用户名: 密码: 验证码:
黄土丘陵区流域生态恢复环境响应及其评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态恢复环境响应及其评价是当前生态恢复的热点问题,对于揭示生态恢复过程及机理,评估生态保护与资源合理开发利用提供重要依据。本文基于DPSIR(Driving force, Pressure, State, Impact, Response)概念框架模型,结合生态系统服务功能、生态承载力模型,构建中尺度下延安水土保持与生态环境建设试验示范区生态环境响应指标体系。选取黄土丘陵区延安示范区不同生态恢复模:式农牧模式(高桥)、设施农业模式(河庄坪)、农-苹果模式(山狼岔)、农-经济林果模式(县南沟)、水资源高效利用模式(燕沟),构建了小流域尺度下不同治理模式生态环境响应指标体系。借助DPSIR-mDSS(method of Decesion Support Syetem)综合评价模型,以延安水土保持与生态环境建设试验示范区为中尺度实证研究对象,将研究区域分南部森林区和北部森林草原过渡带,研究其1999~2009年间生态环境动态响应过程;以高桥、河庄坪、山狼岔、县南沟和燕沟为小流域尺度实证对象,对其生态环境响应进行评估。论文主要研究结果如下:
     (1)不同尺度下DPSIR生态环境响应指标体系的建立。
     对20世纪90年代以来国内学者提出的生态环境质量评价指标体系进行统计分析(共计168个指标),同时考虑研究内容密切相关的关键指标,以生态环境为重点,兼顾社会和经济因素,确定了基于DPSIR概念框架的中尺度生态环境响应指标体系:人口、人均纯收入、退耕还林还草面积、≥10℃有效积温、年降雨量、耕地压力指数、自然偏离度、侵蚀性降雨量、参考作物蒸散量、输沙模数、土壤质量、植被盖度、第一性初级生产力、多样性指数、生态需水量、生态服务价值。同时在中尺度指标体系的基础上进行删减,构建针对研究区域内5个重点示范区的小流域尺度评价指标体系:人均纯收入、人口密度、自然偏离度、耕地压力指数、土壤质量、生态承载力、第一性初级生产力、生态服务功能。
     (2)DPSIR-mDSS生态响应综合评价模型建立。
     依据评价过程的三个阶段:评价指标体系构建与基础数据收集阶段、评价处理阶段(包括指标规范化处理,评价尺度选择与建立,分析矩阵的构建)、评价与校正阶段(包括环境、社会和经济综合结果和各分项结果排序,指标敏感性分析),结合决策支持系统(mDSS),构建了DPSIR-mDSS生态响应综合评价模型。
     (3)中尺度生态恢复环境响应动态。
     研究区域生态环境响应综合值在退耕还林初期较低,均小于0.5,2005年退耕还林还草工程基本结束后,生态环境响应综合值明显增加,截止到2009年,森林草原过渡带综合值较1999年增加了38%,森林区综合值较1999年增加了43%。总体而言,森林区综合值高于森林草原过渡带,是其1.04到1.21倍。环境分项值和经济分项值也呈现增加趋势,社会分项值呈减少趋势,截止到2009年,森林区和森林草原过渡带环境分项值较1999年均增加了8%,经济分项值分别增加了7和12%,社会分项值减少了22和29%。
     (4)小流域尺度下不同治理模式生态环境响应。
     综合值由大到小依次为农-经济林果模式>农-苹果模式>农牧模式>水资源高效利用模式>设施农业模式,其中农-经济林果模式综合值是设施农业模式的1.37倍。环境分项值由大到小依次是水资源高效利用模式>农-苹果模式>农牧模式>农-经济林果模式>设施农业模式,其中水资源高效利用模式环境分项值是设施农业模式的1.71倍;社会分项值由大到小依次为农牧模式>农-经济林果模式>农-苹果模式>水资源高效利用模式>设施农业模式;其中农牧模式社会分项值是设施农业模式的3.75倍;经济分项值由大到小依次为设施农业模式>农-经济林果模式>水资源高效利用模式>农-苹果模式>农牧模式,其中设施农业模式经济分项值是农牧模式的2.09倍。
     (5)生态环境响应中权重确定方法的比较及不同尺度下指标敏感性。
     熵值权重法在评价指标较多时具有一定优势,对应于本文中尺度生态环境动态响应评估,结果较PWC权重法更符合实际;PWC权重法在指标较少时具有优势,对应于本文中小流域尺度下不同治理模式生态环境响应评估,较熵值权重法更符合实际。小流域尺度下不同治理模式指标敏感性分析表明人均纯收入为最敏感指标,对生态环境响应影响较大。中尺度下指标敏感性分析结果表明退耕还林还草为最敏感指标,其它依次为人均纯收入,降雨量,自然偏离度,耕地压力和侵蚀性降雨量;敏感指标大都为驱动力和压力因子。相对于驱动力和压力而言,生态环境质量变化具有一定的滞后性,说明措施政策的出台以及人类活动(包括社会活动和经济活动)对生态环境的影响,往往并不是立即能显现出来,而是需要经历一定的时期才能被生态环境所响应。
Environmental response and assessment of ecological restoration is a hot issue at present, also,it provides a scientific basis for revealing process and mechanism of ecological restoration, assessing ecology quality, as well as expoliting and utilizing resources. Mesoscale index system of eco-environmental response in Yan'an demonstration area of soil conservation and eco-environment construction was established, based on conceptual framework model DPSIR and combined with models about ecosystem services and ecological carrying capacity. Index system of eco-environment response of different treatment patterns in small watershed scale was constructed, after selecting following ecological restoration patterns of Yan’an demonstration area in loess hilly region: agriculture mode compound farming and grazing (Gaoqiao), high benefit installation agriculture mode (Hezhuangping), agriculture-apple industrialization mode (Shanlangcha), mode compound agriculture and economic forest and fruit (Xiannangou), mode of effective utilization of water resources (Yangou). By means of comprehensive evaluation model DPSIR-mDSS, adopting Yan'an demonstration area of soil conservation and eco-environment construction as mesoscale research object, dividing study area into two part: southern forest area and northern forest-steppe ecotone, dynamic response of ecological environment from 1999-2009 was studied. Also, Gaoqiao, Hezhuangping, Shanlangcha, Xiannangou and Yangou were used as empirical object of small watershed scale to assess response of ecological environment.
