用户名: 密码: 验证码:
油浸式变压器绕组热点温度计算模型及预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力变压器是输变电网络中最重要和最昂贵的设备之一,其运行可靠性直接关系到整个电网的安全与稳定。大部分变压器寿命的终结是因为其丧失了应有的绝缘能力,而影响绝缘能力的最主要因素是变压器运行时的绕组最热区域内达到的温度(即绕组热点温度)。变压器绕组热点温度不仅是变压器负载能力的最主要限制因素,而且还关系到变压器的安全可靠性、使用寿命以及变压器的制造成本。因此,准确计算、预测变压器绕组热点温度,对合理利用变压器最大负载能力、延长变压器使用寿命具有重要意义。论文针对热点温度的计算模型、预测方法以及热点定位三方面进行了深入研究,主要工作如下:
     针对油浸式变压器的特殊固液气结构,论文着重就变压器内部的产热机理和内部热量传递过程展开研究。同时,在分析热流路径的基础上,深入剖析油流在线圈内部的竖直流道和水平流道内的流动情况,得出各自的对流换热系数计算公式。为建立基于热流路径中特征温度的热点温度计算模型,以及通过数值模拟计算方法实现对热点的定位奠定理论基础。
     根据变压器内部产热散热机理,考虑到顶层油温是变压器内部热流路径中的重要特征参量,提出一种基于顶层油温的绕组热点温度计算改进模型,模型参数选用Levenberg-Marquardt方法进行估算。通过将该模型应用于温升试验变压器以及实际运行电力变压器,并与传统导则模型和swift热电类比模型的计算结果进行对比。结果表明考虑了绕组损耗和油粘滞度随温度的动态变化的模型能更准确地计算绕组热点温度和反应油浸式变压器的热行为,并具有清晰的物理意义。
     针对变压器内部热流路径中的对流换热过程,并考虑到变压器内部几何结构的对称性,将计算流体动力学应用于热点温度的计算,建立一种基于有限体积法的流体-固体耦合热模型,重建油浸式变压器的内部温度场,仿真计算绕组温度分布;根据绕组纵向温度分布确定温度最高的线饼,然后通过分析最热线饼的轴向和径向温度分布,确定出变压器内部温度最大值所处位置,实现绕组热点温度的定位,为运行变压器绕组热点定位研究提出了一种新思路。
     为了确保变压器长期稳定运行,不仅要求对绕组热点温度进行计算,还要求根据实时监测信息对热点温度进行预测。论文以变压器的有功、无功损耗、负载电流、环境温度、大气湿度、风速以及顶层油温作为特征量,建立一种基于粒子群算法寻优的支持向量回归(PSO-SVR)模型,对绕组热点温度进行实时预测。通过将PSO-SVR模型分别应用于试验变压器和实际运行电力变压器的实测温度数据,并与标准SVR方法和神经网络等回归方法的预测结果进行比较。PSO-SVR模型能较好地跟踪和描绘在变化负载和变化油流流速情形下的规律,且对实际运行变压器的绕组热点温度预测也有较好效果。
     PSO-SVR模型能成功应用于绕组热点温度实时预测的关键在于特征参量的选取,针对实时监测信息有限的变压器,不足以选取足够的参量建立PSO-SVR模型。通过构造基于卡尔曼滤波的热点温度状态方程和测量方程,建立一种绕组热点温度实时最优估计模型。实验结果表明基于卡尔曼滤波的绕组热点温度模型,不仅可以通过内插和滤波平滑消除偶然因素和随机噪声,还原出实际的热点温度;还可以根据较少的监测信息和历史数据对绕组热点温度进行跟踪预测。
Power transformers are the main and one of the most expensive parts of electricalnetworks. The operating reliability of large power transformers has a close influence onsecurity and stability of power systems. The end of the life span of power transformersis most due to the loss of their normal insulation, which is very much dependent uponthe highest temperature occurred in any part of a winding insulation system, namely thehot spot temperature(HST). Thus, to optimise the designs and cooling system from athermal point of view, predicting the values and location of HST is essential to meet thegoals of maximizing the load ability, improving the effective lifetime and lowering thetotal cost associated with transformer operation and maintance. Therefore, a lot ofworks focused on calculation the value and location and real time prediction of HST hasbeen developed as follows:
     ①Considering the complicated and special conjugated solid-liquid-gas structure ofoil immersed power transfromer, the inner temperature rise effect arised from heatconduction, convection and radiation is investigated. The mechanism of transformerinternal losses and the influences of no-load losses and load losses on hot spottemperature is also analysised. The temperature rise and drop characteristics of winding,core and oil is given. After the systematic analysis of the heat transfer path, the oil flowand nature convection in vertical duct and horizontal duct is studied and thecorreponding calculating of heat transfer coefficients is given. These theories providedguidance for the establishment of thermal model and numerical simulation for the oilimmeresd transformer.
