用户名: 密码: 验证码:
汉中盆地发育机制及构造演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汉中盆地是一个北东东—近东西向展布的晚新生代盆地,盆地位于秦岭山脉南缘、青川断裂尾端,西起勉县,东至洋县,长100km,宽近30km。汉中以西,北东向梁山隆起自西南延入盆地,将盆地西部分为梁山南、北两个断陷。汉中盆地呈西宽东窄的楔形,盆地第四系厚度达700~1000m,呈现出明显的东西差异。青川断裂自西南向东北延入盆地,构成盆地西侧边界,秦岭为盆地北侧的屏障,汉中盆地北缘断裂、南缘断裂为盆地的控盆断裂,二者在盆地东侧交汇,盆地逐渐尖灭。
     论文通过汉中盆地内部各级地貌面的影像解译及野外调查,对汉中盆地内部的地貌类型进行了识别,划分了盆地内不同级别的地貌面,并通过年代学研究,初步得出了各级地貌面的时代。盆地内的地貌面主要以山前冲洪积扇、汉江及其支流的各级阶地为主,时代跨度由早更新世至全新世。
     (1)盆地内的山前洪积扇地层主要分布于汉江以北的秦岭南坡地区,不同期次冲洪积扇相互重叠、交错,后由于受到河流冲沟的改造,冲洪积扇也被冲刷剥蚀严重,规模、形态各异,洪积扇之间相互连结呈裙带状,近东西向延伸,覆盖在汉江三级阶地后缘。冲、洪积扇主要由洪积砂、砾石组成,砾石呈棱角状、次棱角状。另外冲洪积扇地层在梁山的两侧山前有少量分布。
     (2)盆地内出露有汉江T1-T5阶地,汉江支流褒河、湑水河等也发育有不同级的阶地。通过河流阶地上覆地层的年代学研究及区域地层对比,揭示出汉江及其支流T1阶地为全新世堆积,湑水河T2阶地形成年龄大约为67.5±4.0ka,汉江T3阶地形成年龄大约为140.5±8.2ka,褒河T3阶地形成年龄大约为104.9±5.1ka,汉江T4阶地形成年龄大于为1.344±0.134Ma,T5阶地因缺少合适的测年方法而无法确定其时代,其上覆粘土层时代为中更新世(大于120ka)。
     通过对盆地周缘断裂几何展布、运动性质及活动时代的详细调查,分析了汉中盆地周缘断裂第四纪以来的活动特征。
     (1)汉中盆地北缘断裂总体走向近东西,为勉略断裂的汉中盆地内段,盆地内断裂全长约100km,根据几何展布特征的不同,分为勉县—褒城段、褒城—桔园乡段和杨家滩—酉水乡段,断裂主要展布于北侧秦岭发育的山前洪积扇上。其中勉县—褒城段断错褒河T3阶地砾石层及其上覆细砂层,为晚更新世早期活动段。而断裂褒城—桔园乡段和杨家滩—酉水乡段分别断错中更新世山前洪积扇地层及溢水河T3阶地砾石层,均为中更新世活动段。
     (2)汉中盆地南缘段裂为汉中盆地的东南边界,发育于汉江南岸,线性特征较好,总体走向为NE向。断裂主要展布与南侧汉南杂岩与汉江阶地接触部位,断裂错动T4、T5阶地及其上覆粘土层,为中更新世活动断层。
     (3)青川断裂位于汉中盆地西南侧,总体走向为NE,延伸至汉中盆地西侧的勉县北与勉略断裂相交,汇聚为汉中盆地北缘断裂。通过对断裂嘉陵江河谷段的详细调查,发现断裂断错嘉陵江T3、T4阶地及山前坡积地层,通过对断错地层的年代学研究,显示断层断错晚更新世地层,对断裂运动性质的调查显示断裂在燕子砭以北表现为倾向相反的正断层。
     (4)茶坝—林庵寺断裂北段展布于梁山北侧,走向为NE,断裂总体线性特征较好,在盆地内段断裂展布于第四纪地层与基岩接触附近,进入西南侧山区,发育有连续的断层槽地,断裂在胡家坝北的玉带河T4阶地发育有断层槽谷,而向西南延伸断裂形迹逐渐不清晰。通过在元墩子探槽的开挖,揭示断裂断错山前坡积层,为晚更新世活动断层。
     (5)梁山南缘断裂展布于梁山南侧,走向为NEE,断裂线性影像较为清晰,其中在盆地内段,基岩断裂面出露,构成中低山与第四纪盆地的界线,进入西南侧山区,断裂表现为连续的断层槽谷地貌,断层断错T4阶地砾石层、山前坡积层及其上覆中更新世粘土层。李晓妮等(2012,2013)通过对梁山南缘断裂的盆地内段进行了浅层地震勘探与钻探工作,钻孔联合地质剖面显示断裂断错晚更新世砂砾石层(顶部年龄为58.0±2.7ka),因此判断断裂为晚更新世活动断层。断裂在盆地内段的运动性质表现为倾向S的正断层,而进入西南山区段则表现为倾向NW的高角度正断层,两段的倾向相反。
     通过对汉中盆地内部地貌特征的分析和周缘断裂的调查,揭示了汉中盆地第四纪以来构造活动特征具有明显的东西差异,主要表现在一下几个方面:
     (1)盆地周缘断裂活动性及活动强度的西强东弱。汉中盆地北缘断裂西段(褒城以西)的活动时代为晚更新世早期,而东段(褒城以东)为中更新世活动段;汉中盆地南缘断裂为中更新世活动断裂;盆地西南的三条断裂均为晚更新世活动断层。
     (2)盆地的沉积物厚度的东西差异。汉中盆地内的沉积物主要为第四系,第四系地层呈西厚东薄分布,汉中以东的第四系厚度约100~300m,盆地西侧的第四系厚度较大,其中梁山北的第四系厚度达700m,梁山南侧为900m,说明盆地的沉积中心位于盆地西侧的梁山南北,且呈现出由东向西第四系厚度逐渐加厚的特点。
     (3)盆地内冲洪积扇地层的分布具有明显的东西差异。盆地西侧的冲洪积扇地层胶结程度较差,从秦岭向南时代逐渐变老,晚更新世冲洪积扇地层主要发育在靠近秦岭附近,而中更新世的冲洪积扇地层分布距北侧秦岭较远;盆地东侧的冲洪积扇地层均为中更新世地层,胶结程度较好。
     (4)现代小震分布的东西差异。汉中盆地内小震的分布也呈现出明西强东弱的特征,小震主要集中在盆地西侧的梁山附近,显示在现代应力场下,盆地西侧的活动性较强。
     论文对秦岭中部地区云雾山-汉中盆地剖面上的17个花岗岩类样品进行了磷灰石裂变径迹测试,以制约秦岭中部地区新生代以来的剥露-演化历史。该剖面样品磷灰石裂变径迹年龄较为集中,在1800米的高差内,样品年龄集中于65.8±3.6~55.3±2.6Ma内,而本组样品的封闭径迹平均长度较大(14.06~14.80μm),封闭径迹长度的标准差均较小(0.09~0.12),显示秦岭中部地区在60Ma左右经历过一次快速抬升冷却事件。
     通过对比前人在北秦岭太白山地区、华山地区的磷灰石裂变径迹及(U-Th)He年龄研究结果,证实了秦岭地区新生代以来的隆升具有明显向南掀斜的特征,显示秦岭北侧隆升幅度大、南侧隆升幅度较小,秦岭隆升的中心位于秦岭北侧,靠近渭河盆地附近,这种掀斜的隆升可能与秦岭北缘山脉的伸展和秦岭北缘断裂活动有关。
     结合秦岭南北不同地区的低温热年代学研究结果,可以勾勒出秦岭新生代以来经历的热历史过程,主要分为三个阶段:(Ⅰ)60Ma左右的快速冷却(剥露)过程,南北秦岭均经历了该次过程,而由于北秦岭地区由于后期隆升作用较强,这一快速冷却事件仅在秦岭中部地区样品中记录下来;(Ⅱ)48.3~9.6Ma经历了相对较为缓慢的冷却时期,这次冷却过程主要作用在北秦岭地区,而中南部秦岭地区在地表的岩体没有记录到该次热事件;(Ⅲ)9.6Ma以来的快速冷却(剥露)时期,也仅在北秦岭地区记录。