     Major findings are as follows:
     (1) Establishing DPSIR index system of ecological environment under different scales.
     After statistically analyzing index system of ecological environment proposed by researchers from 1990s (168 index in all), considering key index closely related with this research, focusing on the ecological environment and taking into account the social and economic factors, following mesoscale index system of eco-environment response based on DPSIR conceptual framework were established: population, per capita net income, area of“gain for green”porject, effective accumulated temperature higher than 10℃, annual rainfall, pressure index on cropland, natural deviation, erosive rainfall, reference crop evapotranspiration, sediment transport modulus, soil quality, vegetation coverage, net primary productivity, diversity index, ecological water requirement, ecological service value. After deleting mesoscale index system, following small watershed scale index system of 5 key demonstration areas in study area were established: per capita net income, population density, natural deviation, pressure index on cropland, soil quality, ecological carrying capacity, net primary productivity, ecosystem services.
     (2) Establishing eco-environment response comprehensive evaluation model DPSIR-mDSS.
     Combined with decision support system mDSS, eco-environment response comprehensive evaluation model DPSIR-mDSS was established based on three stages of evaluation process: phase of constructing index system and collecting basic data, design phase (including normalization, selection and establishment of evaluation scale, construction of analysis matrix); evaluating and calibrating phase (including sorting comprehensive results of environment, society, economy and results of each subentry, analyzing sensitivity of index).
     (3) Dynamic response of mesoscale ecological restoration.
     Comprehensive value of eco-environment response of study area is lower than 0.5 in early stage of“gain for green”project; after the project was basically completed in 2005, comprehensive value of eco-environment response increased significantly; up to 2009, comprehensive value of forest-steppe ecotone and forest area increased by 38% and 43% respectively compared with 1999. Overall, comprehensive value of forest area is 1.04-1.21 times higher than value of forest-steppe ecotone. Values of environmental subentry and economical subentry increased, while value of social subentry decreased. Up to 2009, value of environmental subentry of forest area and forest-steppe ecotone increased by 8%, value of economical subentry increased by 7% and 12% respectively, value of social subentry decreased by 22% and 29% respectively compared with 1999.
     (4) Eco-environment response of different treatment patterns under small watershed scale.
     Descending order of comprehensive value is Xiannangou > Shanlangcha > Gaoqiao > Yangou > Hezhuangping, comprehensive value of Xiannangou is 1.37 times higher than Hezhuangping. Descending order of value of environmental subentry is Yangou > Shanlangcha> Gaoqiao > Xiannangou > Hezhuangping, value of environmental subentry of Yangou is 1.71 times higer than Hezhuangping; Descending order of value of social subentry is Gaoqiao > Xiannangou > Shanlangcha > Yangou > Hezhuangping, value of social subentry of Gaoqiao is 3.75 times higer than Hezhuangping; Descending order of value of economical subentry is Hezhuangping > Xiannangou > Yangou > Shanlangcha > Gaoqiao, value of economical subentry of Hezhuangping is 2.09 times higer than Gaoqiao.
     ( 5 ) Comparison of methods for determining weight in response of eco-environment and sensitivity of index under different scales.
     Entropy weight method has certain advantages when there are relatively more index, it is more realistic than PWC weight method corresponding to dynamic response assessment of mesoscale ecological environment; on the other hand, PWC weight method has advantages when there are relatively less index, it is more realistic than entropy weight method corresponding to response assessment of ecological environment of different treatment patterns under small watershed scale. Results of mesoscale index sensitivity analysis showed that“gain for green”project is the most sensitive index, others are per capita net income, rainfall,natural deviation, pressure on cropland, erosive rainfall. Moreover, Sensitive index mostly are driving force and pressure factor. Compared with driving force and pressure factor, changes of eco-environment quality has a certain characteristics of hysteresis , which indicated that impacts of implement of measures and human activity (including social activity and economical activity) on ecological environment are not shown immediately, but need a certain period of time to be responded by ecological environment.
引文
[1].中国环境监测总站,中国生态环境质量评价研究[M].北京:中国环境科学出版社,2004.
    [2].陈雪峰.中国森林资源可持续发展问题的探讨[J].自然资源学报, 1996(04):318-325
    [3].李维长.世界森林资源保护及中国林业发展对策分析[J].资源科学, 2000(06):71-76.
    [4].方陆明.我国森林资源信息管理的发展[J].浙江林学院学报, 2001(03):322-328.
    [5].蒋延玲,周广胜.中国主要森林生态系统公益的评估[J].植物生态学报, 1999(05):426-432.
    [6].凌大燮.我国森林资源的变迁[J].中国农史,1983(02):26-36.
    [7].高粱.土壤污染及其防治措施[J].农业环境科学学报,1992(06):272-273.
    [8].温志良,莫大伦.土壤污染研究现状与趋势[J].重庆环境科学,2000(03): 55-57.
    [9].朱荫湄,周启星.土壤污染与我国农业环境保护的现状、理论和展望[J].土壤通报,1999(03):132-135.
    [10].曹凤中.我国环境问题与可持续发展[J].经济研究参考,1999(72):35-39.
    [11].周宏春.对我国环境问题的一些思考[J].经济研究参考,2000(32):2-9.
    [12].杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [13].吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998.
    [14].陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002(03):339-345.
    [15].闵庆文,余卫东.从降水资源看黄土高原地区的植被生态建设[J].水土保持研究,2002(03):109-112,117.