     ②Based on the heat transfer theory and heat mechanism within transformer, thisdissertation concentrated on establish thermal-electrical analogy model to calculated theHST of transformers. Considering the non-linear thermal resistance, open-circuitimpedance, and the oil viscosity and winding losses with temperature changes are alsotaken into account, proposed an improved model added on the transformer top oiltemperature to calculate HST by using the viscosity and loss correction factors. Modelparameters are estimated by Levenberg-Marquardt method. In the end, by Comparingwith the measured data tested under different conditions, the model shows a goodconsistency, and can describes the temperature variation more accurately in the dynamicloading profiles than IEEE method and ‘swfit’ model.
     ③For the sake of optimizing the cooling design and predicting the location of HSTfor transformers, numerous study about power transformer thermal actions has beenconducted on a oil-immersed transformer prototype which has axial symmetricgeometry namely, the physical properties of the fluid (i.e. transformer oil) are supposedto temperature function, as well as, in this paper an alternative approach based on FiniteVolume Method (FVM) had been employed to resolve the control equations of flow andheat transfer, which in turn to simulate the overall temperature field and fluiddistribution. The highest temperature disc could be findout based on the lonitudinaldistribution of winding, thus the precise location of HST could be determined by theradial temperature distribution and axial temperature distribution of highest temperaturedisc. It proves this numerical method can not only simulate the fluid distribution withinpower transformer and also predict the value and location of HST effectively.
     ④This dissertation adopted support vector regression (SVR) to establish a modelfor the prediction of HSTs in power transformers. Among which, an improved particleswarm optimization (PSO) with passive congregation algorithm is utilized to determinethe parameters of SVR. The PSO-SVR model has been applied to predict HSTs of apower transformer. Several experimental tests have been carried out involving a reallarge power transformer, to verify the practicality and effectiveness of the proposedPSO-SVR model. In addition, PSO-SVR modeling results are compared with that ofstandard SVR and artificial neural network (ANN) by applying identical training andtest samples. In conclusion, the PSO-SVR model has better prediction accuracy andgeneralization ability than both the standard SVR model and the ANN in the HSTprediction of power transformers.
     ⑤For transformer which has little monitoring information, it is difficult to chooseenough characteristic parameters to establish the SVR model to predict HSTs.So theframework of Kalman filter algorithm was proposed to establish a real-time estimationmodel for HSTs. Results show that the Kalman filter-based model can not only smoothcausal factors and eliminate random noise through the interpolation and filtering torestore the real hot temperature,but also exhibited potential applicability and generalityin real-time prediction for HST,which demonstrates that the proposed model tracingHSTs according to fewer monitoring information and historical data.
引文
[1] M.Heathcote.The J&P transformer book[M].Burlington:Newnes,2007.
    [2]王晓莺.变压器故障与监测[M].北京:机械工业出版社,2004.
    [3]王英武,刘肖骢.浅析物联网技术在智能电网发展中的应用研究[J].中国电力教育,2011,52(3):111-114.
    [4] W.H.TANG,Q.H.WU.Condition monitoring and assessment of power transformers usingcomputational intelligence[M].New York:Springer London,2011.
    [5]国标.GB/T15164-1994.油浸式电力变压器负载导则[S].北京:中国标准出版社,1995.
    [6] E.Amoiralis,M.Tsili,A.Kladas.Transformer design and optimization:a literaturesurvey[J].IEEE Transactions on Power Delivery,2009,24(4):1999-2024.
    [7] A.Abu-Elanien,M.Salama.Survey on the transformer condition monitoring[C].2007LargeEngineering Systems Conference on Power Engineering,2007.187-191.
    [8] Y.Han,Y.H.Song.Condition monitoring techniques for electrical equipment-a literaturesurvey[J].IEEE Transactions on Power Delivery,2003,18(1):4-13.
    [9]中国电力企业联合会.全国电力工业统计快报(2011)[EB/OL].http://tj.cec.org.cn/tongji/niandushuju/2012-01-13/78769.html.2012-01-13.
    [10] A.K.Lokhanin,T.I.Morozova,G.Y.Shneider.Internal insulation failure mechanismsof HV equipment under service conditions[C].CIGRE Session,2002:15-20.
    [11] R.Jongen,P.Morshuis,J.Smit,A.Janssen,E.Gulski.A statistical approach to processingpower transformer failure data[C].19th International Conference on Electricity Distribution,2007:1-4.
    [12] T.Suwanasri,E.Chaidee,C.Adsoongnoen.Failure statistics and power transformer conditionevaluation by dissolved gas analysis technique [C].International Conference on ConditionMonitoring and Diagnosis,2008:492-496.
    [13]国标.GB1094.1-1996.电力变压器第1部分总则[S].北京:中国标准出版社,1996.
    [14] M.Wang,A.J.Vandermaar,K.D.Srivastava.Review of condition assessment of powertransformers in service[J].IEEE Electrical Insulation Magazine,2002,18(6):12-25.
    [15] IEEE.Std C57.91-1995.Guide for loading mineral-oil-immersed transformers[S].1996.
    [16] IEEE.Std1538-2000.Guide for determination of maximum winding temperature rise inliquid-filled transformers[S].2000.
