用户名: 密码: 验证码:
黄河上游灌区稻田系统氮素气态损失及平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河上游灌区水稻中高产区过量施肥现象十分突出,氮肥过量引起土壤氮素盈余,对区域生态环境构成直接或潜在威胁。稻田氮素气态损失是灌区农田氮素流失的主要途径之一,氮肥过量施用加剧了氮素的气态损失,由氮素气态损失引起的大气氮沉降成为灌区地表水氮污染的重要来源,氮素气体排放引起的增温潜势不容忽视。为了实现灌区粮食增产和环境友好的双赢目标,迫切需要探明灌区稻田氮素的气态损失特征及减少氮素气态损失的有效途径。
     本研究选择黄河上游灌区具有代表性的宁夏引黄灌区灵武试验区,于2009-2010年开展大田小区试验和(15)~N微区示踪试验,通过大田原位监测,揭示了不同氮肥运筹下稻田氨挥发和N_2O排放的动态分布特征,估算了氮素气态损失量,评价了稻田氮素损失对环境的污染及大气增温效应;利用(15)~N示踪法及农田系统氮素质量平衡法,研究了稻田氮肥去向和稻田系统氮素平衡及损失风险。本研究田间小区试验设置了5个处理,分别为常规氮肥300 kg/hm2水平下的单施尿素(N300)和有机肥(猪粪)与尿素氮肥配合施用(N300-OM)的2个处理、优化氮肥240 kg/hm2水平下的单施尿素(N240)和有机肥(猪粪)与尿素氮肥配合施用(N240-1/2OM)的2个处理和不施氮肥(CK)处理。微区(15)~N示踪试验选择其中单施尿素的N300、N240和N0(CK)共3个处理。氨气的捕获采用密闭间歇式抽气,硼酸吸收,标准酸滴定法;N_2O气体采用密闭静态暗箱法采集、气相色谱法检测;同时在作物生长季监测雨水和灌溉水带入稻田的无机氮素。基于监测和测定值计算灌区稻田生长季氨挥发损失累积量和N_2O排放累积量,分析计算稻田氮素分布特征及氮素利用和损失。研究获得以下主要结论:
     1.黄河上游灌区稻田氮素氨挥发损失是氮素损失的主要途径之一。高氮肥施用会显著增加稻田氮素氨挥发损失量,有机肥配施及氮肥优化减量可显著降低稻田氨挥发损失量及肥料氮氨挥发损失百分率。在习惯灌水和习惯高氮肥300kgN/hm2水平下,稻田氨挥发损失氮素高达94.1 kgN/hm2,较其它处理差异显著(p < 0.05);与N300处理比较,N300-OM处理的累积氨挥发损失量减少了17.4 kgN/hm2;优化施氮240kgN/hm2水平下,N240-1/2OM和N240处理的累积氨挥发损失量分别降低了22.7 kgN/hm2和26.5 kgN/hm2,方差分析差异显著(p < 0.05)。在黄河上游灌区习惯肥水管理水平下,投入稻田的肥料氮通过氨挥发损失量达66.5 kgN/hm2,通过氨挥发损失的肥料氮占施氮量的22.2%,灌区稻田每年通过氨挥发损失的氮素量高达1693.8×104 kg N/a,每年由稻田氨挥发损失形成的大气干湿沉降氮达1242.5×104~1524.4×104 kg N/a,稻田生长季每年由于氨挥发损失引起的大气干湿沉降氮,对灌区地表和水体的氮污染产生极大威胁。
     2.黄河上游灌区水稻生长季N_2O排放不是稻田氮素损失的主要途径,但其增温潜势不容忽视。灌区稻田不同施氮水平下,水稻整个生长季土壤N_2O排放总量为2.64~3.87kg/hm2,肥料氮通过N_2O排放损失的百分率仅为0.43%~0.64%。氮肥过量施用会显著增加N_2O排放量;在相同氮素水平下,有机肥配施会显著增加稻田N_2O的排放量;优化施氮能有效减少N_2O排放量(P<0.01)。在灌区习惯灌水和高氮肥300kg/hm2时,N300-OM处理的稻田N_2O排放量达3.87kg/hm2,在100a时间尺度上的全球增温潜势(GWPs)为20.76×107 kg CO_2/hm2;优化施氮240kg/hm2水平下,N240和N240-1/2OM处理的N_2O累计排放量与N300-OM处理比较,分别降低1.18kg/hm2和0.57kg/hm2,在100a尺度上每年由稻田N_2O排放引起的GWPs分别降低了3.30×107 kg CO_2/hm2和3.06×107 kg CO_2/hm2。
     3.水稻生长季氨挥发主要发生在分蘖肥和拔节肥后的2~5d,稻田不同时期施肥灌水后第2~3d氨挥发速率达最大值,不同处理的氨挥发速率最大值为5.80~9.14 kg N/ (hm2·d),在每次施肥后氨挥发持续时间为10d左右;N_2O排放主要发生在水稻插秧前及水稻生长的中后期,同时在稻田灌水泡田后及水稻生育中期土壤水分干湿交替时也有较大的排放量。高氮肥施用会显著增大氨挥发速率和N_2O排放通量,有机肥的配合施用会显著增加稻田N_2O累积排放量,但会适当降低稻田氨挥发损失量;土壤pH值对灌区稻田氨挥发影响较大,土壤pH值偏高导致稻田氨挥发损失氮量较其它地区严重,但pH值变化对N_2O排放通量影响不明显;此外温度、日照、降雨等因素变化对稻田氮素气态损失和排放也影响较大;稻田日氨挥发通量与稻田田面水NH4+-N浓度变化呈显著正相关,土壤N_2O排放通量与田面水NO3--N含量显著相关。
     4.灌区稻田高氮肥施用显著增加了土壤肥料氮残留量,导致土壤氮素大量盈余;优化施氮可显著提高植株对土壤氮的吸收量和氮肥农学利用率,有效减少肥料氮素土壤残留量,降低稻田土壤氮素盈余量。微区(15)~N同位素示踪试验结果表明,在灌区习惯灌水和习惯高氮肥300kgN/hm2水平下,水稻植株摄取肥料(15)~N的百分率为40%~42%,水稻植株对肥料(15)~N当季回收率(ηpf)为26.05%~30.43%,稻田土壤剖面0-90cm土体中氮肥残留率为17.9%~23.31%,肥料氮通过气态损失百分率达22.6%,灌区稻田氮肥表观损失率达47%~52%,由此得出,灌区稻田50%以上的氮肥离开农田系统,通过气态损失和灌溉淋溶损失,对大气、水体等造成直接污染。与习惯高氮肥处理相比,优化氮肥处理的水稻植株吸收的土壤氮量增加了12~35 kg/hm2,稻田土壤剖面0-90cm土体中标记肥料(15)~N残留量(Nsf)减少了32.83~26.74 kg/hm2,土壤氮素盈余量减少了22~31 kg/hm2。
     5.土壤剖面中(15)~N丰度变异特征分析表明,灌区稻田土壤氮素随灌溉水向土壤深层发生了淋溶迁移,水稻连作导致土壤氮素在60-90cm深度富集;灌区稻田高氮肥施用显著增加了土壤耕层0-30cm土层中肥料氮残留量,同时稻田连作导致土壤30cm以下肥料氮残留量显著增加。水稻生长季土壤剖面不同深度无机氮分布特征分析表明,氮肥施用对土壤剖面0-100cm无机氮累积量影响较大,高氮肥施用显著增加了稻田连作第二年插秧前土壤剖面硝态氮积累量,稻田基肥施用对0-40cm土体NH4+-N积累量影响最大。土壤表层铵氮积累量的增加,增大了氮素氨挥发损失的风险;土壤硝氮积累量的增加,导致稻田N_2O排放通量增加,同时也增大了稻田氮素淋溶损失的风险;优化施氮可有效降低土壤剖面无机氮的累积量,相应会减少稻田氨挥发损失和N_2O排放量,同时也会相应地降低土壤氮素深层淋溶损失的风险。稻田有机肥的施用可显著提高土壤无机氮的积累量,在满足水稻植株生长对氮素大量持续需求的同时,降低了氮素损失的风险。以上研究结果表明,在黄河上游灌区通过氮肥减量及有机肥配合施用等优化施氮措施可有效减少稻田氮素氨挥发损失,降低N_2O排放量,同时可显著提高稻田氮肥回收利用率,有效降低稻田土壤剖面硝态氮的深层积累和淋溶损失,保障黄河上游灌区大气、水体等生态环境安全。