    [16].杨勤科,焦锋,雷会珠.论黄土高原山川秀美建设[J].水土保持研究,2000(02):52-54.
    [17].胡良军.黄土高原植被恢复的土壤水分生态环境[D].陕西杨凌:西北农林科技大学. 2002.
    [18].牛文元.中国农业资源的可持续性分析[J].自然资源学报,1996(04):293-300.
    [19].张志强.可持续发展研究:进展与趋向[J].地球科学进展,1999(06):589-595.
    [20].田均良,梁一民,刘普灵.黄土高原丘陵区中尺度生态农业建设探索[M].河南郑州:黄河水利出版社,2003.
    [21].傅伯杰.中国各省区生态环境质量评价与排序[J].中国人口.资源与环境,1992(02):48-54.
    [22].李海燕.区域生态环境质量评价指标体系的研究——以黑龙江省为例[J].国土与自然资源研究,2009(04):67-68.
    [23].王俭,周林波.农业环境生态质量评价研究[J].中国环境管理,2004(3):40-41.
    [24].徐燕,周华荣.初论我国生态环境质量评价研究进展[J].干旱区地理, 2003(02):166-172.
    [25].岳天祥,淦九河.生态环境质量评价方法研究[J].水土保持学报,1993(04):33-37,43.
    [26].戴全厚,刘国彬,刘普灵.黄土丘陵区中尺度生态经济系统健康诊断方法探索[J].中国农业科学,2005,38(5):990-998.
    [27].Daly, H.E. and J.J.B. Cobb, For the common good: Redirecting the economytoward community, the environment, and a sustainable future. Journal of Business Administration and Policy Analysis. 1999, Boston: Beacon Press.
    [28].韩时忠,黄静.区域生态环境质量评价因子并联度筛选[J].环保科技,1995(02):33-37.
    [29].李佩成.中国西北地区再造山川秀美战略研究与试验示范[M].北京:科学出版社,2007.
    [30].朱东红.区域生态环境质量评价方法[J].山西煤炭管理干部学院学报,2003(01):64-67.
    [31].强虹,刘增文,彭少兵.生态环境质量评价研究[J].干旱环境监测,2003(04):200-202,250.
    [32].王朝科.建立生态安全评价指标体系的几个理论问题[J].统计研究,2003(09):17-20.
    [33].吕光辉.中国西部干旱区生态安全评价、预警与调控研究——以新疆地区为例[D].乌鲁木齐:新疆大学,2005.
    [34].程冬鸽.基于生态压力指数的河南省生态安全时空差异分析[J].农业系统科学与综合研究,2009,25(03):288-293.
    [35].田静毅,王立新,王继彬.小流域生态安全景观指标的提取方法研究[J].水土保持研究,2007(05):40-42.
    [36].肖薇薇,谢永生,王继军.黄土丘陵区农业生态安全评价指标体系的建立[J].水土保持通报,2007(02):146-149.
    [37].曹洪法,沈英娃.生态风险评价研究概述[J].环境化学,1991(03):26-30.
    [38].陈春丽.区域生态风险评价的关键问题与展望[J].生态学报,2010(03):808-816.
    [39].侯绍刚,张晏卿.生态风险评价进展[J].安阳工学院学报,2006(01):5-8.
    [40].孙洪波.生态风险评价研究进展[J].生态学杂志,2009(02):335-341.
    [41].阳文锐.生态风险评价及研究进展[J].应用生态学报,2007(08):1869-1876.
    [42].殷贺.区域生态风险评价研究进展[J].生态学杂志,2009(05):969-975.
    [43].Hansen, B., H.F. Alr?e, and E.S. Kristensen, Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agriculture, Ecosystems & Environment, 2001. 83(1-2): p. 11-26.
    [44].李春晖.流域生态健康评价理论与方法研究进展[J].地理科学进展,2008(01):9-17.
    [45].Coulson, D. and L. Joyce, Indexing variability: A case study with climate change impacts on ecosystems. Ecological Indicators, 2006. 6(4): p. 749-769.
    [46].Dale, V.H. and S.C. Beyeler, Challenges in the development and use of ecological indicators. Ecological Indicators, 2001. 1(1): p. 3-10.
    [47].Maestre, F.T. and M.D. Puche, Indices based on surface indicators predict soil functioning in Mediterranean semi-arid steppes. Applied Soil Ecology, 2009. 41(3): p. 342-350.
    [48].Wiegand, J., et al., Assessment of temporal trends in ecosystem health using an holistic indicator. Journal of Environmental Management. In Press, Corrected Proof.
    [49].党承林.生态系统的可靠性及其稳定性的维持[J].云南大学学报(自然科学版),2006(03):257-261.
    [50].刘增文.森林生态系统稳定性的养分原理[J].西北农林科技大学学报(自然科学版),2006(12):129-134.
    [51].岳天祥,马世骏.生态系统稳定性研究[J].生态学报,1991(04):361-366.
    [52].McCann, K., A. Hasting, and G.R. Huxel, Weak trophic interactions and the balance of nature. Nature, 1998. 395: p. 795-798.
    [53].Loreau, S. Naeem, and P. Inchausti, Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science Magazine 2001. 294(5543): p. 804-808.
    [54].蔡博峰,秦大唐.能值理论在生态系统稳定性研究中的应用[J].环境科学,2004(05):10-14.
    [55].冯耀宗.物种多样性与人工生态系统稳定性探讨[J].应用生态学报,2003(06):853-857.
    [56].李小方.土壤生态系统稳定性研究进展[J].生态学报,2009(12):6712-6722.
    [57].周华坤.青藏高原高寒草甸生态系统稳定性研究[J].科学通报,2006(01):63-69.
    [58].Daily, G.C., Introduction: What are ecosystem services? 1997, Washington, D.C.: Island Press.
    [59].Boyd, J. and S. Banzhaf, What are ecosystem services? The need for standardized environmental accounting units. Ecological Economics, 2007. 63(2-3): p. 616-626.