    [17]刘文泽,蔡泽祥,黄松波,金向朝,单蒙.高压电力电容器内部最热点温度的计算模型[J].电力自动化设备,2009,29(07):82-84.
    [18]海瑛,钱苏翔,严拱标.油浸式大型变压器热点温度的动态模型[J].机电工程,2007,24(1):1-3.
    [19]常炳国,刘君华.监测变压器绕组热点温度智能模糊传感器系统的研究[J].中国电机工程学报,2000,20(8):14-17.
    [20]咸日常,徐波涛,宋晓虹.电力变压器运行中的温度异常与现场处理[J].高电压技术,2006,32(10):134-140.
    [21] L. Pierce. An investigation of the thermal performance of an oil filledtransformerwinding[J].IEEE Transactions on Power Delivery,1992,7(3):1347-1358.
    [22] D.Kalic,Z.Radakovic,Z.Lazarevic,R.Radosavljevic.On the determination of characteristictemperatures in power oil transformers during transient states[J].Electrical Engineering(Archiv fur Elektrotechnik),1993,76(6):457-468.
    [23]赵涛.基于光纤光栅温度传感的变压器内部温度监测原理及方法研究[D].重庆:重庆大学,2008.
    [24]江淘莎.基于底层油温的油浸式变压器热点估计方法研究[D].重庆:重庆大学,2009.
    [25]曾红.电力变压器的温度动态计算模型及寿命预测和负载能力计算[D].北京:电力工业部电力科学研究院,2000.
    [26] L. Pierce. Predicting hottest spot temperatures in ventilated dry type transformerwindings[J].IEEE Transactions on Power Delivery,1994,9(2):1160-1172.
    [27] M.V.Thaden,S.P.Mehta,S.C.Tuli,R.L.Grubb.Temperature rise tests on a forced-oil-aircooled (FOA)(OFAF) core-form transformer, including loading beyond nameplate[J].IEEETransactions on Power Delivery,1995,10(2):913-923.
    [28]陆万烈,夏业勤.变压器绕组温度测量的热模拟误差[J].变压器,1999,36(10):15-18.
    [29]陈淑谨,王世阁,刘富家.变压器绕组热点在线监测装置的研制与应用[J].变压器,2000,37(8):41-45.
    [30] S.A.Ryder.A simple method for calculating winding temperature gradient in powertransformers[J].IEEE Transactions on Power Delivery,2002,17(4):977-982.
    [31]钱政,孙焦德,袁克道,孙典升.电力变压器绕组热点状态的在线监测技术[J].高电压技术,2003,26(9):26-28.
    [32]毛一之,王秀春,韩鹏.应用绕组测温装置测量变压器绕组温度的必要性和可行性分析[J].变压器,2004,41(9):13-17.
    [33]俞立凡,李慧蓉.变压器绕组温度计异常的原因及改进建议[J].变压器,2007,44(11):51-56.
    [34] G.Betta,A.Pietrosanto,A.Scaglione.An enhanced fiber optic temperature sensor systemfor power transformer monitoring[C].Proceedings of the17th IEEE Instrumentation andMeasurement Technology Conference,2000.153-158.
    [35]王珏,王维民.一种改进的光纤温度传感器的研究及应用[J].传感技术学报,2000,13(2):142-146.
    [36]王珏,王维民.对多光源参考通道光纤温度传感器的改进[J].传感器技术,2000,19(4):42-43.
    [37]王廷云,罗承沐.半导体吸收式光纤温度传感器[J].清华大学学报:自然科学版,2001,41(3):59-61.
    [38] J.Aubin,R.Bergeron,R.Morin.Distribution transformer overloading capability undercold-load pickup conditions[J].IEEE Transactions on Power Delivery,1990,5(4):1883-1891.
    [39] J.Aubin,Y.Langhame.Effect of oil viscosity on transformer loading capability at lowambient temperatures[J].IEEE Transactions on Power Delivery,1992,7(2):516-524.
    [40] J. Aubin, W. Mcdermid, M. Hydro. Transformer winding hot spot temperaturedetermination[C].Proc.5th Annu.Weidmann ACTI Tech.Conf.,2006.1-10.
    [41] J.Aubin.Optimum transformer cooling control with fiber optic temperature sensors[EB/OL]:http://www.electricenergyonline.com/?page=show_article&mag=58&article=372.2008.1-8.
    [42]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子激光,2002,4(13):420-431.
    [43] A.B.Lobo Ribeiro,N.F.Eira,J.M.Sousa,P.T.Guerreiro,J.R.Salcedo.MultipointFiber-optic hot-spot sensing network integrated into high power transformer for continuousmonitoring[J].IEEE Sensors Journal,2008,8(7):1264-1267.
    [44] O.M.Zodeh,R.J.Whearty.Thermal characteristics of a meta-aramid and cellulose insulatedtransformer at loads beyond nameplate[J].IEEE Transactions on Power Delivery,1997,12(1):234-248.
    [45]李志刚,王宝光.基于光谱法测量变压器绕组温度的研究[J].仪器仪表学报,2003,24(4):1-2.