Input of nitrogen is essential for high crop yields, but losses of these same nutrients diminish environmental quality. Over-fertilization application in the irrigation area of the Yellow River where agricultural production is more developed are all faced with the serious situation of N pollution due to excessive fertilizer usage. Gaseous loss of N is a main way of nitrogen loss in the paddy fields of the irrigation area. Excessive application of nitrogen fertilizer increased the loss of gaseous nitrogen, as result of the increase of atmospheric nitrogen deposition into surface water, which has been an important source of nitrogen pollution in the irrigation area. All of these draw the high attention to the greenhouse effects by gaseous nitrogen emissions. Considering the high food production and the minimum environmental threat, we need to find an effective way to control the loss of gaseous nitrogen in the paddy fields of the irrigation area.
     The randomized split-plot experiments and the (15)~N tracing micro-plot experiment at the Lingwu farm of Ningxia irrigating area from 2009 to 2010 were conducted to get the patterns of the ammonia volatilization (AV) and N_2O emissions from the paddy field . The amount of the ammonia volatilization (AV) and N_2O emissions during the rice-growing season were also calculated. The fate of fertilizer derived nitrogen in the paddy field were estimated by the technique of stable isotope (15)~N-traced nitrogen fertilizer. With the mass balance method, we also estimated the nitrogen balance and risk of loss of N in the paddy field ecosystem.
     The five N treatments of field experiment were conducted, including two treatments of the conventional N application amount(300 kg/hm2), i.e the application of only urea (N300) and the application of the organic fertilizer (manure) with the urea nitrogen (N300-OM), two treatments of the optimized N application amount(240 kg/hm2), i.e, the application of only urea (N240) and the application of the organic fertilizer (manure) with the urea nitrogen (N240-1/2OM), and no nitrogen fertilizer application plot (CK). Three treatments were conducted for the (15)~N tracing method with the micro-plot experiment, i.e, the application of only urea N300, N240, and CK.
     A batch-type airflow enclosure method was used to measure the AV, and analyzed with the boric acid absorption and the standard acid titration method. The static chamber-gas chromatograph method was used to measure the N_2O emission from the paddy field. Nitrogen from rainfall and irrigation water was measured in the experimental site as well. Based on both of the measuring data and the data from the experiments, we estimated the cumulative amount of AV and N_2O emissions in the rice growing season, and analyzed the nitrogen transport characteristics, nitrogen use efficacy and its loss from the rice field system.
     The main results are summed as follows:
     1. The AV is one of major way of nitrogen loss from the paddy fields of the irrigation area of the Yellow Rive. High nitrogen fertilizer can increase the N loss through AV. The application of organic fertilizer and reducing fertilizer use by optimized fertilization will reduce the loss of AV. The cumulative loss amount of AV reached 94.1 kgN/hm2 for conventional N application (N300). Compared with N300, cumulative amount of AV of N300-OM treatment decreased by 17.4 kg/hm2 during the rice growing season. Compared with N300 treatment, cumulative loss of AV with N240-1/2OM and N240 treatmentwas reduced by 22.7 kg/hm2 and 26.5 kg/hm2, respectively. Nitrogen loss percentage through AV loss was reduced by 3.9 % to 5.5%. Under the conventional irrigation practice and high nitrogen fertilizer of 300kg/hm2, annual N losses due to AV from the rice filed in the irrigation area reached 1693.8×104 kg N/a, accounted for 22.2% of the fertilizer N applied.