    [60].Egoh, B., et al., Integrating ecosystem services into conservation assessments: A review. Ecological Economics, 2007. 63(4): p. 714-721.
    [61].Fisher, B. and R. Kerry Turner, Ecosystem services: Classification for valuation. Biological Conservation, 2008. 141(5): p. 1167-1169.
    [62].Costanza, R., et al., The Value of the World's Ecosystem Services and Natural Capital. NATURE, 1987. 387(15): p. p 253-260.
    [63].Metzger, M.J., et al., The vulnerability of ecosystem services to land use change. Agriculture, Ecosystems & Environment, 2006. 114(1): p. 69-85.
    [64].Tianhong, L., L. Wenkai, and Q. Zhenghan, Variations in ecosystem service value in response to land use changes in Shenzhen. Ecological Economics. In Press, Corrected Proof.
    [65].Wallace, K.J., Classification of ecosystem services: Problems and solutions. Biological Conservation, 2007. 139(3-4): p. 235-246.
    [66].欧阳志云,王如松,赵景柱.生态系统服务功能及其生态经济价值评价[J].应用生态学报,1999(05):635-640.
    [67].欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999(05):19-25.
    [68].唐弢.基于生态系统服务功能价值评估的土地利用总体规划环境影响评价研究[J].中国人口.资源与环境,2007(03):45-49.
    [69].肖建红.三峡工程对河流生态系统服务功能影响预评价[J].自然资源学报,2006(03):424-431.
    [70].张伟,张宏业,张义丰.生态系统服务功能价值核算与地理学综合研究[J].地理科学进展,2009(03):465-470.
    [71].赵桂慎,文育芬,于法稳.生态系统服务功能价值测算的研究进展、问题及趋势[J].生态经济,2008(02):100-103.
    [72].陈成忠,林振山.中国生态足迹和生物承载力构成比例变化分析[J].地理学报,2009(12):1523-1533.
    [73].陈成忠,林振山.中国人均生态足迹和生物承载力构成的变动规律[J].地理研究,2009(01):29-142.
    [74].陈成忠,林振山,陈玲玲.生态足迹与生态承载力非线性动力学分析[J].生态学报,2006(11):3812-3816.
    [75].刘宝勤.西部地区生态环境承载系统及其多层面评估[J].干旱区资源与环境,2005(05):103-107.
    [76].杨志峰,隋欣.基于生态系统健康的生态承载力评价[J].环境科学学报,2005(05):586-594.
    [77].张衍广,原艳梅.基于经验模态分解的中国生态足迹与生态承载力动力学预测[J].资源科学,2008(08):1212-1217.
    [78].赵建民.水土保持对黄河流域生态承载力的影响[J].中国水土保持科学,2006(06):1-4,12.
    [79].朱志平,郑蕉.生态承载力研究展望[J].林业建设,2007(04):31-35.
    [80].李百岁,宝音,哈斯巴根.内蒙古高原生态环境质量评价指标体系及其应用研究[J].内蒙古师范大学学报(自然科学汉文版),2006(03):349-354.
    [81].梅卓华.南京城市生态环境质量评价指标体系研究[J].环境科学与技术,2005(03):81-82,95-120.
    [82].雷国平,代路,宋戈.黑龙江省典型黑土区土壤生态环境质量评价[J].农业工程学报,2009(07):243-248.
    [83].王俭,周林波.农业生态环境质量评价研究[J].中国环境管理丛书,2004(03):40-41.
    [84].潘爱华,裴雯.祁连山区生态环境质量评价指标体系的构建[J].甘肃林业科技,2004(02):1-13,77.
    [85].王佑民.黄土高源沟壑区综合治理及其效益研究[M].北京:中国林业出版社,1990.
    [86].杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992.
    [87].常茂德,赵诚信.黄土高原地区不同类型区水土保持综合治理模式研究与评价[M].西安:陕西科学技术出版社,1995.
    [88].陈彰岑,于德广,雷元静.黄河中游多沙粗沙区快速治理模式的实践与理论[M].郑州:黄河水利出版社,1999.
    [89].孟庆枚,黄土高原水土保持[M].郑州:黄河水利出版社,1996.
    [90].韩冰,汪有科,吴发启.渭北黄土高原沟壑区小流域综合治理评价的研究[J].水土保持学报,1995,9(3):84-89,91.
    [91].李中魁.黄土高原小流域治理效益评价与系统评估研究——以宁夏西吉县黄家二岔为例[J].生态学报,1998,l8(3):241-247.
    [92].康玲玲.黄土丘陵沟壑区水土保持措施蓄水拦沙指标体系探讨[J].水利水电科技进展,2006(02):30-33.
    [93].戴全厚,刘国彬,王跃邦.黑牛河小流域生态经济系统健康诊断方法探索[J].中国水土保持科学,2004,(1):27-34.
    [94].陈渠昌,如生.土保持综合效益定量分析方法及指标体系研究[J].中国水利水电科学研究院学报,2007(02):95-104.
    [95].王璐.生态环境质量评价方法的综述[J].科技信息(科学教研),2007(35):413-415.
    [96].李智广,李锐.小流域治理综合效益评价方法刍议[J].水土保持通报,1998,18(5):19-23.
    [97].武晓毅.区域生态环境质量评价理论和方法的研究[D].太原:太原理工大学,2006.
    [98].汤姿.基于因子分析和聚类分析的生态环境质量评价[J].哈尔滨商业大学学报(自然科学版),2006(06):21-124.
    [99].李春艳.人工神经网络在城市湿地生态环境质量评价中的应用[J].北京林业大学学报,2008(S1):282-286.
    [100].万本太.城市生态环境质量评价方法[J].生态学报,2009(03):1068-1073.
    [101].屠玉麟,贺秋华,何谋军.贵州省生态环境质量评价及生态环境质量区划[J].贵州科学,2003(Z1):128-134.