    [46]钱祥忠,王学雷.用于高压电器温度监测的FBG传感系统[J].电力系统及其自动化学报,2007,19(5):49-51.
    [47] V.Galdi,L.Ippolito,A.Piccolo,A.Vaccaro.Parameter identification of power transformersthermal model via genetic algorithms[J].Electric Power Systems Research,2001,60(2):107-113.
    [48] B.Lesieutre,W.Hagman,J.Kirtley.An improved transformer top oil temperature modelfor use in an on-line monitoring and diagnostic system[J].IEEE Transactions on PowerDelivery,1997,12(1):249-256.
    [49] D.J.Tylavsky,H.Qing,S.Jennie,G.A.McCulla,J.R.Hunt.Transformer top-oiltemperature modeling and simulation[J].IEEE Transactions on Industry Applications,2000,36(5):1219-1225.
    [50]潘翀.电力变压器绝缘故障诊断方法和动态热模型研究[D].重庆:重庆大学,2009.
    [51]陈伟根,苏小平,陈曦,周渠,钱国超.变压器顶层油温预测热模型影响因素分析与改进[J].高电压技术,2010,37(6):10331-10337.
    [52] M.Schafer,K.Feser.Thermal monitoring of large power transformers[C].InternationalConference on Electric Power Engineering,1999.98-100.
    [53] V.Galdi,V.Pierro,I.Pinto.Evaluation of stochastic-resonance-based detectors of weakharmonic signals in additive white Gaussian noise[J].Physical review E,1998,57(6):6470-6479.
    [54] V.Galdi,L.Ippolito,A.Piccolo,A.Vaccaro.Neural diagnostic system for transformerthermal overload protection[C]. IEE Proceedings Electric Power Applications,2000.415-421.
    [55] V.Galdi,L.Ippolito,A.Piccolo,A.Vaccaro.Application of local memory-based techniquesfor power transformer thermal overload protection[J].IEE Proceedings Electric PowerApplications,2001,148(2):163-170.
    [56] G.Swift,T.S.Molinski,W.Lehn.A fundamental approach to transformer thermalmodeling.I.Theory and equivalent circuit[J].IEEE Transactions on Power Delivery,2001,16(2):171-175.
    [57] G.Swift,T.S.Molinski,R.Bray,R.Menzies.A fundamental approach to transformerthermal modeling.II.Field verification[J].IEEE Transactions on Power Delivery,2001,16(2):176-180.
    [58] G.W.Swift,E.S.Zocholl,M.Bajpai,J.F.Burger.Adaptive transformer thermaloverload protection[J].IEEE Transactions on Power Delivery,2001,16(4):516-521.
    [59] H.Nordman,N.T.Rafsback,D.Susa.Temperature responses to step changes in the loadcurrent of power transformers[J].IEEE Power Engineering Review,2002,22(12):62-62.
    [60] M.M.Nordman,M.Lehtonen.An agent concept for managing electrical distributionnetworks[J].IEEE Transactions on Power Delivery,2005,20(2):696-703.
    [61] M.M.Nordman,M.Lehtonen.Distributed agent-based State estimation for electricaldistribution networks[J].IEEE Transactions on Power Systems,2005,20(2):652-658.
    [62] H.Nordman,M.Lahtinen.Thermal overload tests on a400-MVA power transformer witha special2.5-p.u.Short time loading capability[J].IEEE Transactions on Power Delivery,2003,18(1):107-112.
    [63] D.Tylavsky,X.Mao,G.A.McCulla.Transformer thermal modeling: improving reliabilityusing data quality control[J].IEEE Transactions on Power Delivery,2006,21(3):1357-1366.
    [64] Z.Radakovic,D.Kalic.Results of a novel algorithm for the calculation of the characteristictemperatures in power oil transformers[J].Electrical Engineering (Archiv fur Elektrotechnik),1997,80(3):205-214.
    [65] Z.Radakovic,G.Lenkey,V.Grabulov,A.Sedmak.Application of two independentmeasurement techniques for determination of ductile crack growth initiation[J].InternationalJournal of Fracture,1999,96(2):23-28.
    [66] Z.Radakovic,S.Maksimovic.Non-stationary thermal model of indoor transformerstations[J].Electrical Engineering (Archiv fur Elektrotechnik),2002,84(2):109-117.
    [67] Z.Radakovic.Numerical determination of characteristic temperatures in directly loadedpower oil transformer[J].European Transactions On Electrical Power,2003,13(1):47-54.
    [68] Z.Radakovic,E.Cardillo,K.Feser.The influence of transformer loading to the ageingof the oil paper insulation[C].Xiiith Intenarional Symposium in High Voltage Engineering,Netherlands2003,Rotterdam:2003:1-4.
    [69] Z.Radakovic,K.Feser.Some important aspects of oil power transformer thermalprotection[J].Electrical Engineering (Archiv fur Elektrotechnik),2003,86(1):1-8.
    [70] Z.Radakovic,K.Feser.A new method for the calculation of the hot-spot temperature inpower transformers with ONAN cooling[J].IEEE Transactions on Power Delivery,2003,18(4):1284-1292.