     2. N_2O emissions from the paddy field is not an important way of nitrogen loss at the Yellow River irrigation area, but the warming potential through N_2O emissions in the irrigation area are not neglectable. Excessive application of N fertilizer in the paddy field will significantly increase N_2O emissions, and at the same level of nitrogen application, organic fertilizer amendment could increase N_2O emissions from the paddy soil (P < 0.01). Optimization of nitrogen application in the irrigated paddy field during the rice growing season could reduce N_2O emissions. At the rice growing stage, N_2O emissions mainly occurred before the tiller stage or at the pre- and late- rice growth stages and more N_2O emissions were measured after rice planting and irrigation. At different nitrogen levels, the total amount of N_2O emissions during the whole rice growing season varied among 2.64 ~ 3.87kg/hm2, and the loss of fertilizer nitrogen by N_2O emissions was only 0.43% ~ 0.64%. With the conventional irrigation practice and high nitrogen fertilizer of 300kg/hm2, N_2O emissions from paddy fields in N300-OM treatment reached 3.87 kg/hm2. In the scales of 100a, the global warming potential (GWPs) was 20.76×107 kg CO_2/hm2. Compared with N300-OM treatment, cumulative N_2O emissions in N240 and N240-1/2OM treatments decreased by 1.18 kg/hm2 and 0.57 kg/hm2, respectively. In the scales o100a, GWPs caused by N_2O emissions in the paddy field decreased 3.30×107 kg CO_2/hm2 and 3.06×107 kg CO_2/hm2, respectively.
     3. Ammonia volatilization during the rice growing season mainly occurred 2~5d after the tillering and jointing fertilier applied. Nitrogen loss through AV in N300 treatment at tillering and jointing stages accounted for 30.4% and 29.9% of N application, respectively; Nitrogen loss through AV in N300-OM treatment at tillering and jointing stages accounted for 16.8%~18.5% of N application. Compared with N300 treatment, the percentage of fertilizer N losses decreased by 13.6% and 11.4%. Ammonia volatilization loss from basal fertilizer was relatively large, the percentage lost of different treatments were 11.2% to 14.5%, AV rate reached its maximum at 2~3d after fertilization or irrigation at different stages, at a rate of 5.8~9.14 kg N / (hm2 ? d), which was affected mainly by N application amount, and temperature, sunshine time, rainfall and pH value also have significant influence on it.
     4 The results with the (15)~N tracing technique showed that the high N fertilizer application increased the N uptake by rice from fertilizer, and the amount of N rice absorbed from soil reduced correspondingly, which resulted in the higher N surplus in soil. Under the conventional irrigation and fertilizer management level, the (15)~N-labbled fertilizer recovery in rice plant (ηpf) was 26.05%-30.43%. In the paddy soil profiles of 0-90cm, the residual of (15)~N-labeled fertilizer in soil (Nsf) were 53.70-69.93 kg/hm2, and N residual rate in soils were 17.9%~23.31%. Coupled with the method of N balance, the apparent loss of N from the paddy field was 47%-52%, of which N loss as gaseous from the paddy fields was 22.6%. Optimization of nitrogen fertilizer can significantly reduce the amount of N surplus and N loss from the paddy field. Compared with N300, optimized N fertilizer application could decrease the loss of fertilizer N by 26.74-32.83 kg/hm2, and reduce the amount of N surplus by 22- 31 kg/hm2.
     5. The distribution of (15)~N abundance variability in different soil profile indicated that in the N300 treatment, 55% of the nitrogen left in the 0-90cm soil enriched in the 0-30cm topsoil. As a result of continuous yearly rice planting, fertilizer N leached into deep soil layers along with irrigation water. The (15)~N-labelled fertilizer was detected in the 60-90cm soil layer, indicating that nitrogen fertilizer has leached below 90cm. The nitrogen fertilizer may have entered the shallow groundwater during the growing season. The analysis of changing characteristics of inorganic N accumulation showed high-level nitrogen fertilizer application significantly increased the concentration of ammonium N and nitrate content in top 0-20cm soil. Optimization can reduce the N accumulation in soil layer. Application of organic manure significantly increased nitrate accumulation in 0-100cm soil, and increased the leaching risk of nitrogen loss, as well as N_2O emissions. The N application reduction, optimization of organic manure treatment and other measures can effectively reduce nitrogen loss through AV and N_2O emissions in the paddy field at the irrigation area of Yellow River, and significantly increase nitrogen recycling rate in the paddy field.
引文
[1] A.H.伊利亚列特季诺夫著,张耀栋等译.含氮化合物在土壤中的转化[M].北京:农业出版社,1985.
    [2]边秀举,王维进,杨福存等.冀北高原草甸栗钙土春小麦中化肥氮去向的研究[J].土壤学报,1997,34(1):60~65.
    [3]蔡贵信,朱兆良,朱宗武.水稻田中碳铰和尿素的氮素损失的研究[J].土壤,1985,(5):225~229.
    [4]蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报,1995,32(增刊):128~134.
    [5]曹兵,李新慧,张琳等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报,2001,16(2):83~86.
    [6]曹金留,田光明,任立涛等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J].南京农业大学学报,2000,23(4):51~54.
    [7]曹仁林,贾小葵.我国集约化农业中氮污染问题及防治对策[J].土壤肥料,2001(3):3~6.
    [8]曾江海,王智平,张玉铭.小麦-玉米轮作期土壤排放N2O通量及总量估算[J].环境科学,1995,16(1):32~35.
    [9]陈健,宋春梅等.黄淮海平原旱田氮素损失特征及其环境影响研究[J].中国生态农业学报,2006,14(2):99~102
    [10]陈新平,张福锁.小麦-玉米轮作体系养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2006.
    [11]陈玉芬,杨军,顾蔚蓝.广州地区晚稻田氧化亚氮排放量与施肥、灌溉关系的研究[J].华南农业大学学报,1990,20(2):80~84.
    [12]川口桂三郎著,汲惠吉等译.水田土壤学[M].北京:农业出版社,1985.
    [13]党延辉,蔡贵信,郭胜利.黄土高原黑沪土-冬小麦系统中尿素氮的去向研究[J].土壤学报,2002,(1):199~205.
    [14]邓美华,尹斌,张绍林等.不同施氮量和施氮方式对稻田氨挥发损失的影响[J].土壤,2006,38(3):263~269.
    [15]翟浩辉.灌区节水任重道远-关于宁夏、内蒙古引黄灌区节水工作的调研报告[J].中国农村水利水电. 2001,6,1~4.
    [16]丁洪,蔡贵信,王跃思等.玉米-潮土系统中氮肥硝化反硝化损失与N2O排放[J].中国农业科学,2001,34(4):416~421.
    [17]丁艳锋,刘胜环,王绍华等.氮素基、蘖肥对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):739~744.
    [18]杜睿,王庚辰,吕达仁等.箱法在草地温室气体通量野外实验观测中的应用研究[J].大气科学,2001,25(1):61~70.
    [19]封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35~41.