    [102].芦彩梅,郝永红,王丽平.灰色综合评估在区域生态环境质量评价中的应用[J].数学的实践与认识,2004(07):35-38.
    [103].王宏伟.基于GIS的伊犁河流域生态环境质量评价与动态分析[J].干旱区地理,2008(02):215-221.
    [104].刘新卫,周华荣.基于景观的区域生态环境质量评价指标体系与方法研究——以塔河中下游典型区为例[J].水土保持研究,2005(02):7-10.
    [105].贾德峰,张翠萍,方佳.基于理论最值标准化法的区域生态环境质量评价研究——以海南省儋州市松涛水库集水区为例[J].安徽农业科学,2009(08):3723-3725.
    [106].巴音达拉.基于熵值法和景观模型的精河县生态环境质量评价及预测研究[D].乌鲁木齐:新疆大学,2008.
    [107].Rapport, D. and A. Friend, Towards a Comprehensive Framework for Environmental Statistics: a Stress-response Approach, in Statistics Canada Catalogue, M.o.S.a.S. Canada, Editor. 1979: Ottawa. p. 11-510.
    [108].OECD, Environmental Indicators, a Preliminary Set, in OECD. 1991: Paris.
    [109].OECD. OECD core set of indicators for environmental performance reviews. in OECD Environmental Directorate Monographs. 1993.
    [110].Nations, U., Indicators of sustainable development., D.f.S. Development, Editor. 1996.
    [111].Nations, U., Work Programme on Indicators of Sustainable Development of the Commission on Sustainable Development. Division for Sustainable Development, D.o.E.a.S. Affairs, Editor. 1999: New York.
    [112].EEA, Europe's Environment: the Dobris Assessment, in European Environment Agency. 1995: Copenhagen.
    [113].Holten-Andersen, J., et al., Recommendations on strategies for integrated assessment of broad environmental problems, in Report submitted to the European Environment Agency (EEA) by the National Environmental Research Institute (NERI). 1995: Denmark.
    [114].EEA, European Environmental Outlook, in European Environment Agency. 2005: Copenhagen.
    [115].Maxim, L., Driving Forces of chemicals risks for the European biodiversity. Ecological Economics, 2009.
    [116].Benini, L., et al., Assessment of land use changes through an indicator-basedapproach: A case study from the Lamone river basin in Northern Italy. Ecological Indicators, 2010. 10(1): p. 4-14.
    [117].Omann, I., A. Stocker, and J. J?ger, Climate change as a threat to biodiversity: An application of the DPSIR approach. Ecological Economics, 2009. 69(1): p. 24-31.
    [118].Ojeda-Martínez, C., et al., A conceptual framework for the integral management of marine protected areas. Ocean & Coastal Management, 2009. 52(2): p. 89-101.
    [119].Fassio, A., et al., A decision support tool for simulating the effects of alternative policies affecting water resources: an application at the European scale. Journal of Hydrology, 2005. 304(1-4): p. 462-476.
    [120].Giupponi, C. and I. Vladimirova, Ag-PIE: A GIS-based screening model for assessing agricultural pressures and impacts on water quality on a European scale. Science of The Total Environment, 2006. 359(1-3): p. 57-75.
    [121].Zalidis, G.C., et al., Selecting agri-environmental indicators to facilitate monitoring and assessment of EU agri-environmental measures effectiveness. Journal of Environmental Management, 2004. 70(4): p. 315-321.
    [122].Potschin, M., Land use and the state of the natural environment. Land Use Policy, 2009. 26(Supplement 1): p. S170-S177.
    [123].Amajirionwu, M., et al., Indicators for managing biosolids in Ireland. Journal of Environmental Management, 2008. 88(4): p. 1361-1372.
    [124].Bouma, J. and P. Droogers, Translating soil science into environmental policy: A case study on implementing the EU soil protection strategy in The Netherlands. Environmental Science & Policy, 2007. 10(5): p. 454-463.
    [125].Gobin, A., et al., Indicators for pan-European assessment and monitoring of soil erosion by water. Environmental Science & Policy, 2004. 7(1): p. 25-38.
    [126].Giupponi, C., et al., MULINO-DSS: a computer tool for sustainable use of water resources at the catchment scale. Mathematics and Computers in Simulation, 2004. 64(1): p. 13-24.
    [127].Langmead, O., et al., Recovery or decline of the northwestern Black Sea: A societal choice revealed by socio-ecological modelling. Ecological Modelling, 2009. 220(21): p. 2927-2939.
    [128].Mysiak, J., C. Giupponi, and P. Rosato, Towards the development of a decision support system for water resource management. Environmental Modelling & Software, 2005. 20(2): p. 203-214.
    [129].Elliott, M., The role of the DPSIR approach and conceptual models in marine environmental management: an example for offshore wind power. Marine Pollution Bulletin, 2002. 44(6): p. iii-vii.
    [130].Maxim, L., J.H. Spangenberg, and M. O'Connor, An analysis of risks for biodiversity under the DPSIR framework. Ecological Economics, 2009. 69(1): p. 12-23.
    [131].Spangenberg, J.H., et al., The DPSIR scheme for analysing biodiversity loss and developing preservation strategies. Ecological Economics, 2009. 69(1): p. 9-11.
    [132].Aubry, A. and M. Elliott, The use of environmental integrative indicators toassess seabed disturbance in estuaries and coasts: Application to the Humber Estuary, UK. Marine Pollution Bulletin, 2006. 53(1-4): p. 175-185.
    [133].Nilsson, M., et al., Analytical framework and tool kit for SEA follow-up. Environmental Impact Assessment Review, 2009. 29(3): p. 186-199.
    [134].Kulig, A., H. Kolfoort, and R. Hoekstra, The case for the hybrid capital approach for the measurement of the welfare and sustainability. Ecological Indicators, 2010. 10(2): p. 118-128.