    [71] Z.Radakovic,E.Cardillo,K.Feser.Algorithm of the microprocessor thermal protectionof oil power transformers[C].Eighth IEE International Conference on Developments inPower System Protection,2004:380-383.
    [72] Z.Radakovic,E.Cardillo,M.Schaefer,K.Feser.Design of the winding-bushinginterconnections in large power transformers[J]. Electrical Engineering (Archiv furElektrotechnik),2006,88(3):183-190.
    [73] S.A.Ryder,Q.He,J.Si,D.J.Tylavsky.Discussion of "Prediction of top-oil temperaturefor transformers using neural networks" and closure[J].Power Delivery, IEEE Transactionson,2001,16(4):825-826.
    [74] S.A.Ryder,I.J.Vaughan.A simple method for calculating core temperature rise in powertransformers[J].IEEE Transactions on Power Delivery,2004,19(2):637-642.
    [75] D.Susa.Dynamic Thermal modelling of power transformers[D].Helsinki:HelsinkiUniversity of Technology,2005.
    [76] D. Susa, M. Lehtonen, H. Nordman. Dynamic thermal modelling of powertransformers[J].IEEE Transactions on Power Delivery,2005,20(1):197-204.
    [77] D. Susa, M. Lehtonen, H. Nordman. Dynamic thermal modeling of distributiontransformers[J].IEEE Transactions on Power Delivery,2005,20(3):1919-1929.
    [78] D.Susa,J.Palola,M.Lehtonen,M.Hyvarinen.Temperature rises in an OFAF transformerat OFAN cooling mode in service[J].IEEE Transactions on Power Delivery,2005,20(4):2517-2525.
    [79] D.Susa,M.Lehtonen.Dynamic thermal modeling of power transformers: furtherDevelopment-part II[J].IEEE Transactions on Power Delivery,2006,21(4):1971-1980.
    [80] D.Susa,M.Lehtonen.Dynamic thermal modeling of power transformers: furtherDevelopment-part I[J].IEEE Transactions on Power Delivery,2006,21(4):1961-1970.
    [81] D. Susa, H. Nordman. A simple model for calculating transformer hot-spottemperature[J].IEEE Transactions on Power Delivery,2009,24(3):1257-1265.
    [82] Z.Wang,Y.Liu,P.J.Griffin.A combined ANN and expert system tool for transformerfault diagnosis[J].IEEE Transactions on Power Delivery,1998,13(4):1224-1229.
    [83] Z.Wang,Y.Liu,P.J.Griffin.Neural net and expert system diagnose transformerfaults[J].IEEE Computer Applications in Power,2000,13(1):50-55.
    [84] Y.Zhang,X.Ding,Y.Liu,P.Griffin.An artificial neural network approach to transformerfault diagnosis[J].IEEE Transactions on Power Delivery,1996,11(4):1836-1841.
    [85] P.L.Mao,R.K.Aggarwal.A novel approach to the classification of the transient phenomenain power transformers using combined wavelet transform and neural network[J].IEEETransactions on Power Delivery,2001,16(4):654-660.
    [86] M.Zaman,M.Rahman.Experimental testing of the artificial neural network based protectionof power transformers[J].IEEE Transactions on Power Delivery,1998,13(2):510-517.
    [87] Q.He.Prediction of top oil temperature for transformers[D].Arizona:Arizona StateUniversity,2000.
    [88] Q.He,J.Si,D.J.Tylavsky.Prediction of top-oil temperature for transformers using neuralnetworks[J].IEEE Transactions on Power Delivery,2000,15(4):1205-1211.
    [89] W.H.Tang,Q.H.Wu,Z.J.Richardson.Equivalent heat circuit based power transformerthermal model[J].IEE Proceedings Electric Power Applications,2002,149(2):87-92.
    [90] W.H.Tang,K.Spurgeon,Q.H.Wu,Z.J.Richardson.An evidential reasoning approachto transformer condition assessments[J].IEEE Transactions on Power Delivery,2004,19(4):1696-1703.
    [91] W.H.Tang,Q.H.Wu,Z.J.Richardson.A simplified transformer thermal model basedon thermal-electric analogy[J].IEEE Transactions on Power Delivery,2004,19(3):1112-1119.
    [92] W.H.Tang,S.He,E.Prempain,Q.H.Wu,J.Fitch.A particle swarm optimiserwith passive congregation approach to thermal modelling for power transformers[C].The2005IEEE Congress on Evolutionary Computation,2005:2745-2751.
    [93] Z.Jiahui,L.Xianguo.Coolant flow distribution and pressure loss in ONAN transformerwindings Part I: Theory and model development[J].IEEE Transactions on Power Delivery,2004,19(1):186-193.
    [94] Z.Jiahui,L.Xianguo.Coolant flow distribution and pressure loss in ONAN transformerwindings.Part II: Optimization of design parameters[J].IEEE Transactions on PowerDelivery,2004,19(1):194-199.