    [20]封志明,方玉东.甘肃省县域农田氮素投入产出平衡研究[J].干旱地区农业研究,2006,24(2):152~158.
    [21]冯克.施用石灰性土壤对酸性土壤中N2O形成的影响[J].土壤与环境,1999,8(3):198~202.
    [22]高志岭,陈新平,张福锁等.农田土壤N2O排放的连续自动测定方法[J].植物营养与肥料学报,2005,11 (1):64~701.
    [23]侯爱新,陈冠雄,吴杰等.稻田CH4和N2O排放关系及其生物学机理和一些影响因子[J].应用生态学报,1997,8(3):270~274.
    [24]胡春胜,程一松,李晓欣.太行山前平原农田生态系统中硝态氮的淋失研究[J].土壤学报,2002,(增刊):262~269.
    [25]彭少兵,黄见良,钟旭华.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095~1103.
    [26]黄国宏,陈冠雄,韩冰等.土壤含水量与N2O产生途径研究[J].应用生态学报,1999,10(1):53~56.
    [27]黄国宏,陈冠雄,吴杰等.东北典型早作农田N2O和CH4排放通量的研究[J].应用生态学报,1995,6(4):383~386.
    [28]黄国宏,陈冠雄,张志明等.玉米田N2O排放及减排措施研究[J].环境科学学报,1998,18(4):344~349.
    [29]黄见良,邹应斌,彭少兵,Buresh R J.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报,2004,10(6):579~583.
    [30]黄明尉.稻麦轮作农田生态系统温室气体排放及机制研究[D].华东师范大学,硕士学位论文,2007.
    [31]黄树辉,吕军.农田土壤N2O排放研究进展[J].土壤通报,2004,35(4),516~522.
    [32]黄耀.中国的温室气体排放、减排措施与对策[J].第四纪研究,2006,26(5)722~733.
    [33]吉艳芝,巨晓棠,刘新宇,张丽娟,李鑫,刘楠.不同施氮量对冬小麦田氮去向和气态损失的影响[J].水土保持学报,2010,24(3):113~118.
    [34]纪锐琳,朱义年,佟小薇等.竹炭包膜尿素在土壤中的氨挥发损失及其影响因素[J].桂林工学院学报,2008,28(1):111~118.
    [35]江长胜,魏朝富,杨剑虹.旱地土壤氨挥发损失及其影响因素研究[J].土壤农化通报,1998,13(4):121~127.
    [36]蒋静艳,黄耀,宗良纲.环境因素和作物生长对稻田CH4和N2O排放的影响[J].农业环境科学学报,2003,22(6):711~714.
    [37]金翔,韩晓增,蔡贵信.黑土-春小麦中3种化学氮肥的去向[J].土壤学报,1999,36(4):448~453.
    [38]巨晓棠,刘学军,邹国元等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493~1499.
    [39]巨晓棠,张福锁.氮肥利用率的要义及其提高的技术措施[J].科技导报,2003,4:51~54.
    [40]李合松,黄见良,邹应斌等.应用15N、32P示踪法研究双季稻一次性全层施肥技术的肥料效应[J].核农学报,2001,15(2):98~105.
    [41]李虎,王立刚,邱建军.农田土壤N2O排放和减排措施的研究进展[J].中国土壤与肥料,2007(5):1~5.
    [42]李菊梅,徐明岗,秦道珠等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51~56.
    [43]李曼莉,徐阳春,沈其荣等.旱作及水作条件下稻田CH4和N2O排放的观察研究[J].土壤学报,2003,40(6):864~868.
    [44]李庆逵.中国水稻土[M].科学出版社,1992,311~329.
    [45]李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].南昌:江西科技出版社,1998,120~129.
    [46]李生秀,李宗让,田霄鸿,王朝辉.植物地上部分氮素的挥发损失[J].植物营养与肥料学报,1995,l(2):l8~25.
    [47]李生秀.植物体氮素的挥发损失I.小麦生长后期地上部分氮素的损失[J].西北农业大学学报,1992,20(增刊):1~6.
    [48]李世娟,周殿玺,兰林旺.不同水分和氮肥水平对冬小麦吸收肥料氮的影响[J].核农学报,2002,16(5):315~319.
    [49]李伟波,吴留松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究[J].土壤学报,1997,34 (1):69~72.
    [50]李鑫,巨晓棠,张丽娟等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报,2008,19(1):99~104.
    [51]李长生,肖向明,S. Frolking.中国农田的温室气体排放[J].第四纪研究,2003,23(5):493~503.
    [52]梁国庆,周卫,夏文建等.优化施氮下稻-麦轮作体系土壤N2O排放研究[J].植物营养与肥料学报,2010,16(2):304~211.
    [53]梁东丽,同延安,OVE Emterdy.土壤反硝化田间原位测定方法的研究进展[J].土壤与环境,2001,10(2):149~153.
    [54]梁东丽,同延安,Ove Emteryd,李生秀等.塿土土壤剖面中N2O浓度的时间和空间变异[J].生态学报,2003,23 (4):731~737.
    [55]刘立军.水稻氮肥利用效率及其调控途径[D].扬州大学,博士学位论文,2005.
    [56]刘学军,巨晓棠,张福锁.减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响[J].应用生态学报,2004,15(3):458~462.
    [57]刘振英,李亚威,李俊峰等.乌梁素海流域农田面源污染研究[J].农业环境科学学报2007,26(1):41~44.
    [58]鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社,1998,423~443.
    [59]陆敏.水旱轮作农田系统氮素循环与水环境效应[D].华东师范大学,博士学位论文,2007,4
    [60]陆星,巨晓棠,张福锁等.硅胶管气样原位采集技术研究土壤N2O浓度及通量变化[J].植物营养与肥料学报,2010,16 (2):457~464.
    [61]吕耀.氮素损失在农业生态系统中的非点源污染[J].农业环境保护,1998,17(1):35~39.
    [62]宁夏统计年鉴(2009).银川:宁夏出版社.
    [63]彭少兵,黄见良,钟旭华.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095~1103.
    [64]秦晓波,李玉娥,刘克樱等.不同施肥处理稻田甲烷和氧化亚氮排放特征[J].农业工程学报,2006,22(7):143~147.
    [65]申建波,张福锁.水稻养分资源管理理论与实践[M].北京:中国农业出版社,2005.
    [66]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998,175~211.