    [135].Borja,á., et al., The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status. Estuarine, Coastal and Shelf Science, 2006. 66(1-2): p. 84-96.
    [136].Ness, B., S. Anderberg, and L. Olsson, Structuring problems in sustainability science: The multi-level DPSIR framework. Geoforum, 2010. 41(3): p. 479-488.
    [137].Haberl, H., et al., Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms. Ecological Economics, 2009. 68(6): p. 1797-1812.
    [138].Roura-Pascual, N., et al., Ecology and management of alien plant invasions in South African fynbos: Accommodating key complexities in objective decision making. Biological Conservation, 2009. 142(8): p. 1595-1604.
    [139].Bowen, R.E. and C. Riley, Socio-economic indicators and integrated coastal management. Ocean & Coastal Management, 2003. 46(3-4): p. 299-312.
    [140].Jago-on, K.A.B., et al., Urbanization and subsurface environmental issues: An attempt at DPSIR model application in Asian cities. Science of The Total Environment, 2009. 407(9): p. 3089-3104.
    [141].于伯华,吕昌河.基于DPSIR概念模型的农业可持续发展宏观分析[J].中国人口.资源与环境,2004,4(5):68-72.
    [142].韦杰.基于DPSIR概念框架的区域水土保持效益评价新思路[J].中国水土保持科学,2007(04):66-69.
    [143].李进涛,谭术魁,汪文雄.基于DPSIR模型的城市土地集约利用时空差异的实证研究——以湖北省为例[J].中国土地科学,2009(03):49-54,65.
    [144].陈洋波.基于DPSIR模型的深圳市水资源承载能力评价指标体系[J].水利学报,2004(07):98-103.
    [145].高波,王莉芳,庄宇.DPSIR模型在西北水资源可持续利用评价中的应用[J].四川环境,2007,26(1):33-36.
    [146].熊鸿斌,刘进.DPSIR模型在安徽省生态可持续发展评价中的应用[J].合肥工业大学学报(自然科学版),2009(03):305-309.
    [147].罗阳.基于PSR模型的福州城市可持续发展指标体系构建[J].齐齐哈尔师范高等专科学校学报,2006(04):71-73.
    [148].贾立敏.DPSIR模型下小水电可持续发展评价指标体系研究[J].中国农村水利水电,2010(10):113-114,117.
    [149].董四方,董增川,陈康宁.基于DPSIR概念模型的水资源系统脆弱性分析[J].水资源保护,2010(04):1-3,25.
    [150].骆永明.DPSIR体系及其在土壤圈环境管理中的意义[J].土壤,2006(05):657-661.
    [151].冯科.GIS和PSR框架下城市土地集约利用空间差异的实证研究——以浙江省为例[J].经济地理,2007(05):811-814,818.
    [152].张继权.基于DPSIR的吉林省白山市生态安全评价[J].应用生态学报,2011(01):189-195.
    [153].张红红,姜琦刚,林楠.基于DPSIR框架模型解决松辽平原黑土区生态环境问题初探[J].吉林地质,2010(02):130-133.
    [154].成筠,徐泮林,郑丙辉.基于GIS的城市生态环境质量评价系统[J].人民长江,2004(05):45-47.
    [155].池志淼,戴怡新,郝向麟.我国区域生态环境质量评价方法探讨[J].北京林业管理干部学院学报,2006(02):43-46.
    [156].邓春光,张晓丽,崔文超.基于“3S”技术的生态环境质量评价研究进展[J].林业调查规划,2007(03):14-17.
    [157].丁海国.长白山地区生态环境质量评价指标的选择[J].防护林科技,2005(S1):93-94.
    [158].董淑萍,崔菊.模糊综合评判在农业自然生态环境质量评价中的应用[J].农业环境与发展,1993(02):21-24,47.
    [159].伏洋,李凤霞,严进瑞.青海省河流生态环境质量评价指标体系研究[J].青海科技,2002(05):32-34.
    [160].郝胜涛,徐玲玲.基于AHP的辽宁中部城市生态环境质量评价[J].科技信息,2009(12):439-440.
    [161].黄霞,宋国强.对生态环境质量评价技术方法的改进[J].环境科学与技术,2005(Z1):108-109.
    [162].李晓秀.北京山区生态环境质量评价体系初探[J].自然资源,1997(05):33-37.
    [163].李玉芳,郑旭荣,刘洪光.玛纳斯河流域生态环境质量评价软件的开发[J].科技创新导报,2009(28):131.
    [164].吕连宏.应用层次分析法构建中国煤炭城市生态环境质量评价指标体系[J].能源环境保护,2005(05):53-56.
    [165].蒙荣,包晓虎,袁清.中国草地生态环境质量评价的基本框架[J].中国草地, 2000(01):17-20,35.
    [166].宁小莉.基于层次分析法的包头市城市生态环境质量评价指标体系构建[J].安徽农业科学,2010(04):1997-1998,2052.
    [167].强虹,刘增文,彭少兵.生态环境质量评价研究[J].环境研究与监测,2004(01):13-16.
    [168].任广鑫.江河源区区域生态环境质量评价的理论问题[J].西北农林科技大学学报(自然科学版),2004(02):9-13.
    [169].孙玉军,王效科,王如松.五指山保护区生态环境质量评价研究[J].生态学报,1999(03):77-82.
    [170].田雨.基于ARCVIEW的矿区生态环境质量评价系统设计与实现[J].能源环境保护,2004(03):50-52,56.
    [171].王丽霞,任志远.陕西省各地市生态环境质量评价与差异分析[J].干旱区地理,2005(02):210-214.
    [172].魏丽,殷剑敏,黄淑娥,李迎春.2003.贵溪市植被资源遥感调查和综合气候区划[J].应用气象学报,2003,14(6):715-723.
    [173].魏丽.区域生态环境质量评价方法研究[J].气象,2005(01):23-28.
    [174].魏为兴.福州市表层土壤农业生态环境质量评价[J].中国地质, 2007(02):354-358.