     通过对常远等(2010)在米仓山—汉南隆起区的样品重新分析,认为米仓山北坡与汉南隆起区样品的低温热年代学年龄较为一致,因而推断米仓山地区具有向北掀斜的隆升特征。而南秦岭米仓山地区也在~50Ma记录了一次快速隆升事件,联系到该地区的主要构造活动,这次隆升事件可能是沿着米仓山-汉南隆升逆冲褶皱带向南俯冲,从而造成现今向北掀斜的隆升特征。
     由于汉中地区北侧的秦岭中北部地区向南掀斜隆升,而南秦岭米仓山地区向北掀斜式隆升,从而在汉中盆地地区形成了谷地地貌,汉江河谷开始发育。由汉南杂岩体上部残留的古汉江夷平面推测,汉江在发育之初具有宽阔河谷,范围可能由秦岭南坡一致延续到米仓山北坡附近,而由于后期米仓山缓慢的隆起,汉江河谷逐渐变窄,向北侧迁移,而后期由于汉中盆地的发育,盆地两侧正断层的活动使得汉中盆地内部开始沉降,汉江河谷逐渐进入盆地内部展布,而第四纪以来由于秦岭的持续隆升,在秦岭南坡发育有规模较大的山前洪积扇地层,造成盆地内部地貌向南倾斜,汉江的展布主要靠近盆地南侧,从而形成现今的展布特征。
     在中新世晚期到上新世早期新构造运动影响到摩天岭地块、大巴山与秦岭南缘交汇地区,青川断裂和勉略断裂分别以右旋走滑和左旋走滑运动为主,从而形成了汉中盆地发育的动力学背景。由于青川断裂和勉略断裂的走滑运动,在三联点西侧的摩天岭地块形成挤压上升区,而在三联点南侧的汉中盆地及以南地区为拉伸下降区,并在两条断裂交汇处开始发育呈楔形状的汉中盆地,汉中盆地北缘断裂(勉略断裂汉中盆地内段)和汉中盆地南缘断裂分别作为汉中盆地南北两侧的控盆断裂开始发育,均为正断性质。上新世至早更新世,由于龙门山断裂带西侧岷山的快速隆起,龙门山断裂带北东段和勉略断裂逐渐失去了活动块体边界的位置,断裂的运动性质及活动性均发生较大转变,汉中盆地的发育失去了原有动力学背景,盆地进入缓慢发育期,该时期形成了汉中盆地的基本轮廓。
     论文根据前文中对汉中盆地第四纪以来构造活动特征的研究,盆地发育机制的探讨,秦岭新生代隆升冷却历史的揭示,可以归纳出汉中盆地所经历的构造演化阶段:
     (1)新生代早期(~50Ma)汉江谷地形成阶段。由于汉中地区北侧的秦岭中北部地区向南掀斜隆升,南秦岭米仓山地区向北掀斜式隆升,从而在汉中盆地地区形成了谷地地貌,汉江河谷开始逐渐形成,而汉江的起始发育时间应该在该谷地地貌形成之后。
     (2)新生代晚期(9~4Ma)盆地起始发育阶段。由于受到青藏高原向东扩展的影响,青川断裂和勉略断裂分别以右旋走滑和左旋走滑伸展运动为主,汉中盆地地区处于两条断裂交汇的三联点位置,两条断裂的走滑运动,使得三联点西侧的摩天岭地块形成挤压上升区,而在三联点南侧的汉中盆地及以南地区为拉伸下降区,并在两条断裂交汇处开始发育呈楔形状的汉中盆地,汉中盆地北缘断裂(勉略断裂汉中盆地内段)和汉中盆地南缘断裂分别作为汉中盆地南北两侧的控盆断裂开始发育,在盆地内段均为正断性质,盆地断陷区开始接受沉积,由于该阶段断陷幅度较小,盆地沉积厚度较小。
     (3)上新世以来汉中盆地东西部分化发育阶段。由于龙门山断裂带西侧岷山的快速隆起,龙门山断裂带北东段及勉略断裂逐渐失去了活动块体边界的位置,龙门山断裂带北东段靠近汉中盆地段逐渐转变为正走滑运动,近地表表现为高角度正断层,勉略断裂活动强度逐渐减弱,汉中盆地的发育失去了原有的动力学背景,盆地进入东西部分化发育阶段。
     汉中盆地在晚新生代发育阶段形成了基本的轮廓形态,而进入上新世以来,由于汉中盆地的南北两侧边界断裂及西南三条断裂继续活动,使得盆地南北两侧跨度继续增大,盆地持续接受沉积,而由于盆地西南侧三条断裂的活动强度较大,且在靠近汉中盆地附近转变为正走滑运动,近地表均表现为高角度正断层,使得盆地西侧的梁山附近断陷幅度较大,盆地跨度和沉积厚度逐渐增大,盆地的沉积中心逐渐向盆地西侧迁移。进入晚更新世以来,由于南北两条正断层逐渐停止活动,而盆地西南侧三条断裂则继续活动,受到断层活动影响,使得盆地西侧继续张开,盆地沉积中心也逐渐迁移至梁山南北两侧,盆地最终呈现出现今楔形的几何形态。第四纪以来,由于受到北侧秦岭隆升的影响,汉中盆地在秦岭山前发育有洪积扇,从而使盆地内地貌显示出向南倾斜的特征,汉江也逐渐向盆地南侧迁移;进入全新世以来,盆地周缘断裂活动停止,盆地内的构造演化主要是受到秦岭隆升影响,秦岭在全新世以来进入快速隆升期,加剧了盆地内地貌向南的倾斜。
     上新世以来,岷山地区开始快速隆起,而岷山的隆起造成了龙门山断裂带北东段作为活动块体的边界断裂失去逆冲运动的主要动力来源,削弱了龙门山断裂带北东段作为边界断裂的构造位置,并将原来的巴彦喀拉地块以岷山构造带为界分化为西侧的巴彦喀拉地块和东侧的摩天岭地块。
     岷山隆起区断裂的逆冲运动吸收了巴彦喀拉块体在岷山一带向东运动的大部分分量,造成摩天岭地块东侧的青川断裂、茶坝-林庵寺断裂、梁山南缘断裂作为活动边界断裂的功能减弱,从而形成晚第四纪以来活动性较弱的构造背景,因而龙门山断裂带北东段的构造活动比中南段都要弱,大地震的记载也较少。由于龙门山断裂带北东段处于岷山挤压隆起活动带的东侧,总体的构造活动较弱,但仍会受到巴彦喀拉块体向东运动的影响,龙门山断裂带北东段三条断裂晚更新世晚期以来仍有活动是这种影响的体现。因而龙门山断裂带北东段及其毗邻的汉中盆地地区发生特大地震的构造条件较弱,但具有发生中强地震的可能。
The Hanzhong basin, trending in NE or NEE, formed in Late Quaternary, is located on thesouthern margin of the Qingling Mountains and end of the Qingchuan fault. It begins fromMianxian in west, extending toward east to Yangxian for100km with width nearly30km. West ofHanzhong, the Liangshan uplift continues into the basin from southwest, dividing the westernbasin into northern and southern depressions. The Hanzhong basin looks like a wedge wide inwest and narrow in east, with Quaternary sediments of thickness up to700~1000m, andremarkable difference between its east and west. As the western boundary, the Qingchuan faultenters the basin from southwest extending northeast. The Qingling Mountains stand out to thenorth. The basin is bounded by faults on its northern and southern edges, which merge in the eastwhere the basin dies out.
