用户名: 密码: 验证码:
便携式多参数数据获取系统的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前加速器和核物理实验室所用的数据获取系统大多基于CAMAC、FASTBUS、VME、PXI等结构。这些系统专为大中型核物理实验建造,系统复杂且成本高,需专人维护运行,灵活性差。但在加速器束流诊断、小型核物理实验以及探测器刻度测量等应用中,小型便携式多参数数据获取系统即可胜任。鉴于此,我们研制了一款既方便携带又易于扩展的小型多参数数据获取系统。
     该数据获取系统在设计中有如下的创新:
     1、使用自定义的软总线,其传输速率为33MB/s,完全能满足模块级联时的速度要求。
     2、FPGA和ARM间通信使用SROM通信逻辑,其理论传输速率可以达到66.5MB/s,解决了FPGA和ARM进行数据传输的瓶颈。
     3、系统设计成便携设备,而且能够完成多参数测量。
     4、完全自主知识产权的软件处理系统。
     本论文主要对该系统的设计进行了详细讨论。主要叙述问题有:前端峰值保持电路的设计、自定义软总线的设计、FPGA与ARM之间的高速通信、配套数据获取软件的设计等。论文对该系统的介绍可以概括如下:
     第1章详细介绍了研制该系统的背景,并对现有的主流数据获取系统进行了总结,最后对该系统的研制过程中需要解决的主要问题进行了说明。
     第2章是对该系统的硬件设计进行详细的介绍。首先对整个系统的整体设计结构进行详细的分析;其次叙述了在设计中为了提高FPGA与ARM之间的通信速率所采取的方法;然后对现有的峰值保持电路的问题进行了总结,并给出了改进方案;最后对软总线的设计进行了详细的介绍。
     第3章介绍了系统中的时序逻辑设计。在该便携式数据获取系统的设计中,FPGA用于协调多个功能模块工作。在其逻辑设计中涉及到多种时钟信号的处理,这就必须要求处理好异步信号通信。该部分时序的处理对系统的稳定性很重要,如果不处理好将导致竞争冒险和亚稳态。为了解决这些问题,本章介绍了各种信号同步和时钟统一的方法。最后对系统中时序要求最高的背板总线和FPGA与ARM间通信逻辑进行了详细的介绍。
     第4章是本系统软件部分的介绍。在该系统的设计中,每一个硬件都包含一个嵌入式的计算机ARM,该计算机运行Linux操作系统,所以首先需要对ARM进行驱动设计和服务器程序的设计。另外,整个数据获取系统需要后端数据获取软件配合才能够完成数据的传输和存储。除此以外,为了保证后期方便的对存储的数据进行分析,也为了保证数据在传输过程中的稳定可靠,需要设计一个健全的帧结构和一个信息完整的存储格式。本章主要解决上面所叙述的问题。
     第5章是对数据获取系统的后期数据进行处理。由于环境噪声、系统误差等原因,最终得到的数据和真实值之间有一定的区别。为了消除这些区别,也为了分析数据的方便,本章介绍了一些核数据处理的方法。
     第6章是实验验证部分。首先在实验室对该系统的积分非线性、分辨率参数进行了测量。然后在真实的实验中,对能谱进行了测量并与成熟的数据获取系统进行了对比。
     第7章是对工作的总结,以及对该系统未来的展望。
Nowadays, most of the DAQ(Data Acquisition) systems used in accelerator andnuclear physics areas are based on CAMAC, FASTBUS, VME or PXI structure. Thesesystems are specially built for large medium-sized physical experiment terminals likeBEPCIII or ATLAS. Due to the system’s complexity and high cost, these DAQ systemsneed really special care and maintenance, so they cannot be easily pushed to otherapplications. But in the accelerator beam diagnostics, small physics experiments anddetector calibration measurements, small, portable, multi-parameter DAQ system can befully adequate. Based on these reasons, we developed a kind of small, both easy to carryand extend multi-parameter DAQ system.
     The DAQ system has the following advantages:
     1. A self-designed bus system is used in this DAQ system. Its max data transmissionspeed is33MB/s which can meet the need of the DAQ system working in cascade mode.