    [175].席科,李朋德,张香娟.RS与GIS的结合在生态环境质量评价中的应用[J].测绘与空间地理信息,2007(01):113-115.
    [176].项雯.层次分析法在镇江市城市生态环境质量评价中的应用[J].中国水运(下半月),2009(09):237-239.
    [177].叶亚平,刘鲁君.中国省域生态环境质量评价指标体系研究[J].环境科学研究,2000(03):33-36.
    [178].赵顺阳.艾比湖流域生态环境质量评价[J].干旱区资源与环境,2007(05):63-67.
    [179].郑淑娟.闽江流域生态环境质量评价[J].林业勘察设计,2007(01):90-93.
    [180].周辉.陕北地区生态环境质量评价[J].陕西气象,2007(06):34-37.
    [181].白祥.基于PSR模型的新疆艾比湖湿地生态系统健康评价指标体系研究[J].湿地科学与管理,2009(03):16-20.
    [182].陈甲球.PSR模型在资源环境保护中的应用分析[J].石材,2006(07):28-30.
    [183].高珊,黄贤金.基于PSR框架的1953—2008年中国生态建设成效评价[J].自然资源学报,2010(02):341-350.
    [184].侯锐.基于PSR模型的水电工程生态效应评价指标体系构想[J].云南水力发电,2006(02):4-6.
    [185].黄海洪.基于PSR的生态安全演变对气候变暖的响应[J].生态环境学报,2009(01):35-39.
    [186].李国平,李治,张祚.基于PSR框架的城市土地集约利用评价研究——以陕西省为例[J].华东经济管理,2009(10):32-36.
    [187].林福柏.基于PSR模型的城市生态安全评价[J].经营管理者,2009(12):8.
    [188].刘俊娟,王炜,程琳.基于PSR概念与复合物元可拓法的城市交通可持续发展评价[J].公路交通科技,2007(10):136-141.
    [189].梅景.基于PSR模式的江苏省区域生态环境可持续能力评价[J].国土与自然资源研究,2009(02):65-67.
    [190].史永亮.基于PSR模型的大丰市城市生态系统健康综合评价[J].环境科学与技术,2008(02):120-123.
    [191].王红英,翟瑞常,蔡德利.PSR模型下耕地可持续利用评价指标体系构建[J].黑龙江农业科学,2010(02):33-35.
    [192].吴春笃,谭宁,解清杰.镇江市生态安全的PSR—AHP评价[J].人民长江,2008(03): 42-44,110.
    [193].吴克宁.基于PSR模型的郑州市生态环境质量灰色预警[J].河南农业科学,2007(06):83-85,89.
    [194].颜利,王金坑,黄浩.基于PSR框架模型的东溪流域生态系统健康评价[J].资源科学,2008(01):107-113.
    [195].周林飞,许士国,孙万光.基于压力-状态-响应模型的扎龙湿地健康水循环评价研究[J].水科学进展,2008(02):205-213.
    [196].杜晓丽,邵春福,孙志超.基于DPSIR框架理论的环境管理能力分析[J].交通环保,2005(03):50-52,55.
    [197].王哲,只德国,李涛涛.基于DPSIR模型的海河流域水环境安全评价指标体系[J].海河水利,2010(06):27-29,32.
    [198].于伯华,吕昌河.基于DPSIR模型的农业土地资源持续利用评价[J].农业工程学报,2008(09):53-58.
    [199].杨向阳,明庆忠.基于DPSIR模型的生态补偿机理分析[J].西南林学院学报,2008(04):118-121.
    [200].常青,何欢乐,季宏伟.基于DPSIR模型的市域土地空间配置优化——以天津市为例[J].中国土地科学,2010(06):32-39.
    [201].邵超峰.基于DPSIR模型的天津滨海新区生态环境安全评价研究[J].安全与环境学报,2008(05):87-92.
    [202].李锐,刘国彬,穆兴民.改善生态与富民增收是黄土高原生态建设的中心[J].中国科学院院刊,2000(03):193-196.
    [203].刘国彬,杨勤科,郑粉莉.黄土高原小流域治理与生态建设[M].中国武汉. 2003.
    [204].刘国彬,杨勤科,郑粉莉.中国黄土高原小流域治理与生态建设[M].中国北京. 2003.
    [205].刘国彬,杨勤科,郑粉莉.黄土高原小流域治理与生态建设[J].中国水土保持科学,2004(01):11-15.
    [206].郭旭东.河北省遵化平原土壤养分的时空变异特征——变异函数与Kriging插值分析[J].地理学报,2000(05):555-566.
    [207].李海滨,林忠辉,刘苏峡.Kriging方法在区域土壤水分估值中的应用[J].地理研究,2001(04):446-452.
    [208].王广德,过常龄.“Krige”空间内插技术在地理学中的应用[J].地理学报,1987(04):366-375.
    [209].王军.黄土高原小流域土壤养分的空间分布格局-Kriging插值分析[J].地理研究,2003(03):373-379.
    [210].黄策,王天铎.水稻群体物质生产过程的计算机模拟[J].作物学报,1986(01):1-8.
    [211].倪纪恒.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005(08):1629-1635.
    [212].潘学标.棉花生长发育模拟模型COTGROW的建立Ⅱ发育与形态发生[J].棉花学报,1999(04):174-181.
    [213].王虎全.渭北旱原冬小麦全程地膜覆盖超高产栽培技术研究[J].干旱地区农业研究,1998(01):24-30.
    [214].许玉璋,赵都利,许萱.温度对棉纤维发育的影响[J].西北农业学报,1993(04):19-23.
    [215].张光伦.生态因子对果实品质的影响[J].果树科学,1994(02):120-124.
    [216].张银锁,宇振荣,P.M.Driessen.环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究[J].作物学报,2002(01):104-109.
    [217].傅泽强.中国粮食安全与耕地资源变化的相关分析[J].自然资源学报,2001(04):313-319.