     According to the geomorphic interpretation of the image of the Hanzhong basin and fieldinvestigations, this work has identified the geomorphic types and determined different levels ofgeomorphic planes in the Hanzhong basin, of which the ages of each plane was estimated throughthe chronological study. These geomorphic planes are dominated by range-front alluvial andpluvial fans and terraces at the Hanjiang River and its branches, with ages spanning over from theearly Pleistocene to Holocene.
     (1)The pluvial fan in the Hanzhong basin is mainly in the southern slope of the QinlingMountains,north of Hanjiang, and different stages of alluvial fans overlapped and staggered. Afterthe reformation by the river gullies, alluvial fans have also been severely eroded. Different sizesand shapes of alluvial fans are crony-like, with nearly EW extension, covering the trailing edge ofthe Hanjiang T3terrace. The alluvial and pluvial fans are composed by the alluvial sand andgravel. The gravel is angular and sub-angular. Besides, few such fans are present on the both sidesof the Liangshan Mountains.
     (2)The Hanjiang outcrops T1-T5terraces in the Hanzhong basin, and the tributary ofHanjiang also developed different levels of terraces near the pass from the mountain to the basin.Geochronology of the overburden strata on the terraces and the regional stratigraphic correlation suggest that the T1terrace of Hanjiang and its tributary formed in Late Pleistocene-Holocene, theT2terrace in Late Pleistocene, T3terrace in Middle Pleistocene, and T4terrace in earlyPleistocene. As lacking proper dating methods, it is not possible to determine the age of the T5terrace, though its overlying clay bed is of Middle Pleistocene.
     Based on investigations of the geometry, kinematic property and the activity times of the faultsaround the Hanzhong basin, this work made an analysis of the activity characteristic of these faultsince Quaternary.
     (1) The north-edge fault of the Hanzhong basin, with its normal faulting and nearly EW extension,is divided into two sections according to different geometry: The western part (Mianxian-Baocheng part) cuts theT3terrace of Baohe, with15m of the vertical displacement. The active time of this section is the early LatePleistocene. The east part (Baocheng-Youshuixiang part) cuts the diluvium of the Juyuanxiang and the T3terraceof Yishuihe, which was active in middle Pleistocene.
     (2) The south-edge fault of the Hanzhong basin, as a normal fault stretching NE, is present onthe south bank of the Hanjiang River where the Hannan complex rock links the terrace of theHanjiang River. It cuts the T4and T5terraces as well as overlying clay beds, and was active in middlePleistocene.
     (3) The Qingchuan fault, a right-slip fault striking NE, lies in the southwest of the Hanzhongbasin. It enters the basin north of Mianxian, and finally intersects with the Mianlue Detailedinvestigations on its section along the Jialing River show that the Qingchuan fault offsets the T3and T4terraces and range-front slope sediments. According to the research of the geochronology ofoffset strata, this fault was active in late Pleistocene, and it exhibits high-angle normal faulting in thenorth ofYanzibian.
     (4) The Chaba-Linansi fault spreads on the north side of Liangshan with a NE trend. Onsatellite images, the northern section of this fault is a fairly linear feature. While in the Hanzhongbasin, it is expressed by a boundary between basement rock and sediments. High-angle normalfaulting and dipping NW characterize this fault, which becomes continuous troughs in themountainous area to southwest. It is traced by troughs at terrace T4of the Yudai river north ofHujiaba, while gradually unclear father south. By the excavation of the trench in the Yuandunzi, itwas observed that the fault dislocates the piedmont slope sediments, and should be active in latePleistocene.
     (5) The Liangshan south margin fault lies on the southern side of the Liangshan Mountains,striking in NEE, almost parallel to the northern section of the Chaba-Lin’an fault. In the basin thisfault exposes is rupture plane, constituting the boundary between moderate-low mountains and theQuaternary basin. In the mountainous area on the southwest side, this fault manifests ascontinuous troughs which offset gravel beds of terrace T4, range-front sliderock and overlyingclay strata of Pleistocene. Seismic exploration and drilling in the basin suggest that this fault was anormal one dipping due south being active in Late Pleistocene time. In the southwest mountainousarea, this fault dips NW, also high-angle normal faulting, just opposite to its section in the basin.
     The analysis of the geomorphic features in the Hanzhong basin and the investigations of thefault activity surrounding the Hanzhong basin reveal that tectonic activities differ perceptiblybetween its east and west since Quaternary.
     (1) The temporal difference of the fault activity on the basin’s rim. The west section of the north-edgefault of the Hanzhong basin (east of Baocheng) was active in early Late Pleistocene, while itseastern section (west of Baocheng) was active was in middle Pleistocene. The south-edge fault ofthe basin was also active in middle Pleistocene. And the three faults in the southwest of the basinwere all active in late Pleistocene.
     (2)The difference of the thickness of basin sediments. The Hanzhong basin is a Late Cenozoic basin,hosting dominant sediments of Quaternary, which are thin in the east and thick in the west. For instance, theQuaternary System is merely100~300m thick east to Hanzhong, while as thick as700m and900m north and southof Lingshan, respectively, both in the western part of the basin. The deposit center lies north and south of Lingshanin the western basin, where Quaternary sediments become thicker from east to west.
     (3) The difference of the distribution of the alluvial and pluvial fans in the Hanzhong basin.In the western basin, the alluvial and pluvial fans become older southward gradually from theQinling Mountains, and most of the late Pleistocene fans developed near the Qinling, The MiddlePleistocene fans is far away from the Qinling. Those alluvial and pluvial fans in the easternHanzhong basin are of Middle Pleistocene in age.
     (4)The difference of the distribution of recent small earthquakes within the basin. Smallearthquakes within the basin mainly occur around Liangshan in the west side of the basin, near the Yangsan area,showing planar distribution.Afew of small earthquakes occurred in the east part of the basin.