    [67]司友斌,王慎强等.农田氮、磷的流失与水体富营养化[J].土壤,2000(4):188~193.
    [68]宋歌,孙波.县域尺度稻麦轮作农田土壤无机氮的时空变化[J].农业环境科学学报,2008,28(2):636~642.
    [69]上官周平,李世清.旱地作物氮素营养生理生态[M] .科学出版社,北京,2004.
    [70]宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240~244.
    [71]宋玉芳,任丽萍,许华夏.不同施肥条件下旱田养分淋溶规律实验研究[J].生态学杂志,2001,20(6):20~24.
    [72]苏成国,尹斌,朱兆良,沈其荣.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(11):1884~1888.
    [73]苏芳,丁新泉,高志岭等.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J].中国环境科学,2007,27(3):409~413.
    [74]田光明,曹金留,蔡祖聪.镇江丘陵地区稻田氨挥发损失研究.南京大学学报(自然科学),1997,(专辑):268~270.
    [75]田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响[J].土壤与环境,2002,11(3):294~298.
    [76]王朝辉,刘学军,巨晓棠等.田间土壤氨挥发的原位测定-通气法[J].植物营养与肥料学报,2002,8(2):205~209.
    [77]王朝辉,田霄鸿,李生秀.冬小麦生长后期地上部分氮素的氨挥发损失[J].作物学报,2001,27(1):1~6.
    [78]王福钧,彭根元,兰林旺等.应用15N示踪技术研究水稻吸收肥料氮的动态及不同时期追施氮肥的作用[J].中国农业科学,1981,14(4):66~71.
    [79]王立刚,李虎,邱建军.黄淮海平原典型农田土壤N2O的排放特征[J].中国农业科学,2008,4l(4):1248~1254.
    [80]王明星,张仁健,郑循华.温室气体的源和汇[J].气候与环境研究,2000,5(1):75~79.
    [81]王秀斌,周卫,梁国庆等.优化施肥下华北冬小麦/夏玉米轮作体系农田氨挥发特征[J].植物营养与肥料学报,2009,15(2):262~268.
    [82]王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[D].中国农业科学院研究生院,博士学位论文,2009.
    [83]王秀斌,梁国庆,周卫等.优化施肥下华北冬小麦/夏玉米轮作体系农田反硝化损失与N2O排放特征[J].植物营养与肥料学报,2009,15 (1):48~54.
    [84]王宜庭.氮肥运筹对水稻产量和氮素吸收利用的影响[J].河北农业科学,2008,12(4):56~57.
    [85]王毓庆.固氮菌在水稻土中的活跃性[J].农业学报,1960,11(1):83~89.
    [86]王跃思,王明星,郑循华等.农田甲烷和氧化亚氮排放自动采样观测系统[J].中国科学院研究生院学报,1997,1(1):17~22.
    [87]王智平,曾江海,张玉铭.农田土壤N2O排放的影响[J].农业环境保护,1994,13(1):40 ~42.
    [88]王重阳,郑靖,顾江新等.辽河平原几种旱作农田N2O排放通量及相关影响因素的研究[J].农业环境科学学报,2006,25(3):657~663.
    [89]王祖农,陈学胜.需氧性自生固氮菌的耐酸性[J].植物学报,1956,5(3):339~344.
    [90]谢军飞,李玉娥.土壤温度对北京旱地农田N2O排放的影响[J].中国农业气象,2005,26(1):7~10.
    [91]谢秋发,刘经荣,石庆华等.不同施肥方式对水稻高产、吸氮特征和土壤氮转化的影响[J].植物营养与肥料学报,2004,10(5):462~467.
    [92]邢光熹,颜晓元.中国农田N2O排放的分析估算与减缓对策[J].农村生态环境,2000,16(4):1~6.
    [93]熊正琴,邢光熹,施书莲.轮作制度对水稻生长季节稻田氧化亚氮排放的影响[J].应用生态学报,2003,I4(10):1761~1764.
    [94]徐华,邢光熹,蔡祖聪等.土壤水分状况和质地对稻田N2O排放的影响.土壤学报,2000,37(4):499~505.
    [95]徐华,邢光熹,蔡祖聪,鹤田治雄.丘陵区稻田N2O排放的特点[J].土壤与环境,1999,8(4):266~270.
    [96]徐慧,张秀君,韩士杰,王营,陈冠雄.自然状态下树木排放N2O的研究[J].环境科学,2001,22(5):7~11.
    [97]习金根,周建斌,赵满兴,陈钓一君.滴灌施肥条件下不同种类氮肥在土壤中迁移转化特性的研究[J].植物营养与肥料学报,2004,10(4):337~342.
    [98]徐明岗,邹长明,秦道珠等.有机无机肥配合施用下的稻田氮素转化与利用[J].土壤学报,2002,39(增刊):147~156.
    [99]徐明岗,李冬初,李菊梅,秦道珠,八木一行,宝川靖和.化肥有机肥配施对水稻养分吸收和产量的影响[J].中国农业科学,2008, 41(10): 3133~3139.
    [100]徐文彬,刘维屏,刘广深.应用DNDC模型分析施肥和耕翻方式变化对旱地土壤N2O释放的潜在影响[J].应用生态学报,2001,12(6):917~922.
    [101]徐文彬.浅谈推算和预测宏观尺度土壤N2O释放量的方法[J].土壤通报,2000,31(2):91~95.
    [102]徐文彬.降雨和土壤湿度对贵州旱田土壤N2O释放的影响[J].应用生态学报,2002,13(1):11~16.
    [103]闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440~446.
    [104]晏娟,尹斌,张绍林,沈其荣,朱兆良.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报,2008,14(5):835~839.
    [105]杨长明,杨林章,颜廷梅,欧阳竹.不同肥料结构对水稻群体干物质生产及养分吸收分配的影响[J].土壤通报,2004,35(2):199~202.
    [106]易琼,张秀芝,何萍,杨利,熊桂云.氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响[J].植物营养与肥料学报,2010,16(5):1069~1077.
    [107]于克伟,陈冠雄.农田和森林土壤中N2O的产生与还原[J].应用生态学报,2000,11(3):385~389.
    [108]袁伟玲,曹凑贵,程建平,谢宁宁.间歇灌溉模式下稻田CH4和N2O排放及温室效应评估[J].中国农业科学,2008,41(12):4294~4300.