     2. The SROM communication logical is used as the communication method betweenARM and FPGA. Its speed, which is66.5MB/s, can meet the requirements of the datatransmission from FPGA to ARM.
     3. The DAQ system is designed as a portable device, and it can be used to measuremultiple parameters at the same time.
     4. A DAQ software, with proprietary intellectual property rights, is developed for theDAQ system.
     This dissertation mainly describes the detail procedures of the design for theportable DAQ(PDAQ) system including the design of the peak detect and hold circuit,the design of the flexible bus, the communication method between the FPGA and theARM, the design of the PDAQ software and the data processing. The main content of thisdissertation is summarized as follows.
     The first chapter focuses on the background of the DAQ systems. It introduces themain DAQ systems used in nuclear physics laboratories. And then it shows the keyproblems that we must solve in the design of the PDAQ system.
     The second chapter focuses on the design of the hardware parts for the PDAQsystem. Firstly, it introduces the architecture of the PDAQ system. Secondly, it describesthe hardware design for the communication between the FPGA and the ARM. And then,it shows the disadvantages of the old peak detect and hold circuit, and provides a newcircuit for this PDAQ system. At last, it introduces the bus design of the system.
     The third chapter focuses on the logic design of the PDAQ system. The FPGA isused to coordinate the working of the circuits in the system. And many clock signals withdifferent frequencies are used in different function modules. So we must synchronizesignals from different clock systems, or the system will be unstable and the metastablestate will happen. In order to solve these problems, this chapter introduces many methodsof signal synchronization and clock unifying. Finally, this chapter describes the logicdesign of the bus and the communication method design between the FPGA and the ARM,which are the most important parts in the system.
     The forth chapter focuses on the design of the software for the PDAQ system. Thereis an embedded computer (ARM) in the PDAQ system. And the computer runs Linuxoperation system. So we must design the driver program and server program for the ARM.Besides that, the PDAQ software, running in the backend computer, is needed for datatransmission, processing and storage. In order to ensure the correctness and reliability of the data transmission, a frame and a data storage structure are designed for the system.
     The fifth chapter focuses on the processing of the nuclear experiment data. Itintroduces the methods for the background eradication, the noise filtering, the spectrumsmoothing, the gold deconvolution, the peak searching and the peak area calculate.
     The sixth chapter focuses on the test and verification. It introduces the test of thelinear and the precision for the system. And then it introduces a real nuclear experiment,which is measuring the energy spectrum of the Na22, comparing with the CAMACmodule PHILLIPHS7164.
     The seventh chapter is the summary and the outlook.
引文
[1] J.W. Xia, W.L. Zhan, B.W. Wei. The heavy ion cooler-storage-ring project(HIRFL-CSR) at Lanzhou. Nuclear Instruments and Methods in Physics ResearchA,2002,Vol.488:11-25
    [2]蔡晓红,卢荣春,曹柱荣. HIRFL-CSR实验环内靶系统.原子核物理评论,2002,Vol.19(2):281-284
    [3] M.Ablikim, Z.H. An, J.Z. Bai. Design and construction of the BESIII detector.Nuclear Instruments and Methods in Physics Research A,2010, Vol.614:345-399
    [4] T.S. Virdee. The LHC project: The accelerator and the experiments. NuclearInstruments and Methods in Physics Research A,2010, Vol.623:1-10
    [5]谢一冈,陈昌,王曼.粒子探测器与数据获取系统.科学出版社,2003
    [6]马芮. STD、CAMAC、VXI总线技术比较.飞航导弹,2000,Vol.1:45-49
    [7]许贤武,丁林恺,王辉. FASTBUS-CAMAC数据采集系统在宇宙线EAS实验中的应用.核电子学与探测技术,1998,Vol.18(4):245-250
    [8]谢长生,徐睿. VME总线接口逻辑分析和电路设计.电子与封装,2004,Vol.4(2):34-40
    [9]肇斌,陈护勋. PXI总线及其应用综述.计算机与数学工程,2002,Vol.30(2):33-35
    [10]鲁皖,陈志强,孔洁.基于PXI总线的阵列探测器数据获取系统.原子核物理评论,2011,Vol.28(4):465-468
    [11]王彦瑜,马晓莉.核物理多参数数据获取系统中的触发模式字单元.核电子学与探测技术,2007,Vol.7(1):18-20
    [12]南钢洋,王彦瑜,张建川.基于NIM系统的多道脉冲幅度采集卡设计.核电子学与探测技术,2011,Vol.31(11):1250-1254
    [13]南钢洋,王彦瑜,张建川.核物理实验中模数转换器选型及其供电方案.强激光与粒子束,2011,Vol.23(2):471-474
    [14]韦宏.基于FPGA的激光雷达高速数据采集和处理系统的研究.中国海洋大学硕士学位论文.2012
    [15] http://www.linear.com.cn/
    [16] http://www.analog.com/en/index.html
    [17] Linear Technology Corporation. LTC2393datasheet.