     This work has collected17apatite samples for fission-track analysis from the Yunwushan, Middle Qinling. The age-elevation plot indicates that within the elevation range600~2400m, theirages are around60Ma. The average length of closed tracks is14.06~14.80m, with standarddeviations0.09~0.12. These results suggest that the rock bodies at the Yunwushan, Middle Qinlinghad experienced a rapid cooling (exhumation) stage at60Ma.
     By comparison of previous work on apatite fissure-track and (U-Th) He dating in the northQinling Mountain region and North China, this thesis suggests that the uplift of the Qinling has anobvious characteristic of tilting southward. It is expressed by a large rise amplitude in the northand a small rise in the south, with the center of the uplift located on the north side of the Qinling,near the Weihe basin. This tilting uplift may be related to the extension of the North Qinling andthe activity of the north-edge fault in the Qinling.
     From apatite fission-track age data, the North Qinling area recorded thermal history of middleto late Cenozoic, while the South Qinling area recorded its thermal history of early Cenozoic.Thus, the thermal history of the whole Qinling area since Cenozoic may include three stages.(1)Rapid cooling (exhumation) process at~60Ma, which started from an uncertain time, and ended at~50Ma. Both the North and South Qinling have experienced this process, but it was recorded bythe South Qinling, likely because of later strong uplift in the North Qinling.(2) Relatively slowcooling (exhumation) process during48.3~9.6Ma, which was recorded by the North Qinling, butnot by the South Qinling, indicating that the relevant rock did not uplifted to the surface in theSouth Qinling.(3) Rapid cooling (exhumation) period since9.6Ma, which was recorded only bythe North Qinling.
     This work made a reanalysis of the samples from the Micang Shan-Hannan uplift and suggeststhat the age of the north slop of the Micang shan and the Hannan uplift are in accordance. Thenthis thesis infers the uplift of the Micang Shan has the characteristic of northward titling. A rapiduplift event of~50Ma was also recorded at the Micang area, South Qinling, which was likely theconsequence of southward under thrust of a fold zone that resulted in the northward tilting uplift.
     Because of the southward titling uplift in the Middle-North Qinling and the northward titlinguplift in the South Qinlig, a valley formed in the Hanhong area, then the Hanjiang began todevelop in this valley. At the early stage, the Hanjiang possesses the broad valley by the planationsurface of Hanjiang on the Hannan complex body, and it extended from the south slope of theQinling to the North slope of the Micang Shan. Due to the slow uplift of the Micang Shan, the Hanjiang migrated gradually to the north area. Due to the development of the Hanzhong basin, thefaults began to be active as normal faulting, and led to rifting in the Hanzhong area. The HanjiangRiver shifted gradually to the inside of the Hanzhong basin. The continue uplift of the Qinling inQuaternary caused the development of large scale pluvial fans in the Hanzhong basin. Thesouthward tilting landform made the Hanjiang River flow along the south of the Hanzhong basin.
     Since the neotectonic movement, with rapid uplift of the eastern margin of the Tibetan plateau,the Longmenshan rose in12~5Ma and south edge of the Qingling uplifted in9~4Ma, respectively.These tectonic motions affected the Motianling block, and the junction area between Dabashanand Qingling. Right strike-slip and left slip strike-extension dominate the Qingchuan fault andMianlue fault, respectively, serving as the dynamic setting of the Hanzhong basin. Because ofstrike-slip motion of the Qingchuan fault and Mianlue fault, compression and uplift occurred inthe Motianling block west of the triple junction, while extension and subsidence took place in thesouth including the Hanzhong basin. Consequently, normal faults appeared on northern andsouthern edges of the basin. From Pliocene to early Pleistocene, with rapid rise of the MingshanMountains in west, the northeastern Longmenshan fault zone become less active, the Mianluefault changed into dominant left-slip strike with compression, and the Hanzhong basin stopped todevelop. By middle and late Quaternary, due to differential uplift of the Qingling in north andDabashan in south, the Hanzhong basin continued to receive sediments, resulting in Quaternarystrata of varied epochs. When activity on the faults within the basin continued at different rates,the sedimentary center of the Hanzhong basin shifted to west, and the current tectonic pattern ofthe basin was shaped up.
     According to the research of the Quaternary tectonic activity characteristics of the Hanzhongbasin, the investigate of the development mechanism, the reveals of the Cenozoic cooling historyin the Qinling area, the tectonic evolution of the Hanzhong basin is summarized as follows:
     (1)At the early Cenozoic(~50Ma), due to the southward titling uplift in the Middle-NorthQinling and the northward titling uplift in the South Qinling, a valley landform formed in theHanhong area, then the Hanjiang River began to develop in this valley.
     (2)At the late Cenozoic(9~4Ma), influenced by the eastward expansion of the Tibetanplateau, the Qingchuan fault was active as dextral strike-slip fault and the Mianlue fault active as asinistral strike-slip fault, respectively; the Hanzhong basin was situated at the triple junction of the intersection of the two faults. The sltrike-slip of the two faults formed a squeezed rising land areain the west of the Motianling block and tensile subsidence zone in the south of the Hanzhongbasin. The Hanzhong basin began to develop in the triple-junction. The basin-control faults beganto develop and be active as normal faults.
     At the Pliocene, as the Minshan in the west rose rapidly, the Longmenshan fault lose theposition as the boundary of the active bock. The Mianlue fault converted into sinistral strike-slipwith compression. The Hanzhong basin missed the original dynamic setting, and transformed intothe slow development stage. The outline of the Hanzhong basin bas been formed before thePliocene.
     At this stage, the faults around the Hanzhong basin remained active, leading to continualincrease of the north-south span of the Hanzhong basin. The Hanzhong basin received steadilysediments with its deposit center at the center of the basin. Since the Quaternary, affected by theuplift of the Qinling, the Hanzhong basin gradually developed alluvial fans at the piedmont of theQinling, then the landform in the basin tilted southward. Since the late Pleistocene, the boundaryfaults of the Hanzhong basin stopped activities gradually, meanwhile the three faults in thesouthwest of the basin were still active. Due to activity of the three normal strike faults, the spanof the west part increased and the sedimentary center shifted to the west of the Hanzhong basin.Finally, the basin had a geometry of wedge as seen at present. Entering the Holocene, as the faultsaround the basin stopped activities, the development of the Hanzhong basin wass mainlyinfluenced by the uplift of the Qinling Mountains. Since the Holocene, the Qinling Mountainsentered to the rapid uplift stage, and the landform tilted more to the south.
     It seems that the current active boundary of the Bayan Hara block has shifted to themiddle-southern section of the Longmenshan fault zone, Mingshan uplift, and East Kunlun faultzone, but not including the northeastern section of the Longmenshan fault zone. The possiblemechanism for this change is that the Mingshan uplift received most of the compression from theeastward motion of the Bayan Hara block, resulting in thrust and uplift of Mingshan, while thenortheastern section of the Longmenshan fault zone was little affected. A chronological studysuggests that the Mingshan Mountains began to rise rapidly at5~3Ma, consistent with theestimation of late Pliocene to early Pleistocene.