    [95] Z.Jiahui,L.Xianguo.Oil cooling for disk-type transformer windings-part1: theory andmodel development[J].IEEE Transactions on Power Delivery,2006,21(3):1318-1325.
    [96] Z.Jiahui,L.Xianguo.Oil cooling for disk-type transformer windings-part II: parametricstudies of design parameters[J].IEEE Transactions on Power Delivery,2006,21(3):1326-1332.
    [97] J.Zhang,X.Li,M.Vance.Experiments and modeling of heat transfer in oil transformerwinding with zigzag cooling ducts[J].Applied Thermal Engineering,2008,28(1):36-48.
    [98] A.Skillen,A.Revell,H.Iacovides,W.Wu.Numerical prediction of local hot-spotphenomena in transformer windings[J].Applied Thermal Engineering,2012,36(1):96-105.
    [99] N.El Wakil,N.C.Chereches,J.Padet.Numerical study of heat transfer and fluid flowin a power transformer[J].International Journal of Thermal Sciences,2006,45(6):615-626.
    [100] E.Hajidavalloo,M.Mohamadianfard.Effect of sun radiation on the thermal behavior ofdistribution transformer[J].Applied Thermal Engineering,2010,30(10):1133-1139.
    [101]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [102] J.Gastelurrutia,J.C.Ramos,G.S.Larraona,A.Rivas,J.Izagirre,L.Del Rio.Numericalmodelling of natural convection of oil inside distribution transformers[J].Applied ThermalEngineering,2011,31(4):493-505.
    [103] J.H.Ferziger.Computational methods for fluid dynamics[M].New York:Springer,2002.
    [104] J.H.Lienhard.A heat transfer textbook[M].Cambridge:Phlogiston Press,2005.
    [105] E.Rahimpour,M.Barati,M.Sch fer.An investigation of parameters affecting thetemperature rise in windings with zigzag cooling flow path[J].Applied Thermal Engineering,2007,27(11-12):1923-1930.
    [106] R.Hosseini,M.Nourolahi,G.B.Gharehpetian.Determination of OD cooling systemparameters based on thermal modeling of power transformer winding[J]. SimulationModelling Practice and Theory,2008,16(6):585-596.
    [107] E.J.Kranenborg,C.O.Olsson,B.R.Samuelsson,R.M.Missing.Numerical studyon mixed convection and thermal streaking in power transformer[C].5th EuropeanThermal-Sciences Conference,Netherlands,2008:1-8.
    [108] J.Smolka,A.Nowak,L.Wrobel.Numerical modelling and analysis of cooling system ofelectrical transformer dipped into polymerised resin[J].TASK QUARTERLY,2003,7(3):439-448.
    [109] J.Smolka,A.J.Nowak,L.C.Wrobel.Numerical modelling of thermal processes in anelectrical transformer dipped into polymerised resin by using commercial CFD packagefluent[J].Computers&Fluids,2004,33(5-6):859-868.
    [110] J.Smolka,A.J.Nowak,D.B.Ingham,L.Elliott.Numerical modeling of a multi-physicalproblem within an encapsulated three-phase transformer and its surroundings[J].TASKQuarterly:scientific bulletin of Academic Computer Centre in Gdansk,2006,10(1):63-81.
    [111] J.Smolka,D.B.Ingham,L.Elliott,A.J.Nowak.Enhanced numerical model of performanceof an encapsulated three-phase transformer in laboratory environment[J].Applied ThermalEngineering,2007,27(1):156-166.
    [112] J.Smolka,A.J.Nowak.Experimental validation of the coupled fluid flow, heat transferand electromagnetic numerical model of the medium-power dry-type electricaltransformer[J].International Journal of Thermal Sciences,2008,47(10):1393-1410.
    [113] J.Smolka,O.Biro,A.Nowak.Numerical simulation and experimental validation of coupledflow, heat transfer and electromagnetic problems in electrical transformers[J].Archives ofComputational Methods in Engineering,2009,16(3):319-355.
    [114] K.J.Oh,S.S.Ha.Numerical calculation of turbulent natural convection in a cylindricaltransformer enclosure[J].Heat Transfer—Asian Research,1999,28(6):429-441.
    [115] J.Mufuta.Comparison of experimental values and numerical simulation on a set-upsimulating the cross-section of a disc-type transformer[J].International Journal of ThermalSciences,1999,38(5):424-435.
    [116] J.Mufuta,E.van den Bulck.Modelling of the mixed convection in the windings of adisc-type power transformer[J].Applied Thermal Engineering,2000,20(5):417-437.
    [117] F.Torriano,M.Chaaban,P.Picher.Numerical study of parameters affecting the temperaturedistribution in a disc-type transformer winding[J].Applied Thermal Engineering,2010,30(14-15):2034-2044.
    [118] M.K.Pradhan,T.S.Ramu.Prediction of hottest spot temperature (HST) in power and stationtransformers[J].IEEE Transactions on Power Delivery,2003,18(4):1275-1283.