    [18] Samsung Electronics Co., Ltd. S3C6410X RISC Microprocessor User’s Manual,Revision1.20.2009
    [19]张建川,王彦瑜,南钢洋.在核实验仪器中的嵌入式微机选型.核电子学与探测技术,2010,Vol.30(8):1123-1125
    [20]王京群.现场总线的速度和效率.仪器仪表标准化与计量,2005,Vol.6:24-25
    [21]廖义奎. ARM与FPGA综合设计及应用.中国电力出版社,2008
    [22]朱晓鹏,肖铁军,赵蕙. ARM+FPGA的实时数据采集系统设计.计算机工程与设计,2009,Vol.30(13):3088-3090
    [23]沈华,王俞心.基于FPGA的I2C总线主控器的设计与实现.航空计算技术,2007,Vol.37(6):109-111
    [24]易志明,林凌,郝丽宏. SPI串行总线接口及其实现.自动化与仪器仪表,2002,Vol.104:45-48
    [25]于海,樊晓桠.基于FPGA异步FIFO的研究与实现.微电子学与计算机,2007,Vol.24(3):210-216
    [26]程祖桥,邓辉,王锋.基于Camera Link总线的CCD高速图像采集技术.天文研究与技术,2011,Vol.8(4):363-368
    [27]吴继华,蔡海宁,王诚. Altera FPGA/CPLD设计(高级篇)(第2版).人民邮电出版社,2011
    [28]吴厚航.深入浅出玩转FPGA.北京航空航天大学出版社,2010
    [29]吕继方,刘振安,王铮.高精度CMOS峰值保持电路设计.核电子学与探测技术,2011,Vol.31(9):958-960
    [30] Paul Seller, Alec L. Hardie, Quentin Morrissey. Noise distribution of a peak trackand hold circuit. Nuclear Instrument and Methods in Physics Research A,2012,Vol.696:129-135
    [31] Gianluigi De Geronimo, Paul O’Connor, Anand Kandasamy. Analog CMOS peakdetect and hold circuits. Part1. Analysis of the classical configuration. NuclearInstruments and Methods in Physics Research A,2002, Vol.484:533-543
    [32] Gianluigi De Geronimo, Paul O’Connor, Anand Kandasamy. Analog CMOS peakdetect and hold circuits. Part2. The two-phase offset-free and derandomizingconfiguration. Nuclear Instruments and Methods in Physics Research A,2002,Vol.484:544-556
    [33] Bruce Carter, Ron Mancini.运算放大器权威指南(第3版).人民邮电出版社,2010
    [34]赛尔吉欧.佛朗哥.基于运算放大器和模拟集成电路的电路设计(第3版).西安交通大学出版社,2009
    [35] P. Y. Chang, H. P. Chou. A High Precision Peak Detect Sample and Hold Circuit.IEEE Nuclear Science Symposium Conference Record,2006:329-331
    [36]南钢洋.基于CCNS系统脉冲幅度采集卡的研究.中国科学院研究生院博士论文,中国科学院近代物理研究所,2012
    [37]周朝阳.微弱信号的检测与读出前端电路的研究.中国科学院研究生院博士论文,中国科学院近代物理研究所,2012
    [38]彭宇,苏弘,李小刚.一种高速宽带放大与峰值保持电路的研制.核电子学与探测技术,2006,Vol.26(4):514-516
    [39]苏弘,周波,李小刚.一种小型成形放大与峰保持电路.核电子学与探测技术,2004,Vol.24(6):568-570
    [40] Analog Device, Inc. AD8027data sheet.