     As the eastward motion of the Bayan Hara block is hampered by the South China block, thrust deformation occurred along the middle-southern Longmenshan fault zone and Mingjiang Riverfault zone in early and middle late Cenozoic time. Rapid uplift and cooling happened in11~5Maon the Longmenshan and in and around Mingshan in5~3Ma, indicative of a gradually youngertrend of cooling age from the Longmenshan near the Sichuan basin toward the northwest. Sincethe Pliocene, the Mingshan area has been in an uplift state, capturing the driving force for thrust ofthe northeastern Longmenshan fault zone. In other words, the deformation of the Mingshan upliftabsorbed most of the eastward motion of the Bayan Hara block, and made the Qingchuan,Chaba-Linansi, and Liangshan south edge faults less active since the Quaternary. Thus few majorearthquakes have been documented there. As these three faults have been active to some extentsince the late Pleistocene, they are still capable of generating moderate earthquakes, though areunlikely to spawn great events.
引文
常远,许长海, Reiners P W等.米仓山-汉南隆起白垩纪以来的剥露作用:磷灰石(U-Th)/He年龄记录.地球物理学报,2010,53(4):912-919.
    陈国光,计凤桔,周荣军等.龙门山断裂带晚第四纪活动性分段的初步研究.地震地质,2007,29(3):657-673.
    陈家义,杨永成等.汉中-碧口地区的造山结构和构造.陕西地质,1997.15(1):12-19.
    陈社发,邓起东等.龙门山中段推覆构造带及相关构造的演化历史和变形机制(一).地震地质,1994,16(4):404-412.
    陈社发,邓起东等.龙门山中段推覆构造带及相关构造的演化历史和变形机制(二).地震地质,1994,16(4):413-420.
    邓起东,陈社发,赵小麟.龙门山及其邻区的构造和地震活动及动力学.地震地质,1994,16(4):389-403.
    杜恒俭,陈华慧,曹伯勋,地貌学及第四纪地质学1981:地质出版社.
    樊春,王二七,王刚等.龙门山断裂带北段晚新近纪以来的右行走滑运动及其构造变换研究—以青川断裂为例.地质科学,2008,43(3):417-433.
    甘卫军,沈正康,张培震等.青藏高原地壳水平差异运动的GPS观测研究.大地测量与地球动力学,2004,24(1):29-35.
    国家地震局鄂尔多斯活动断裂系课题组,鄂尔多斯周缘活动断裂系,1988,北京:地震出版社.
    何文贵,熊振等.东昆仑断裂带东段玛曲断裂古地震初步研究.中国地震,2006.22(2):126-134.
    胡幸平,俞春泉,陶开等.利用P波初动资料求解汶川地震及其强余震震源机制解.地球物理学报,2008,51(6):1711-1718.
    姜晓玮,王江海,张会化.西秦岭断裂走滑与盆地的耦合—西秦岭—松甘块体新生代向东走滑挤出的证据.地学前缘,2003,10(3):201-208.
    赖绍聪.秦岭造山带勉(县)-略(阳)缝合带蛇绿岩与火山岩岩石-地球化学研究.西北大学,1996.
    赖绍聪,张国伟等.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布.中国科学:D辑,2003:1174-1183.
    李陈侠,徐锡伟等.东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用.中国科学:地球科学,2011,(9):1295-1310.
    李春峰,贺群禄,赵国光.东昆仑活动断裂带东段古地震活动特征.地震学报,2005.27(1):60-67.
    李传友,宋方敏,冉勇康.龙门山断裂带北段晚第四纪活动性讨论.地震地质,2004,26(2):248-258.
    李齐,王瑜,万景林等.秦岭造山带中段中新生代构造抬升的热年代学证据.矿物岩石地球化学通报,2001,4:263-265.
    李三忠,李亚林.秦岭造山带勉略缝合带构造变形与造山过程.地质学报,2002,76(4):469-483.
    李三忠,赖绍聪等.秦岭勉(县)略(阳)缝合带及南秦岭地块的变质动力学研究.地质科学,2003(02):137-154.
    李曙光, Hart S,郑双根等.中国华北,华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学B辑,1989,3:312-319.
    李曙光,孙卫东等.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学—古生代洋盆及其闭合时代的证据.中国科学:D辑,1996(3):223-230.
    李晓妮,冯希杰,任隽等.汉中盆地内梁山南缘断裂的活动性分析—以汉江大堤位置为例.地震研究,2012(3):341-346.
    李晓妮,冯希杰,任隽等.陕南汉中盆地西部梁山南缘断裂隐伏段的活动性鉴定.地震学报,2013,35(4):1-9.
    李正芳,周本刚,冉洪流.运用古地震数据评价东昆仑断裂带东段未来百年的强震危险性.地球物理学报,2012.55(9):3051-3065.
    李智武,陈洪德,刘树根等.龙门山冲断隆升及其走向差异的裂变径迹证据.地质科学,2010(4):944-968.
    梁文天.2009.秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程.博士论文,西北大学.
    刘建辉,张培震,郑德文等.秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析.地球物理学报,2010,53(10):2405-2414.
    刘建辉.2010.贺兰山,秦岭山脉新生代伸展隆升及断层摩擦生热磷灰石裂变径迹分析.博士论文,中国地震局地质研究所.
    刘建辉.贺兰山,秦岭山脉新生代伸展隆升及断层摩擦生热磷灰石裂变径迹分析.国际地震动态,2010(3):31-33.
    刘少峰,张国伟.东秦岭-大别山及邻区盆-山系统演化与动力学.地质通报,2008,27(12):1943-1960.
    刘阳,延军平,杜继稳.1960-2009年汉中市气候变化特征及未来趋势.气象与环境学报,2011,27(3):45-50.
    马保起,苏刚,侯治华等.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率.地震地质,2005,27(2):234-242.
    孟庆任,张国伟等.秦岭南缘晚古生代裂谷—有限洋盆沉积作用及构造演化.中国科学:D辑,1996(S1):28-33.
    裴先治.2001.勉略-阿尼玛卿构造带的形成演化与动力学特征.博士论文,西北大学.
    齐矗华,甘枝茂,惠振德.陕西秦岭构造地貌基本特征.见:中国地理学会地貌专业委员会编辑.中国地理学会第一次构造地貌学术讨论会论文选集.北京:科学出版社,1984:145-150.
    青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带.北京:地震出版社,1999:1-186.
    沈传波,梅廉夫,徐振平等.大巴山中-新生代隆升的裂变径迹证据.岩石学报,2008(11):2901-2910.
    宋方敏等.2011.《汉中市主要断层活动性鉴定与地震构造图编制》专题工作报告.陕西省地震局
    宋佃星,延军平,马莉.近50年来秦岭南北气候分异研究.干旱区研究,2011,28(3):492-498.
    孙卫东,李曙光.南秦岭花岗岩锆石U—Pb定年及其地质意义.地球化学,2000,29(3):209-216.
    唐荣昌,韩渭宾,四川活动断裂与地震1993:地震出版社.
    汤英俊,宗冠福,雷遇鲁等.陕西汉中地区上新世喃乳类化石及其地层意义.古脊椎动物学报,1987,25(3):222-235.
    田云涛,朱传庆,徐明等.白垩纪以来米仓山-汉南穹窿剥蚀过程及其构造意义:磷灰石裂变径迹的证据.地球物理学报,2010,53(4):920-930.
    滕志宏,王晓红.秦岭造山带新生代构造隆升与区域环境效应研究.陕西地质,1996,14(2):33-42.