    [119] M.K.Pradhan,T.S.Ramu.Estimation of the hottest spot temperature (HST) in powertransformers considering thermal inhomogeniety of the windings[J].IEEE Transactions onPower Delivery,2004,19(4):1704-1712.
    [120] A.G.M.A.Taghikhani.Temperature distribution in ONAN power transformer windingswith finite element method[J].European Transactions On Electrical Power,2008,19(5):718-730.
    [121]傅晨钊,汲胜昌.变压器绕组温度场的二维数值计算[J].高电压技术,2002,28(5):10-12.
    [122]傅晨钊,李清泉.电缆绕组变压器绕组温度场的二维数值计算[J].电工电能新技术,2002,21(4):46-50.
    [123]傅晨钊,汲胜昌,王世山,李彦明.基于有限元法的电缆变压器绕组的暂态热路模型研究[J].电工技术学报,2003,18(2):77-82.
    [124] A.J.Oliver.Estimation of transformer winding temperatures and coolant flows using ageneral network method[J].IEE Proceedings Generation,Transmission and Distribution,1980,127(6):395-405.
    [125] Z.R.Radakovic,M.S.Sorgic.Basics of detailed thermal-hydraulic model for thermal designof oil power transformers[J].IEEE Transactions on Power Delivery,2010,25(2):790-802.
    [126] M. S. Sorgic, Z. R. Radakovic. Oil-forced versus oil-directed cooling of powertransformers[J].IEEE Transactions on Power Delivery,2010,25(4):2590-2598.
    [127] W.Wu,A.Revell,Z.Wang.Heat Transfer in transformer winding conductors andsurrounding insulating paper[C].The International Conference on Electrical Engineering2009,2009:1-6.
    [128] B.Weedy.Some aspects of temperature rises in a natural cooled oil-filled three-phasetransformer[J].Electric machines and power systems,1985,10(5-6):395-402.
    [129]应勇,刘富家.变压器绕组热点温度在线测量方法的研究[J].东北电力技术,2002,23(9):17-19.
    [130]汤焱,刘成远,郝忠言,牟长江.变压器绕组热点温升的计算与实验研究[J].变压器,2001,38(2):1-5.
    [131]孙旭东.自然油循环电力变压器内部流动与传热分析[D].天津:河北工业大学,2003.
    [132]王秀春,杨增军,毛一之,孙新中,智会强,韩鹏.自然冷却高燃点油变压器温升计算方法[J].中国电机工程学报,2004,24(7):223-226.
    [133]蔡巧翔.模铸式变压器散热行为之研究[D].桃园:中原大学,2004.
    [134]熊浩,陈伟根,杜林,孙才新,廖瑞金.基于T-S模型的电力变压器顶层油温预测研究[J].中国电机工程学报,2007,27(30):15-19.
    [135] C.Weigen,P.Chong,Y.Yuxin.Power transformer top-oil temperature model based onthermal-electric analogy theory[J].European Transactions On Electrical Power,2009,19(3):341-354.
    [136]江淘莎,李剑,陈伟根,孙才新,赵涛.油浸式变压器绕组热点温度计算的热路模型[J].高电压技术,2009,35(07):1635-1640.
    [137]李剑,刘兴鹏,王有元,陈伟根,邓宗权.以箱壁温度为判据的油浸式变压器绕组热点温度计算模型及试验分析[J].高电压技术,2011,37(10):2344-2349.
    [138]陈伟根,李孟励,孙才新,苏小平.变压器绕组热点温度热电类比计算模型仿真分析[J].重庆大学学报,2010,33(12):8-13.
    [139] M.K.Pradhan,T.S.Ramu.Online monitoring of temperature in power transformers usingoptimal linear combination of ANNs[C].Conference Record of the2004IEEE InternationalSymposium on Electrical Insulation,2004:70-73.
    [140] M.K.Pradhan,T.S.Ramu.Diagnostic testing of oil-impregnated paper insulation in proratedpower transformers under accelerated stress[C].Conference Record of the2004IEEEInternational Symposium on Electrical Insulation,2004:66-69.
    [141] J.K.Pylvanainen,K.Nousiainen,P.Verho.Studies to utilize loading guides and ANNfor oil-immersed distribution transformer condition monitoring[J].IEEE Transactions onPower Delivery,2007,22(1):201-207.
    [142] C.Cortes,V.Vapnik.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
    [143] V.N.Vapnik.The nature of statistical learning theory[M].NewYork:Springer,1999.
    [144]舒立春,白困利,胡琴,蒋兴良.基于支持向量机的复杂环境条件下绝缘子闪络电压的预测[J].中国电机工程学报,2006,26(17):127-131.
    [145] H.Yoshida,K.Kawata,Y.Fukuyama,S.Takayama,Y.Nakanishi.A particle swarmoptimization for reactive power and voltage control considering voltage securityassessment[J].IEEE Transactions on Power Systems,2000,15(4):1232-1239.
    [146]程启明,杜许峰,郭瑞青,郑勇.基于最小二乘支持向量机的多变量逆系统控制方法及应用[J].中国电机工程学报,2008,28(35):96-101.