    [41]王洛欣.高速并行总线接口的信号完整性分析与设计.西北大学硕士学位论文.2006
    [42] Howard Johnson, Martin Graham. High-Speed Digital Design, A Handbook ofBlack Magic. Publishing House of Electronics Industry,2004
    [43]王剑宇,苏颖.高速电路设计实践.电子工业出版社,2011
    [44]周伟,杜玉晓,杨其宇. FPGA跨时钟域亚稳态研究.电子世界,2012,Vol.3:87-89
    [45]蒲石.异步多时钟域系统的同步设计研究.西安电子科技大学硕士学位论文,2007
    [46]廖艳,王广君,高杨. FPGA异步时钟设计中的同步策略.自动化技术及应用,2006,Vol.25(1):67-68
    [47] Altera.理解FPGA中的亚稳态—白皮书.2009
    [48] Clifford E. Cummings, Sunburst Design, Inc. Synthesis and Scripting Techniquesfor Designing Multi-Asynchronous Clock Designs. SNUG-2001San Jose, CAVoted Best Paper3rdPlace.
    [49]徐世伟,刘严严,刘红侠.异步时钟亚稳态及FIFO标志位的产生.电子技术应用,2006,Vol.11:(99-101)
    [50]郝建,原茵茵. FPGA复位的可靠性设计方法.电子科技,2013,Vol.26(10):125-127
    [51]卫一然,甄国涌,单彦虎. FPGA设计中状态机稳定问题的研究.电视技术,2013,Vol.23:47-49
    [52]杨宏亮,金炎胜,王刚毅. FPGA设计中状态机安全性研究.黑龙江科学,2011,Vol.2(2):16-19
    [53]龚书涛,吕国强,彭良清.在FPGA中状态机的编码方式.电子工程师,2005,Vol.31(11):51-53
    [54]周丰群,杨景康,拓飞. HPGeγ谱仪系统死时间校正方法的实验研究.高能物理与核物理,2005,Vol.29(12):1175-1178
    [55]刘钰峰.现代操作系统调度策略研究.湖南大学硕士学位论文.2002
    [56]杜旭. Linux操作系统调度器实时性能的研究和改进.计算机工程,2005,Vol.31(10):100-102
    [57]赵炯. Linux内核完全剖析——基于0.12内核.机械工业出版社,2009
    [58]王赟.基于双缓存的大幅面绘图机接口单元设计.西安电子科技大学硕士学位论文,2007
    [59]康艳霞,曹剑中,田雁.实时视频处理系统中乒乓缓存的设计.导弹与制导学报,2007,Vol.27(4):218-221
    [60]李武森,迟泽英,陈文建.高速DSP图像处理系统中的乒乓缓存结构研究.光电子技术与信息,2005,Vol.18(3):76-79
    [61] Karim Yaghmour, Jon Masters, Gilad Ben-yossef.构建嵌入式Linux系统.中国电力出版社,2011
    [62] Daniel P. Bovet, Marco Cesati.深入理解Linux内核.中国电力出版社,2007
    [63]王平,何为,郭珂.嵌入式计算机硬件体系设计.清华大学出版社&北京交通大学出版社,2011
    [64] Jonathan Corbet, Alessandro Rubini, Greg Kroah-hartman. Linux设备驱动程序(第三版).中国电力出版社,2006
    [65]白复东.嵌入式Linux驱动程序的开发.信息技术,2009,Vol.9:185-186
    [66]曹颖鹏.基于嵌入式Linux驱动程序的研究与设计.西安电子科技大学,2011
    [67] Neil Matthew, Richard Stones. Linux程序设计(第4版).人民邮电出版社,2010
    [68]吴宇佳,浦伟,周妍. Linux下多线程数据采集研究与实现.信息安全与通信保密,2012,Vol.7:92-94
    [69] Charles Petzold. Windows程序设计(第5版).清华大学出版社,2010
    [70]孙鑫,余安萍. VC++深入理解.电子工业出版社,2006
    [71] Feng Yuan. Windows图形编程.机械工业出版社,2002
    [72]闫建平,蔡进功,首祥云.基于Visual C++的成像测井图像双缓存视图显示.测井技术,2007,Vol.31(6):567-570
    [73] Anthony Jones, Jim Ohlund. Windows网络编程(第2版).清华大学出版社,2002