    万景林,李齐,王瑜.华山岩体中,新生代抬长的裂变径迹证据.地震地质,2000,22(1):53-58.
    万景林,王瑜,李齐等.太白山中新生代抬升的裂变径迹年代学研究.核技术,2005,28(9):712-716.
    王二七,陈智梁.龙门山断裂带印支期左旋走滑运动及其大地构造成因.地学前缘,2001,8(2):375-384.
    王非,李红春等.晚第四纪中秦岭下切速率与构造抬升.科学通报,2002,47(13):1032-1036.
    王根宝,冯华,焦建宏.论南秦岭加里东运动.陕西地质,1998,(1):11-14.
    王敏.2009. GPS观测结果的精细分析与中国大陆现今地壳形变场研究.博士论文.中国地震局地质研究所.
    王全伟.青川地区青川断裂带的显微结构及其变形条件研究.矿产岩石,2000,20(1):87-90.
    王瑜.构造热年代学—发展与思考.地学前缘(中国地质大学,北京),2004,11(4):435-443.
    韦玉春,黄春长,孙根年.汉中盆地全新世沉积物成因研究.干旱区地理,2000,23(1):37-43.
    吴德超,魏显贵,杜思清等.米仓山叠加型推覆构造几何结构及演化.矿物岩石,1998,18:16-20.
    武文英,陕西汉中梁山地区晚更新世黄土成因及其记录的环境信息,2005,西北大学.
    吴堑虹.裂变径迹方法在大地构造学中的一些应用.地质地球化学,2001,29(1):83-89.
    吴中海,吴珍汉,万景林等.华山新生代隆升—剥蚀历史的裂变径迹热年代学分析.地质科技情报,2003,22(3):27-32.
    陕西省地震局,秦岭北缘活动断裂带1996:地震出版社.
    陕西省地质矿产局,陕西省区域地质志,1989,地质出版社.
    西北大学地质学系.《梁山地质》.1992.西北大学出版社.
    徐锡伟,闻学泽,陈桂华.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义.中国科学: D辑,2008,38(5):529-542.
    徐锡伟,闻学泽,叶建青等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,(30)3:597-526.
    徐杰,计凤桔,周本刚.有关我国新构造运动起始时间的探讨.地学前缘,2012,19(5):284-292.
    薛祥煦,张云翔.从生物化石的性质和分布分析秦岭上升的阶段性与幅度.地质论评,1996,42(1):30-36.
    薛祥煦.秦岭东段山间盆地的发育及自然环境变迁1996:地质出版社.
    薛祥煦,李虎侯,李永项等.秦岭中更新世以来抬升的新资料及认识.第四纪研究,2004,24(1):82-87.
    杨晓平,冯希杰,戈天勇等.龙门山断裂带北段第四纪活动的地质地貌证据.地震地质,2008,30(3):644-657.
    杨秀芬,马守林.汉中盆地与新构造运动有关的地貌特征.西北师范大学学报(自然科学版),1987,2:45-49.
    尹功明,卢演俦,赵华等.华山新生代构造抬升.科学通报,2001,46(13):1121-1123.
    喻学惠.甘肃礼县-宕昌地区新生代钾质碱性超基性火山岩的特征及成因.沉积与特提斯地质,1994,18:114-127.
    张保升.秦岭地貌结构.西北大学学报(自然科学版),1981,1:78-84.
    张成立,张国伟,晏云翔等.南秦岭勉略带北光头山花岗岩体群的成因及其构造意义.岩石学报,2005,21(3):711-720.
    张国伟,程顺有,郭安林等.秦岭-大别中央造山系南缘勉略古缝合带的再认识[J].地质通报,2004,23(9):846-853.
    张国伟,董云鹏,赖绍聪等.秦岭-大别造山带南缘勉略构造带与勉略缝合带.中国科学:D辑,2003,33(12):1121-1135.
    张国伟,孟庆任.秦岭造山带的结构构造.中国科学: B辑,1995,25(9):994-1003.
    张国伟,孟庆任.秦岭造山带的造山过程及其动力学特征.中国科学:D辑,1996,26(3):193-200.
    张国伟,张本仁,袁学诚等.,秦岭造山带与大陆动力学2001:科学出版社.
    张培震,闻学泽,徐锡伟等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式.科学通报,2009,54(7):944-953.
    张岳桥,杨农等.中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆升过程初步研究.地学前缘,2003.10(4):599-612.
    张岳桥,马寅生,杨农等.西秦岭地区东昆仑-秦岭断裂系晚新生代左旋走滑历史及其向东扩展.地球学报,2005,26(1):1-8.
    张岳桥,杨农等.青藏高原东缘新构造及其对汶川地震的控制作用.地质学报,2008.82(12):1668-1678.
    张宗清,张国伟等.汉南侵入杂岩年龄及其快速冷凝原因.科学通报,2000,45(23):2567-2572.
    赵小麟,邓起东,陈社发.龙门山逆断裂带中段的构造地貌学研究.地震地质,1994,16(4):422-428.
    郑德文,张培震等.青藏高原东北边缘晚新生代构造变形的时序—临夏盆地碎屑颗粒磷灰石裂变径迹记录.中国科学:D辑,2003.33(4):190-198.
    郑德文,张培震,万景林等.西秦岭北缘中生代构造活动的40Ar/39Ar, FT热年代学证据.岩石学报,2004,20(3):697-706.
    周荣军,李勇, DensmoreAL等.青藏高原东缘活动构造.矿物岩石,2006,26(2):40-51.
    周荣军,蒲晓虹,何玉林等.四川岷江断裂带北段的新活动,岷山断块的隆起及其与地震活动的关系.地震地质,2000,22(3):285-294.
    周祖翼,毛凤呜,廖宗廷等.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用[J].沉积学报,2001,19(3):456-473.
    周祖翼,廖宗廷,杨凤丽等.裂变径迹分析及其在沉积盆地研究中的应用.石油实验地质,2001,23(3):332-337.
    朱志澄,构造地质学.1990,中国地质大学出版社(武汉).
    Avouac, J.P.,P. Tapponnier. Kinematic model of active deformation in central Asia. GeophysicalResearch Letters,1993.20(10):895-898.
    Barbarand J, Carter A, Wood I, et al. Compositional and structural control of fission-trackannealing in apatite. Chemical Geology,2003,198(1):107-137.
    Bellemans F, De Corte F, Van den Haute P. Neutrons for fission-track dating and fission tracks forneutron spectrum monitoring. Acta Physica Hungarica,1994,75(1-4):317-320.
    Bigazzi G. The problem of the decay constant λ38fof2U. Nuclear Tracks,1981,5(1):35-44.
    Blisniuk P M, Hacker B R, Glodny J, et al. Normal faulting in central Tibet since at least13.5Myrago. Nature,2001,412(6847):628-632.
    Brandon M T. Probability density plot for fission-track grain-age samples. RadiationMeasurements,1996,26(5):663-676.
    Carlson, W.D. Mechanisms and kinetics of apatite fission-track annealing. AmericanMineralogist;(United States),1990.75.
    Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fission-track annealing kinetics: I.Experimental results. American Mineralogist,1999,84:1213-1223.
    Chen J F, Xie Z, Liu S S, et al. Cooling age of Dabie orogen, China, determined by~(40) Ar-~(39)Ar and fission track techniques. Science in China, Ser. B,1995.