    [147]郝文斌,李群湛,马庆安,郑永康.基于支持向量机的变压器励磁涌流仿真实现[J].电网技术,2006,30(1):60-64.
    [148]赵文清,朱永利,张小奇.应用支持向量机的变压器故障组合预测[J].中国电机工程学报,2008,28(25):14-19.
    [149]郑蕊蕊,赵继印,赵婷婷,李敏.基于遗传支持向量机和灰色人工免疫算法的电力变压器故障诊断[J].中国电机工程学报,2011,31(7):56-63.
    [150]王锡淮,朱思锋.基于支持向量机的船舶电力负荷预测[J].中国电机工程学报,2004,24(10):36-39.
    [151]牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12.
    [152] R.E.Kalman.A new approach to linear filtering and prediction problem[J].Journal of BasicEngineering Transactions,1960,82(1):34-45.
    [153] S.G.Mohinder,P.A.Angus.Kalman filtering theory and practice using matlab[M].NewYork:Wiley.IEEE Press,2001.
    [154] D.Simon.Kalman filtering with state equality constraints[J].IEEE Transactions onAerospace and Electronic Systems,2002,38(1):128-136.
    [155] D.Simon.Kalman filtering with state constraints: a survey of linear and nonlinearalgorithms[J].IET Control Theory&Applications,2010,4(8):1-16.
    [156] T.Zheng,A.A.Girgis,E.B.Makram.A hybrid wavelet-Kalman filter method for loadforecasting[J].Electric Power Systems Research,2000,54(1):11-17.
    [157] H.Al-Hamadi,S.Soliman.Short-term electric load forecasting based on Kalman filteringalgorithm with moving window weather and load model[J]. Electric Power SystemsResearch,2004,68(1):47-59.
    [158] C.Wen,J.Xie,F.Zhou.A new hybrid wavelet-Kalman filter method for the estimationof dynamic system[J].Journal of Electronics (China),2006,23(1):139-143.
    [159]王琦,孙华,李伟华,王晓强.卡尔曼滤波在变形监测数据处理中的应用[J].工程地球物理学报,2009,(5):658-661.
    [160]王利,李亚红,刘万林.卡尔曼滤波在大坝动态变形监测数据处理中的应用[J].西安科技大学学报,2006,3(9):353-357.
    [161] A.A.Elmoudi.Evaluation of power system harmonic effects on transformers:hot spotcalculation and loss of life estimation[D].Helsinki:Helsinki University of Technology,2006.
    [162] A.Franchois,C.Pichot.Microwave imaging-complex permittivity reconstruction with aLevenberg-Marquardt method[J].IEEE Transactions on Antennas and Propagation,1997,45(2):203-215.
    [163] H. Dan, N. Yamashita, M. Fukushima. Convergence properties of the inexactlevenberg-marquardt method under local error bound conditions[J].Optimization Methodsand Software,2002,17(4):605-626.
    [164] C.Kanzow,N.Yamashita,M.Fukushima.Levenberg–Marquardt methods with strong localconvergence properties for solving nonlinear equations with convex constraints[J].Journal ofComputational and Applied Mathematics,2005,173(2):321-343.
    [165] B.G.Kermani,S.S.Schiffman,H.T.Nagle.Performance of the Levenberg–Marquardtneural network training method in electronic nose applications[J].Sensors and Actuators B:Chemical,2005,110(1):13-22.
    [166] Fluent Inc.Fluent6.3user's guid:Cavendish Court,Lebanon,NH03766,2006.
    [167]李洋.基于信息粒化的机器学习分类及回归预测分析[D].北京:北京师范大学,2009.
    [168]温玉锋.材料实验数据的支持向量回归分析及应用[D].重庆:重庆大学,2009.
    [169] S.W.Fei,M.J.Wang,Y.B.Miao,J.Tu,C.L.Liu.Particle swarm optimization-basedsupport vector machine for forecasting dissolved gases content in power transformeroil[J].Energy Conversion and Management,2009,50(6):1604-1609.
    [170] Y.del Valle,G.Venayagamoorthy,S.Mohagheghi,J.Hernandez,R.Harley.Particleswarm optimization: basic concepts, variants and applications in power systems[J].IEEETransactions on Evolutionary Computation,2008,12(2):171.
    [171] D.J.Tylavsky,Q.He,G.A.McCulla,J.R.Hunt.Sources of error in substation distributiontransformer dynamic thermal modeling[J].IEEE Transactions on Power Delivery,2000,15(1):178-185.
    [172] L.Jauregui-Rivera,D.J.Tylavsky.Acceptability of Four Transformer Top-Oil ThermalModels-Part I:Defining Metrics[J].IEEE Transactions on Power Delivery,2008,23(2):860-865.
    [173] O.A.Amoda.Evaluation of models for predicting hottest-spot temperature in substationdistribution transformers[D].Arizona:Arizona State University,2009.
    [174] A.Girgis,S.Varadan,A.El-Din.Comparison of different approaches to short term loadforecasting[J].International Journal of Engineering Intellectual Systems,1995,3(4):205-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700