    [109]张爱平.宁夏黄灌区稻田退水氮磷污染特征研究[博士学位论文].北京:中国农业科学院,2009.
    [110]张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境,2000,9(2):14~18.
    [111]张福锁.我国肥料产业与科学施肥战略研究报告[M].北京:中国农业大学出版社,2008.
    [112]张静,王德建.太湖地区乌栅土稻田氨挥发损失的研究[J].中国生态农业学报,2007,11(15):84~87.
    [113]张丽华,宋长春,王德宣.沼泽湿地CO2、CH4、N2O排放对氮输入的响应[J].环境科学学报,2005,25(8):1112~1118.
    [114]张晴雯,张惠,易军,罗良国等.青铜峡灌区水稻田化肥氮去向研究.环境科学学报,2010,30(8):1707 ~1714.
    [115]张瑞清.我国农田生态系统的养分平衡[D].硕士学位论文,莱阳农学院,2002.
    [116]张绍林,朱兆良,徐银华等.关于太湖地区稻麦上氮肥的适宜用量[J].土壤1988,20:5~9.
    [117]张秀君,徐慧,陈冠雄.影响森林土壤N2O排放和CH4吸收的主要因素.环境科学,2002,23(5):8~12.
    [118]张耀鸿,吴洁,张亚丽等.不同株高粳稻氮素积累和转运的基因型差异[J].南京农业大学学报,2006,29(2):71~74.
    [119]张耀鸿,张亚丽,黄启为等.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较[J].植物营养与肥料学报,2006,12(5):616~621.
    [120]张玉铭,董文旭,曹江海.玉米地土壤反硝化速率与N2O排放通量的动态变化[J].中国生态农业学报,2001,9(4):70~72.
    [121]张玉铭,胡春胜,董文旭.华北太行山前平原农田氨挥发损失[J].植物营养与肥料学报,2005,11(3):417~419.
    [122]张玉铭,胡春胜,张佳宝等.太行山前平原农田生态系统氮素循环与平衡研究[J].植物营养与肥料学报,2006,12(1):5~11.
    [123]郑循华,王明星,王跃思.华东稻麦轮作生态系统的N2O排放研究[J].应用生态学报,1997,8(5):495~499
    [124]郑循华,王明星,王跃思等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J].环境科学,1997,41(1):1~5.
    [125]郑循华,王明星,王跃思等.温度对农田N2O产生与排放的影响[J].环境科学,1997,18(5):1~5.
    [126]中国农业年鉴编委会. 2009年中国农业统计年鉴[M].北京:中国农业出版社,2009.
    [127]中华人民共和国国家统计局. 2009年中国统计年鉴[M].北京:中国统计出版社,2009.
    [128]周伯瑜,杨子江.论有机肥料在农业生态系统中的地位和作用[J].生态学杂志,1992,11(3):53~55.
    [129]周卫军,王凯荣,张光远.有机无机结合施肥对红壤稻田土壤氮素供应和水稻生产的影响[J].生态学报,2003,23(5):914~922.
    [130]朱兆良,Simpson,J.R,张绍林等.石灰性稻田土壤上化肥损失的研究[J].土壤学报,1989,26(4):337~342.
    [131]朱兆良,范晓晖,孙永红等.太湖地区水稻土上稻季氮素循环及其环境效应[J].作物研究,2004,4:187~191.
    [132]朱兆良.关于提高氮肥利用率的问题.肥料与农业发展国际学术讨论会论文集[M].中国农业科技出版社,1995,221~229.
    [133]朱兆良,文启效.中国土壤氮素[M].南京:江苏科学出版社,1992.
    [134]朱兆良,邢光熹.氮循环[M].清华大学出版社,暨南大学出版社,2002,47~58.
    [135]朱兆良,张绍林,陈德立等.黄淮海地区石灰性稻田土壤不同使用方法下氮肥的去向和增产效果[J].土壤,1988,20:121~125.
    [136]朱兆良,蔡贵信,俞金洲.稻田中15N标记硫酸铵的氮素平衡的研究初报[J].科学通报,1977,(11):503~506.
    [137]朱兆良,陈得立,张绍林,徐银华.稻田非共生固氮对当季水稻吸收氮的贡献[J].土壤,1986. (5):225~229.
    [138]朱兆良,文启孝.中国土壤氮素-农田生态系统中化肥氮的去向和氮素管理[M].江苏科学技术出版社,1992,213~249.
    [139]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):l ~ 6.
    [140]朱兆良.我国土壤供氮和化肥氮去向研究的进展[J].土壤,1985,17(1):2~8.
    [141]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):779~784.
    [142]朱兆良.中国土壤的氮素肥力与农业中的氮素管理[M].沈善敏.中国土壤肥力.北京:中国农业出版社,1998,160~211
    [143]朱兆良,张福锁等.主要农田生态系统氮素行为与氮肥高效利用的基础研究[M].科学出版社,北京,2009.
    [144]庄恒扬,曹卫星,沈新平等.麦-稻两熟集约生产土壤养分平衡与调控研究[J].生态学报,2000,20(5):766~770.
    [145]邹建文,黄耀,宗良纲,王跃思,Ronald L.Sass.不同种类有机肥施用对稻田CH4和N2O排放的综合影响[J].环境科学,2003,24(4):7~12
    [146] Beauchamp E G. Nitrous oxide emissions from agricultural soils [J]. Can. J. Soil Sci. 1997, 77: 113~123.
    [147] Koskinen W C, Keeney D R. Effect of pH on the rate of gaseous products of denitrification in a silt loam soil [J]. Soil Sci Soc Am J. 1982, 46: 1165~1167.
    [148] Alam M M, Ladha J K, Foyjunnessa et al. Nitrogen managementfor increased productivity of rice-wheat cropping system in Bangladesh [J]. Field Crops Res., 2006, 96: 374~386.
    [149] Aulakh M S, Doran D T, Waiters A R.et al. Crop residue type and placement effects on denitrification and mineralization [J]. Soil Sci Soc Am. J., 1991, 55: 1020~1025.
    [150] Aulakh M S, Doran J W & Mosier A R. In field evaluation of four method for measuring denitrification [J]. Soil Sci Soc Am. J., 1991, 55: 1332~1338.
    [151] Aulakh M S, Rennie D A.Gaseous nitrogen losses from conventional and chemical summer fallow [J]. Can. J. Soil Sci. 1985, 65: 195~204.
