内蒙古农牧学院学报,(03):91-94.
    饶建勇,张文倬.2010.泄水建筑物斜坡上扩散段水跃共轭水深的近似计算.水电站设计,(04):28-30+41.
    饶建勇,张文倬.2009.泄水建筑物斜坡上水跃共轭水深近似计算.云南水力发电,(01):28-29.
    单华宁.1998.无穷序列加速收敛的一个方法.南京理工大学学报,26(2):573-576.
    宋定春.1996.溢流坝下游断面收缩水深计算.四川水利,(02):14-16.
    苏鲁平.1997.梯形断面收缩水深的近似算式.人民长江,(04):35-36.
    孙建.1996.溢流坝或闸下出流收缩水深的直接计算公式.西北水资源与水工程,(01):16-21.
    沈清濂.1992.计算收缩水深的简易方法.海河水利,(02):60-62.
    孙道宗.2003.梯形断面渠道中水跃共轭水深计算.江西水利科技,(03):133-137,176.
    谭西平.1999.关于斜坡水跃计算若干问题的讨论.四川水利,(01):51-54.
    谭振宏.1989.收缩水深计算方法.重庆交通学院学报,(04):96-98.
    滕凯,刘伟光,聂振龙.1998.梯形断面共轭水深的近似计法.东北水利水电,(01):37-39.
    藤凯,张培.2012.梯形断面收缩水深的简化计算法.吉林水利,(07):50-52.
    万德华.1992.牛顿法求水平梯形明渠中水跃的共轭水深.葛洲坝水电工程学院学报,(01):44-51.
    万德华.1998.泄水建筑物下游断面收缩水深的精确计算公式.人民长江,(04):18-19.
    王瑞彭.1990.复式平底消力池水跃特性及其水力计算.长江科学院院报,(01):12-21.
    汪清,曹青,马子普.2012.二次抛物线形渠道临界水深与共轭水深简化算法.水电能源科学,30(6):111-113.
    汗涛,黄欣,方政.2012.跌扩型底流消能工共轭水深计算研究.水利科技与经济,(02):22-24.
    王永刚.1996.建议一个新的加速收敛因子.西安公路交通大学学报,16(4):71-74.
    王振刚,聂孟喜,王岩.2000.B型和D型折坡水跃的水力计算.水利水电工程设计,(01):27-41.
    王正中,王羿,赵延风,冷畅俭.2011.抛物线断面河渠收缩水深的直接计算公式.武汉大学学报(工学版),(02):175-177,191.
    王正中,刘计良,冷畅俭,等.2011.含参变量超越方程及高次方程迭代法求解的初值选取方法.数学的实践与认识,41(15),117-120.
    王正中,刘计良,潘灵刚,冷畅俭.2010.加快迭代收敛速度的两个命题.数学的实践与认识,40(12),205-209.
    王沫然.2005.MATLAB与科学计算(第二版)[M].北京:电子工业出版社.
    王正中,袁驷,武成烈.1999.再论梯形明渠临界水深计算法.水利学报,(04):15-18.
    王正中,雷天朝.1996.矩形断面收缩水深简捷计算公式.人民长江,(09):45-46+48.
    王正中,雷天朝,宋松柏等.1997.梯形断面收缩水深计算的迭代法.长江科学院院报,(03):16-19.
    王志云,滕凯.2012.矩形断面收缩水深的简化计算法.水利与建筑工程学报,(03):43-45.
    王兴全.1989.梯形明渠水跃共轭水深的计算.农田水利与小水电,(09):16-18.
    文辉,李风玲.2009.立方抛物线断面渠道收缩水深的直接计算方法.人民长江,(13):38,59.
    文辉,李风玲.2009.抛物线形断面渠道收缩水深的解析解.长江科学院院报,(09):32-34.
    吴宝琴,张志恒.2001.矩形扩散水跃水力计算新公式.水利水电工程设计,(02):42-44.
    吴静茹.1996.矩形断面收缩水深的近似计算.甘肃水利水电技术,(02):25-26.
    吴持恭.1979.水力学[M].高等教育出版社.
    项兆发.1980.论计算梯形渠道临界水深近似公式.科学通报,(16):749-753.
    谢成玉,滕凯.2012.三次抛物线形渠道断面收缩水深的简化计算公式.南水北调与水利科技,2012(01):136-138.
    谢景惠,廖理扬.1996.用牛顿法求解收缩水深的简化算式.水利水电技术,1996(02):16-18.
    谢文平.2004.牛顿迭代收敛的加速.航空计算技术,2004,34(4):34-36.
    辛孝明,李喜庆,张发峰.1997.矩形断面收缩水深的直接计算法.山西水利科技,1997(01):34-37.
    辛孝明.1997.平底梯形明渠水跃共轭水深的直接计算法.山西水利科技,(03):60-64.