    Corrigan J. Inversion of apatite fission track data for thermal history information. Journal ofgeophysical research,1991,96(B6):10347-10310,10360.
    Cowgill E, Yin A, Harrison T M, et al. Reconstruction of the Altyn Tagh fault based on U-Pbgeochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength informing the Tibetan Plateau. Journal of geophysical research,2003,108(B7):2346.
    Crowley K, Cameron M, Schaefer R. Experimental studies of annealing of etched fission tracks influorapatite. Geochimica et Cosmochimica Acta,1991,55(5):1449-1465.
    Donelick, R.A. Crystallographic orientation dependence of mean etchable fission track length inapatite: An empirical model and experimental observations. American Mineralogist;(UnitedStates),1991.76.
    Donelick, R.A., R.A. Ketcham, W.D. Carlson. Variability of apatite fission-track annealingkinetics: II. Crystallographic orientation effects. American Mineralogist,1999.84:1224-1234.
    Duddy I, Green P, Laslett G. Thermal annealing of fission tracks in apatite3. Variable temperaturebehaviour. Chemical Geology: Isotope Geoscience Section,1988,73(1):25-38.
    Dumitru TA. Fission-track geochronology. AGU Reference Shelf,2000,4:131-155.
    Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation ofnortheastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the SichuanBasin? Geological Society of America Bulletin,2006,118(5-6):651-671.
    Fang X, Yan M, Van der Voo R, et al. Late Cenozoic deformation and uplift of the NE TibetanPlateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province,China. Geological Society ofAmerica Bulletin,2005,117(9-10):1208-1225.
    Fayon A K, Whitney D L. Interpretation of tectonic versus magmatic processes for resettingapatite fission track ages in the Ni de Massif, Turkey. Tectonophysics,2007,434(1):1-13.
    Fitzgerald P G, Sorkhabi R B, Redfield T F, et al. Uplift and denudation of the central AlaskaRange: A case study in the use of apatite fission track thermochronology to determine absoluteuplift parameters. Journal of geophysical research,1995,100(B10):20175-20120,20191.
    Fleischer R L, Price P B. Techniques for geological dating of minerals by chemical etching offission fragment tracks. Geochimica et Cosmochimica Acta,1964,28(10):1705-1714.
    Fleischer R, Price P, Walker R. Effects of temperature, pressure, and ionization of the formationand stability of fission tracks in minerals and glasses. Journal of geophysical research,1965,70(6):1497-1502.
    Fleischer R L, Price P B, Walker R M, Nuclear tracks in solids: principles and applications1975:Univ of California Press.
    Foeken J, Dunai T, Bertotti G, et al. Late Miocene to present exhumation in the Ligurian Alps(southwest Alps) with evidence for accelerated denudation during the Messinian salinity crisis.Geology,2003,31(9):797-800.
    Fügenschuh B, Schmid S. Late stages of deformation and exhumation of an orogen constrained byfission-track data: a case study in the Western Alps. Geological Society of America Bulletin,2003,115(11):1425-1440.
    Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geologicalproblems. Annual Review of Earth and Planetary Sciences,1998,26(1):519-572.
    Gleadow A. Fission-track dating methods: What are the real alternatives? Nuclear Tracks,1981a,5(1):3-14.
    Gleadow A, Duddy I. A natural long-term track annealing experiment for apatite. Nuclear Tracks,1981b,5(1):169-174.
    Gleadow A, Duddy I, Lovering J. Fission track analysis: a new tool for the evaluation of thermalhistories and hydrocarbon potential. APEAJournal,1983,23(1):93-102.
    Gleadow A, Duddy I, Green P, et al. Confined fission track lengths in apatite: a diagnostic tool forthermal history analysis. Contributions to Mineralogy and Petrology,1986,94(4):405-415.
    Gleadow A J, Brown R W. Fission-track thermochronology and the long-term denudationalresponse to tectonics. Geomorphology and global tectonics,2000:57-75.
    Gleadow A, Kohn B, Brown R, et al. Contrasting regional denudation patterns in SoutheasternAustralia from apatite fission track imaging. Geochimica, et Cosmochimica, Acta,2002a,66(1):278-298.
    Gleadow A, Kohn B, Brown R, et al. Fission track thermotectonic imaging of the Australiancontinent. Tectonophysics,2002b,349(1):5-21.
    Green P, Hurford A. Thermal neutron dosimetry for fission track dating. Nuclear Tracks andRadiation Measurements (1982),1984,9(3):231-241.
    Green P. Comparison of zeta calibration baselines for fission-track dating of apatite, zircon andsphene. Chemical Geology: Isotope Geoscience Section,1985,58(1):1-22.
    Green P F. On the thermo-tectonic evolution of Northern England: evidence from fission trackanalysis. Geological Magazine,1986,123(05):493-506.
    Green P, Duddy I, Laslett G, et al. Thermal annealing of fission tracks in apatite4. Quantitativemodelling techniques and extension to geological timescales. Chemical Geology: IsotopeGeoscience Section,1989a,79(2):155-182.
    Green P F, Duddy I R, Gleadow A J, et al. Apatite fission-track analysis as a paleotemperatureindicator for hydrocarbon exploration, in Thermal history of sedimentary basins.1989b, Springer.p.181-195.
    Grist, A.M.,M. Zentilli. Post-Paleocene cooling in the southern Canadian Atlantic region: evidencefrom apatite fission track models. Canadian Journal of Earth Sciences,2003.40(9):1279-1297.
    Haibing, L., J. Van der Woerd, et al. Slip rate on the Kunlun fault at Hongshui Gou, and recurrencetime of great events comparable to the14/11/2001, Mw7.9Kokoxili earthquake. Earth andPlanetary Science Letters,2005.237(1):285-299.
    Harkins, N., E. Kirby, et al. Millennial slip rates along the eastern Kunlun fault: Implications forthe dynamics of intracontinental deformation inAsia. Lithosphere,2010.2(4):247-266.
    Hu S, Raza A, Min K, et al. Late Mesozoic and Cenozoic thermotectonic evolution along atransect from the north China craton through the Qinling orogen into the Yangtze craton, centralChina. Tectonics,2006,25(6): TC6009.
    Hurford A J, Green P F. A users' guide to fission track dating calibration. Earth and PlanetaryScience Letters,1982,59(2):343-354.
    Hurford A J, Green P F. The zeta age calibration of fission-track dating. Chemical Geology,1983,41:285-317.
    Hurford A J. International Union of Geological Sciences Subcommission on Geochronologyrecommendation for the standardization of fission track dating calibration and data reporting.International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks andRadiation Measurements,1990,17(3):233-236.
    Hurford A J. Standardization of fission track dating calibration: Recommendation by the FissionTrack Working Group of the IUGS Subcommission on Geochronology. Chemical Geology:Isotope Geoscience Section,1990,80(2):171-178.
    Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic tectonics of the northern edge ofthe Tibetan plateau: fission-track constraints. Tectonophysics,2001,343(1):111-134.
    Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics:III. Extrapolation to geological time scales. American Mineralogist,1999,84:1235-1255.
    Ketcham R A. Observations on the relationship between crystallographic orientation and biasingin apatite fission-track measurements. American Mineralogist,2003.88(5-6):817-829.