    [152] Aulakh M S, Rennie D A, Paul E A. Gaseous nitrogen losses from cropped and summer~fallow soils [J]. Can J Soil Sci, 1982, 62: 187~196.
    [153] Aulalhd M S, Doran J W, Mosier A R. Soil denitrification Significance, measurement, and effect of management[J]. Adv Soil Sci, 1992, 18: 1~57.
    [154] Birgit W H, Wang X Z, Feng K et al. Nitrous oxide emission as affected by changes in soil water content and nitrogen fertilizer [J]. Plant Nutr. Soil Sci., 1999, 162: 607~613.
    [155] Bollmanm A, Conrada R. Enhancement by acetylene of the decomposition of nitric oxide in soil[J].Journal of Environmental Quality, 2001, 30: 1881~1887.
    [156] Bollmanm.A, Conrada.R.Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide [J]. Soil Biology and Biochemistry, 1997b, 29(7): 1067~1077.
    [157] Bouwman A F. Direct emissions of nitrous oxide from agricultural soils [J]. Nutr. Cycl. Agroecosyst, 1996, 46: 53~70.
    [158] Cai G X, Chen D L, Ding H, et al. Nitrogen lossed from fertilizers applied to maize, wheat and rice in the North China Plain [J].Nutrient Cycling in Agro-ecosystems, 2002, 63: 187~195.
    [159] Cai G X. Gaseous Loss of Nitrogen from Fertilizer Applied to Flooded Rice [D]. Thesis for Ph.D.degree, University of Queensland, 1988, 275~282.
    [160] Cai Z C, Kang G D, Tsuruta H, Mosier A. Estimate of CH4 emission from year-round flooded rice fields during rice growing season in China [J]. Pedosphere, 2005, 15(1): 66~71.
    [161] Cai Z C, Xing G X, Yan X Y, Xu H, Tsuruta H, Yagi K, Minami K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management [J]. Plant and Soil, 1997, 196: 7~14.
    [162] Chang C, Janzen H H. Long-tern fate of nitrogen from annual feed lot manure application. [J]. Environ, Qual. 1996, 25: 785~790.
    [163] Choi W J, Han G H, Lee S M, et al. Impact of land-use types on nitrate concentration and 15N in unconfined groundwater in rural areas of Korea[J]. Agriculture Ecosystems and Environment, 2007 (120): 259~268.
    [164] Christensen S, Christensen B T. Organic matter available for denitrifiction in different soil fractions: Effect of freeze-thaw cycles and slaw disposal. [J]. Soil Sci. 1991, 42: 637~ 647.
    [165] Come M D, Van Kessel C, Pennock D J. et al. Ambient nitrous oxide emissions from different landform complexes as affected by stimulated rainfall [J]. Commun Soil Sci Plant Anal, 1995, 26: 2279~2293.
    [166] Comfort S D, Kelling K A, Keeney D R. et al. Nitrous oxide production from injected liquid dairy manure [J]. Soil Sci Soc Am. J. 1990, 54: 421~427.
    [167] Cui Z L, Zhang F S, Chen X P, et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test [J]. Field Crops Research, 2008, 105: 48~55.
    [168] Diekmann K H, Datta S K D, Ottow J C G. Nitrogen uptake and recovery from urea and green manure in lowland rice measured by 15N and non isotope techniques [J]. Plant and Soil.1993, 148: 91~99.
    [169] EIA-Energy. Information Administration. Emissions of greenhouse gas in the united states. 1997[M]. DOE/EIA-0573 (97). Washington. DC. 1998
    [170] Fan M S, Lu S H, Jiang R F, et al .Nitrogen input, 15N balance, and mineral N dynamics in a rice-wheat rotation in southwest China [J]. Nutrient Cycling in Agroecosystems, 2007, 79: 255~265.
    [171] Feng k, Yin S X. Influence factors of soil N2O formation and emissions[J]. Progress in Soil Science, 1995, 23 (6): 35~41.
    [172] Freney J R, Simpson J R, Denead O T. Gaseous loss of nitrogen from plant-soil systems[M]. Martinus Nijhoff/Dr.W Junk Publishers, 1983, 1~32.
    [173] Fillery, R.P., De Datta.S.K.Ammonia volatilization from nitrogen fertilizer as a N loss mechanism in flooded rice fields [J]. Fert. Res.1986 (9): 78~98.
    [174] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions [J]. Science, 2008, 320: 889~892.
    [175] Ghosh S, Majumdar D, Jain M C. Methane and nitrous oxide emissions from irrigated rice of North India. Chemosphere, 2003, 51: 181~195.
    [176] Goodroad L L, Keeney D R. Nitrous oxide emissions from soils during thawing [J]. Can. J. Soil Sci.1984, 64: 187~194.
    [177] Granli T, Bockman O C. Nitrous oxide from agriculture [J]. Norw Jour. of Agri. Sci, 1994, 12: 120~ 128.
    [178] Hansen S, Mehlum J E, Bakken L R. N2O and CH4 flux in soil influenced by fertilization and tractor traffic [J]. Soil Biol. Biochem., 1993, 25(5): 621~630.
    [179] Hargrove W L, Kissel D E, Fenn L B. Field measurements of ammonia volatilization from surface applications of ammonium salts to a calcareous soil [J]. Agronomy Journal, 1977, 69: 473~476.
    [180] Hayashi K, Nishimura S, Yagi K. Ammonia volatilization from a paddy field following applications of urea: rice plants are both an absorber and an emitter for atmospheric ammonia [J].The Science of the Total Environment., 2008, 390 (23): 485~494.
    [181] He C E, Wang X, Liu X j, et al. Total nitrogen deposition at key growing stages of maize and wheat as affected by pot surface area and crop variety [J]. Plant. Soil, 2011, 339:137~145.
    [182] He C E, Wang X, Liu X J, Fangmeier A, Zhang F S Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems [J]. Ecol Appl, 2010, 20: 80~90.
    [183] Houghton J T, Ding Y. PCC, Climate Chang 2001[M]: The Scientific Basis, Cambridge University Press, Cambridge, UK, 2001: 38~41.
    [184] Huang Guohong, Chen Guanxiong, Han Bing et al. Relationship between soil water content andN2O production [J]. Chinese Journal of Applied Ecology, 1999, 10 (1): 53~56.