    [218].傅泽强,蔡运龙.世界食物安全态势及中国对策[J].中国人口.资源与环境,2001(03):45-49.
    [219].傅泽强,蔡运龙,杨友孝.中国食物安全基础的定量评估[J].地理研究,2001(05):555-563.
    [220].蔡运龙,傅泽强,戴尔阜.区域最小人均耕地面积与耕地资源调控[J].地理学报,2002(02):127-134.
    [221].Allen, R.G., et al., Crop Evapotranspiration– Guidelines for Computing Crop Water Requirements, in FAO Irrigation and Drainge Paper 56, FAO, 1998. 1998, ISBN 92-5-104219-5.
    [222].Wright, J.L., Derivation of Alfalfa and Grass Reference Evapotranspiration, in in. Evapotranspiration and Irrigation Scheduling, C.R. Camp, E.J. Sadler, and R.E. Yoder (ed.). 1996, Proc. Int. Conf., ASAE, San Antonio, TX. p. 133-140.
    [223].Wright, J.L. and M.E. Jensen, Peak water requirements of crops in Southern Idano. J. Irrig.and Drain. Div., ASCE, 1972. 96(1): p. 193-201.
    [224].Penman, H.L., Natural evaporation from open water, bare soil and grass. Proc. Roy.Soc.London., 1948. 193: p. 120-146.
    [225].Doorenbos, J. and W.O. Pruitt, Guidelines for predicting crop water Requirements, in Irrigation and Drainage Paper 24, (1st and 2nd ed)., Food and Agriculture Organization of the United Nations. 1977, Rome.
    [226].George.H.Hargreaves, F.A.R., G. Allen., History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering, 1984. 129(1): p. 53-63.
    [227].Priestley, C.H.B. and R.J. Taylor, On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972. 100: p. 81-92.
    [228].Makkink, G.F., Testing the Penman formula by means of lysimeters. J. Inst. Water Engng., 1957. 11(3): p. 277-288.
    [229]. Wang, B., Liu, G., Xue, S., Zhu, B., 2011. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. ENVIRONMENTAL EARTH SCIENCES, 62, 915-925.
    [230].王兵,刘国彬,薛萐.退耕地养分和微生物量对土壤酶活性的影响[J].中国环境科学,2010(10):1375-1382.
    [231].王兵.黄土丘陵区撂荒对土壤酶活性的影响[J].草地学报,2009(03):282-287.
    [232].许明祥.黄土丘陵区生态恢复过程中土壤质量演变及调控[D].陕西杨凌:中国科学院水利部水土保持研究所,2003.
    [233].罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].北京:中国科学院自然资源考察委员会,1996.
    [234].周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995(03):193-200.
    [235].周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996(01):11-19.
    [236].徐学选.黄土高原土壤水资源及其植被承载力研究[D].陕西杨凌:西北农林科技大学,2001.
    [237].赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报,2001(22):1851-1857.
    [238].陈天林.延安刺槐林地生态需水量研究[D].陕西杨凌:西北农林科技大学,2008.
    [239].谢高地.青藏高原生态资产的价值评估[J].自然资源学报,2003(02):189-196.
    [240].周睿.2000-2004年中国北方草地植被动态及生物量格局:基于MODIS数据的分析[D].北京:北京大学,2007.
    [241].方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996(05):497-508.
    [242].刘国彬,梁一民.黄土高原草地植被恢复与土壤抗冲性形成过程──Ⅰ.草地植被恢复生物量特征[J].水土保持研究,1997(S1):102-110,121.
    [243].李军.黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟[J].植物生态学报,2010(03):330-339.
    [244].张希彪,上官周平.黄土丘陵区主要林分生物量及营养元素生物循环特征[J].生态学报,2005(03):527-537.
    [245].徐炳成,山仑,李凤民.黄土丘陵半干旱区引种禾草柳枝稷的生物量与水分利用效率[J].生态学报,2005(09):2206-2213.
    [246].程积民,万惠娥,杜锋.黄土高原半干旱区退化灌草植被的恢复与重建[J].林业科学,2001(04):50-57.
    [247].刘增文.不同立地条件下沙棘种群生物量的比较与预估[J].南京林业大学学报(自然科学版),2007(01):37-41.
    [248].张津涛,张建军,郭小平.晋西黄土残塬沟壑区沙棘生物量及水土保持效益的研究[J].北京林业大学学报,1993(04):118-124.
    [249].卜崇峰,刘国彬,陈玉福.狼牙刺与柠条生理生态及土壤水分效应的比较研究[J].北京林业大学学报,2005(02):28-33.
    [250].刘江华.黄土丘陵区小流域次生灌丛群落生物量研究[J].西北植物学报,2003(08):1362-1366.
    [251].朱志诚,贾东林.陕北黄土高原铁杆蒿群落生物量初步研究[J].生态学报,1993(03):243-251.
    [252].朱志诚,贾东林.白草群落生物量初步研究[J].草业科学,1996(05):1-3.
    [253].郭显光.熵值法及其在综合评价中的应用[J].财贸研究,1994(06):56-60.
    [254].郭显光.改进的熵值法及其在经济效益评价中的应用[J].系统工程理论与实践,1998(12):98-102.
    [255].彭勇行.国际投资环境的组合评价研究[J].系统工程理论与实践,1997(11):13-17.
    [256].唐文彬,韩之俊.基于熵值法的财务综合评价方法[J].南京理工大学学报(自然科学版),2001(06):650-653.
    [257].王靖,张金锁.综合评价中确定权重向量的几种方法比较[J].河北工业大学学报,2001(02):52-57.
    [258].俞荣华,田增平,周傲英.一种检测多语言文本相似重复记录的综合方法[J].计算机科学,2002(01):118-121.
    [259].张崎,西村昂.提高层次分析法评价精度的几种方法[J].系统工程理论与实践,1997(11):29-35,102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700