    熊亚南.2002.泄水建筑物下游断面收缩水深的简化公式.水利水电科技进展,(05):28-29.
    薛朝阳.1993.溢流坝坝面及坝趾断面收缩水深的计算.河海大学学报,(06):102-106.
    杨立夫.1997.迭代过程的加速.陕西工学院学报,13(1):65-67.
    余俊,周济.1997.优化方法程序库OPB-2原理及应用[M].武昌:华中理工大学出版社,1997.
    于志忠.1982.矩形扩散水跃的计算方法.水利学报,1982(02):39-45.
    张会来,金哲.1994.直接求解矩形断面收缩水深.吉林水利,1994(03):11.
    张俊芝,高延红.1995.求解水平明渠共轭水深的牛顿迭代法.南昌水专学报,(01):18-22.
    张克新,李自玲.2006.数值计算中的几种加速算法的比较.中国水运(学术版),6(5):68-69.
    张宽地,王光谦,吕宏兴,等.2011.基于改进例子群算法求解马蹄形断面正常水深.排灌机械工程学报,29(1):54-60.
    张生贤.1987.梯形明渠水跃共轭水深的迭代计算.中国农村水利水电,(06):30.
    张文修,梁怡.2000.遗传算法的数学基础[M].西安:西安交通大学出版社.
    张文倬.2007.泄水建筑物扩散段水跃共轭水深的近似算式.水电站设计,(04):25-26,30.
    张晓宏,吴文平,徐天有.1997.一般U形渠道的水跃计算.西北纺织工学院学报,(04):372-375.
    张晓宏,徐天有,吴文平.1997.U形渠道的水跃计算.陕西水利,(03):32-33.
    张小林,刘惹梅.2003.梯形断面渠道水跃共轭水深的计算方法.水利与建筑工程学报,(02):41-43.
    张志恒.1973.矩形扩散水跃的水力计算.陕西水利,(01):1026.
    张志恒.1989.扩散水跃共轭水深的计算和分析.水利水电技术,(07):14-19.
    张志恒.1983.消力戽戽底收缩水深的计算.水利学报,(05):47-51.
    张之钰.1979.矩形和梯形断面水跃计算近似简化曲线图.水利水电技术,(09):43-46.
    赵延风,宋松柏,孟秦倩.2007.城门洞形断面收缩水深的近似计算公式.节水灌溉,(08):22-23.
    赵延风,宋松柏,孟秦倩.2008.抛物线形断面渠道收缩水深的直接计算方法.水利水电技术,(03):36-37,41.
    赵延风,王正中,芦琴.2009.梯形断面收缩水深的直接计算公式.农业工程学报,(08):24-27.
    赵延风,王正中,芦琴,等.2009.梯形明渠水跃共轭水深的直接计算方法.山东大学学报(工学版),(02):131-136+150.
    赵延风,王正中,孟秦倩.2008.矩形断面收缩水深的直接计算方法.人民长江,(08):102-103.
    赵延风,王正中,孟秦倩.2009.无压流圆形断面收缩水深的近似计算公式.三峡大学学报(自然科学版),(01):6-8.
    Das A.2007.Solution of specific energy and specific force equations. Journal Of Irrigation And Drainage Engineering-Asce, (4):407-410.
    Drummond J E.1984. Convergence speeding, convergence and summability, J Comput Appl Math,11(3): 145-159.
    Levin D.1973,.Developments of nonlinear transformations for improving convergence of sequences. Internat J Comput Math Ser B,3(3):371-388.
    Liu J, Wang Z, Fang X.2012.Computing conjugate depths in trapezoidal channels. Proceedings of the ICE-Water Management,165(9):507-512.
    Smith D A, Ford W F.1979.Acceleration of linear and logarithmic convergence. SIAM J Numer Anal.16(2):223-240.
    Valiani A. Caleffi V.2009.Depth-energy and depth-force relationships in open channel flows. II:Analytical findings for power-law cross-sections. Advances in Water Resources,32(2):213-224.
    Vatankhah A R.2009.Comments on "Depth-energy and depth-force relationships in open channel flows Ⅱ: Analytical findings for power-law cross sections" by A. Valiani, V. Caleffi. Advances in Water Resources,32(6):963-964.
    Vatankhah A R.2010.Analytical solution of specific energy and specific force equations:Trapezoidal and triangular channels. Advances In Water Resources, (2):184-189.
    Vatankhah A R, Omid M H.2010.Direct solution to problems of hydraulic jump in horizontal triangular channels. Applied Mathematics Letters, (9):1104-1108.
    Vatankhah A R, Valiani A.2011.Analytical inversion of specific energy-depth relationship in channels with parabolic cross-sections. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, (5):834-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700