    [74] W. Richard Stevens. TCP/IP详解卷1:协议.机械工业出版社,2012
    [75] W. Richard Stevens, Bill Fenner, Andrew M. Rudoff. UNIX网络编程卷1:套接字联网API.人民邮电出版社,2010
    [76] Richard S. Wright, Jr. Nicholas Haemel, Graham Sellers. OpenGL超级宝典(第5版),人民邮电出版社,2012
    [77]田红鹏,马苗. OpenGL及其基于VC++6.0的开发.西安科技学院学报,2001,Vol.21(4):365-368
    [78]王兰美,赵继成,秦华东. OpenGL及其在VC++下的开发应用.武汉大学学报,2006,Vol.39(4):62-65
    [79] ROOT User’s Guide, CERN,2013
    [80] ROOT Primer, CERN
    [81]葛良全,张庆贤,李丹.核辐射测量实验方法.西南交通大学出版社,2009
    [82] Miroslav Morháˇc, Vladislav Matou ek. Library of sophisticated functions foranalysis of nuclear spectra. Computer Physics Communications,2009,Vol.180:1913-1940
    [83]尹旺明,刘宏章,汤彬.基于SNIP算法扣除γ能谱本底的探讨及应用.东华理工大学学报(自然科学版),2009,Vol.32(3):245-248
    [84]王一鸣,魏义祥.用于γ全谱基线扣除的改进SNIP算法研究.核电子学与探测技术,2012,Vol.32(12):1356-1359
    [85] Miroslav Morháˇc, JBn Klimanb, Vladislav MatouSekb. Backgroundelimination methods for multidimensional coincidence y-ray spectra. NuclearInstruments and Methods in Physics Research A,1997, Vol.401:113-132
    [86]庞巨丰. γ能谱数据分析.陕西科学技术出版社,1990
    [87]蔡天净,唐瀚. Savitzky-Golay平滑滤波器的最小二乘拟合原理综诉.数字通信,2011,Vol.1:63-68
    [88] M. Morha′cˇ. Deconvolution methods and their applications in the analysis ofg-ray spectra. Nuclear Instruments and Methods in Physics Research A,2006,Vol.559:119-123
    [89] Miroslav MorhE, Jan Klimanb, Vladislav MatouSekb. Efficient one-andtwo-dimensional gold deconvolution and its application to y-ray spectradecomposition. Nuclear Instruments and Methods in Physics Research A,1997,Vol.401:385-408
    [90] Staffan Wachtmeistern, Stefan Csillag. Implementation of Gold deconvolutionfor enhanced energy resolution in EEL spectra. Ultramicroscopy,2011,Vol.111:79-89
    [91]王燕.一阶导数的五点数值微分公式及外推算法.数学的实践与认知,2011,Vol.41(6):163-167
    [92]刘永刚. γ能谱谱数据分解方法研究.中国地质大学(北京)博士学位论文,2011
    [93]庞巨丰. Wasson-Sterlinski峰面积计算公式的简化.原子能科学技术,1983,Vol.1:29-31
    [94]顾民,葛良全.基于特征函数的NaIγ能谱高斯峰面积计算.核技术,2009,Vol.32(11):864-866
    [95]孔洁.阵列探测器前端读出电子学方法研究.中国科学院近代物理研究所博士论文,2011
    [96]葛华才,樊晓贺.实验数据线性拟合时应注意的问题.实验室科学,2010,Vol.13(6):91-93
    [97] ORTEC. Modular Pulse-Processing Electronics.200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700