    Kirby E, Whipple K X, Burchfiel B C, et al. Neotectonics of the Min Shan, China: Implicationsfor mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau.Geological Society of America Bulletin,2000,112(3):375-393.
    Kirby E, Reiners P W, Krol M A, et al. Late Cenozoic evolution of the eastern margin of theTibetan Plateau: Inferences from40Ar/39Ar and (U-Th)/He thermochronology. Tectonics,2002,21(1):1001.
    Kirby, E., N. Harkins, et al. Slip rate gradients along the eastern Kunlun fault. Tectonics,2007.26(2).
    Kohn B. Low temperature thermochronology: from tectonics to landscape evolution.Tectonophysics,2002,349:1-4.
    Lai Q, Ding L, Wang H, et al. Constraining the stepwise migration of the eastern Tibetan Plateaumargin by apatite fission track thermochronology. Science in China Series D: Earth Sciences,2007,50(2):172-183.
    Laslett G, Green P F, Duddy I, et al. Thermal annealing of fission tracks in apatite2. Aquantitativeanalysis. Chemical Geology: Isotope Geoscience Section,1987,65(1):1-13.
    Lei Y, Jia C, Li B et al. Meso‐Cenozoic Tectonic EventsRecorded by Apatite Fission Track inthe Northern Longmen‐M icang Mountains Region. Acta Geologica Sinica‐English Edition,2012,86(1):153-165.
    Lin, A.,J. Guo. Nonuniform Slip Rate and Millennial Recurrence Interval of Large Earthquakesalong the Eastern Segment of the Kunlun Fault, Northern Tibet. Bulletin of the SeismologicalSociety ofAmerica,2008.98(6):2866-2878.
    Liu J H, Zhang P Z, Zheng D W, et al. Pattern and timing of late Cenozoic rapid exhumation anduplift of the Helan Mountain, China. SCIENCE CHINAEarth Sciences,2010,53(3):345-355.
    Liu J, Zhang P, Lease R O, et al. Eocene onset and late Miocene acceleration of Cenozoicintracontinental extension in the North Qinling range–Weihe graben: Insights from apatite fissiontrack thermochronology. Tectonophysics,2012.
    Liu Z, Wang C, Yi H. Evolution and mass accumulation of the Cenozoic Hoh Xil basin, northernTibet. Journal of Sedimentary Research,2001,71(6):971-984.
    MCKENZlE D, Morgan W. Evolution of triple junctions. Nature,1969,224:125-133.
    Meyer, B., P. Tapponnier, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantlesubduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical JournalInternational,1998.135(1):1-47.
    Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science,1975,189(4201):419-426.
    Molnar, P., P. England, J. Martinod. Mantle dynamics, uplift of the Tibetan Plateau, and the Indianmonsoon. Reviews of Geophysics,1993.31(4):357-396.
    Naeser C, Faul H. Fission track annealing in apatite and sphene. Journal of geophysical research,1969,74(2):705-710.
    Okay A, Kaslilar-zcan A, Imren C, et al. Active faults and evolving strike-slip basins in theMarmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics,2000,321(2):189-218.
    Ran Y, Chen L, Chen J, et al. Paleoseismic evidence and repeat time of large earthquakes at threesites along the Longmenshan fault zone. Tectonophysics,2010,491(1):141-153.
    Rowley D, Xue F, Tucker R, et al. Ages of ultrahigh pressure metamorphism and protolithorthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and PlanetaryScience Letters,1997,151(3):191-203.
    Rowley D B. Minimum age of initiation of collision between India and Asia north of Everestbased on the subsidence history of the Zhepure Mountain section. The Journal of geology,1998,106(2):220-235.
    Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, centralTibet. Nature,2006,439(7077):677-681.
    Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau.Science,2008,321(5892):1054-1058.
    eng r, A.C. The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society ofAmerica Special Papers,1984.195:1-74.
    Tang Y, Zong G. Fossil mammals from the Pliocene of the Hanzhong region, Shaanxi province,and their stratigraphic significance. Vertebrata PalAsiatica,1987,25(3).
    Tapponnier, P., G. Peltzer, et al. Propagating extrusion tectonics in Asia: New insights from simpleexperiments with plasticine. Geology,1982.10(12):611-616.
    Tapponnier, P., X. Zhiqin, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science,2001.294(5547):1671-1677.
    Van Der Woerd, J., F.J. Ryerson, et al. Uniform slip-rate along the Kunlun fault: Implications forseismic behaviour and large-scale tectonics. Geophys. Res. Lett,2000.27(16):2353-2356.
    Van Der Woerd, J., P. Tapponnier, et al. Uniform postglacial slip‐r ate along the central600km ofthe Kunlun Fault (Tibet), from26Al,10Be, and14C dating of riser offsets, and climatic origin ofthe regional morphology. Geophysical Journal International,2002.148(3):356-388.
    Wagner G, Reimer G. Fission track tectonics: the tectonic interpretation of fission track apatiteages. Earth and Planetary Science Letters,1972,14(2):263-268.
    Wan, J., Y. Wang, et al. FT evidence of Northern Altyn uplift in late-Cenozoic. Bulletin ofMineralogy, Petrology, and Geochemistry,2001.20:222-224.
    Wang X, Wang B, Qiu Z, et al. Danghe area (western Gansu, China) biostratigraphy andimplications for depositional history and tectonics of northern Tibetan Plateau. Earth and PlanetaryScience Letters,2003,208(3):253-269.
    Wagner G, Van den Haute P, Fission track dating1992: Kluwer Academic Publishers.
    Wang E, Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwesternSichuan and central Yunnan, China1998: Geological Society ofAmer.
    Williams H, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet: Newconstraints on the timing of east-west extension and its relationship to postcollisional volcanism.Geology,2001,29(4):339-342.
    Xu H, Liu S, Qu G, et al. Structural characteristics and formation mechanism in the MicangshanForeland, south China. Acta Geologica Sinica‐E nglish Edition,2009,83(1):81-91.
    Xu X, Wen X, Yu G, et al. Coseismic reverse-and oblique-slip surface faulting generated by the2008Mw7.9Wenchuan earthquake, China. Geology,2009,37(6):515-518.
    Zhang P-Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from globalpositioning system data. Geology,2004,32(9):809-812.
    Zhang, P.Z., X. Wen, et al. Oblique, high-angle, listric-reverse faulting and associateddevelopment of strain: The Wenchuan earthquake of May12,2008, Sichuan, China. AnnualReview of Earth and Planetary Sciences,2010.38:353-382.
    Zhang Y, Dong S, Yang N. Active Faulting Pattern, Present‐day Tectonic Stress Field and BlockKinematics in the East Tibetan Plateau. Acta Geologica Sinica‐English Edition,2009,83(4):694-712.
    Zheng D, Zhang P Z, Wan J, et al. Rapid exhumation at~8Ma on the Liupan Shan thrust faultfrom apatite fission-track thermochronology: Implications for growth of the northeastern TibetanPlateau margin. Earth and Planetary Science Letters,2006,248(1):198-208.
    Zheng D, Clark M K, Zhang P, et al. Erosion, fault initiation and topographic growth of the NorthQilian Shan (northern Tibetan Plateau). Geosphere,2010,6(6):937-941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700