    [185] Huang S H, Pant H K, Lu J. Effects of water regimes on nitrous oxide emission from soils [J]. Ecological Engineering, 2007, 31: 9~15.
    [186] IPCC, Working Group III. Greenhouse gas mitigation in agriculture. Fourth ssessment Report, 2007.
    [187] IPCC. Volume 4: Agriculture, forestry and other land uses (AFOLU). 2006 IPCC guidelines for national greenhouse gas inventories. IPCC/IGES, Havana, Japan, 2006.
    [188] IPCC.2007 IPCC Guidelines for National Greenhouse Gas Inventries .Workbook (Volume 2), Agriculture. Geneva: Published by IPCC National Greenhouse Gas Inventories Programme (IPCC-NGGIP), 2007.
    [189] Iserman K. Agriculture’s share in the emission of trace gases affecting the climate and some cause-orientated proposals for reducing this share [J]. Environ. Pollut, 1994, 83: 95~111.
    [190] Ju X T, Zhang F S. Correct understanding of nitrogen recovery rate [J]. Sci. Tech. Rev., 2003, (4): 51~54.
    [191] Ju X T, Liu X J, Pan J R, et al. Fate of 15N-labeled urea under a winter wheat-summer maize rotation on the North China Plain [J]. Pedosphere, 2007, 17(1): 52~61.
    [192] Ju X.T., Kou C.L., Zhang F.S., et al. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143: 117~125.
    [193] Kaiser E A, Kohrs K, Kucke M. et al. Nitrous oxdie releasefrom arable soil: importance of potential forage crops [J]. Biol Fertil Soil, 1998, 28: 36~43.
    [194] Kamp T, Steindl H, Hantschel R E. Munch. Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperature [J]. Biol Fertil Soils., 1998, 27: 307~314.
    [195] Lee J, Hopmans J W, Kessel C. Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate [J].Agric. Ecosyst. Environ, 2009, 129 (4): 378~390.
    [196] Li C S, Frolking S., Xiao X M, Moore B, Boles S, Qiu J J, Huang Y, Salas W, Sass R. Modeling impacts of farming management alternatives on CO2, CH4 and N2O emissions: a case study for water management of rice agriculture of China [J]. Global Biogeochemical Cycles, 2005, 19(3): GB3010.
    [197] Li Q K. Fertilizer issues in the sustainable development of China agriculture [M]. Nanchang: Jiangxi Science and Technology Press, 1997.
    [198] Li S X, Chun D G, Gao Y J. Mineral nitrogen introduced into soil by precipitation on loess dry-land [J]. Chin J Agric Res Arid Areas, 1993, 11(supp.): 83~92 (in Chinese).
    [199] Liu G D, Li Y C, Alva A K. Moisture Quotients for Ammonia Volatilization from Four Soils in Potato Production Regions [J]. Water Air Soil Pollution, 2007, 183: 115~127.
    [200] Liu X J, Ju X T, Zhang F S. Effect of reduced N application on N utilization and balance in winter wheat-summe rmaize cropping system [J]. Chin. J. App. Eco., 2004, 15 (3): 458~462.
    [201] Liu X J, Ju X T, Zhang F S, Pan J R, Christie P. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain [J]. Field Crops Res. 2003, 83: 111~124.
    [202] Lsernan K. Agriculture’s share in the emission of trace gases affeeting the climate and some cause orientated proposals for reducing this share [J]. Environ Pollut, 1994, 83: 95~111.
    [203] Lu Y Y, Huang Y, Zou J W, Zheng X H. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission [J]. Chemosphere, 2006, 65:1915~1924.
    [204] Meyer M L, Bloom P R, Grava J. Transformation and losses of applied nitrogen-15 labeled ammonium in a flooded organic soil [J]. Soil Science Society of America Journal, 1989, 53: 79~85.
    [205] Misselbrook T H, Nichoson F A, Chambers B J, et al. Measuring ammonia emissions from land applied manure: an intercomparison of commonly used samplers and techniques [J]. Environmental Pollution, 2005, 135: 389~397.
    [206] Moal J F, Martinez J, Guiziou F, et al. Ammonia volatilization following surface applied pig and cattle slurry in France [J]. Journal of Agricultural Science, 1995, 125: 245~252.
    [207] Moller K, Stinner W, Leithold G. Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk[J]. Nutr. Cycl. Agroeco-system, 2008, 82: 233~249.
    [208] Moore T R , Roulet N T. Methane emissions from Canadian Peatlands [A] PPLal R , Kimble J , Levine E. Stewart B A Soils and Global Change , Advances in Soil Science , Lewis Publishers , Baco Raton , F L. , 1995 : 153 ~164.
    [209] Mosier A R, Dom J W, Freney J R. Managing soil denitrification [J]. Journal of Soil and Water Conservation, 2000, 57: 505~512.
    [210] Muller C, Sherlock R R, Williams P H. Field method to determine N2O emission from nitrification and denitrification [J]. Biology and Fertility of soils, 1998, 28: 51~55.
    [211] Nagele W, Conrad R. lnfluence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N2O [J]. FEMS Microbiol Ecol., 1990, 74: 49~58.
    [212] Nastri A, Toderi G, Bern T et al. Ammonia volatilization and yield response from urea applied to wheat with crease (NBPT) and nitrification (DCD) inhibitors. Agrochinica, 2000, 5-6: 231~238.
    [213] Pacholksi A. Calibration of a simple method for determining ammonia volatilization in the field. Land-bauforschung Volkenrode: Sonderheft, 2003,249.
    [214] Parkin T B. Soil microsites as a source of denitrification variability. Soil Sci. Soc. Am.J. 1987, 51, 1194~1199.
    [215] Parton W J, Ojma D S, Col C V, et a1. A General model for soil organic matter dynamics: Sensitivity to litter chemistry, texture, and management [J]. Soil Science Society of America in Minneapolis, 1992, 2: 147~167.
    [216] Pati no, Zúniga J, Ceja, Navarro A, Govaerts B, et al. The effect of different tillage and residue management practices on soil characteristics, inorganic N dynamics and emissions of N2O, CO2 and CH4 in the central highlands of Mexico: a laboratory study [J]. Plant Soil, 2009, 314: 231~241.
    [217] Paul J W, Beauchamp E G, Zhang X. Nitrous and nitric oxide emissions during nitrification and denitrificatin fron manure-amended in the laboratory [J]. Canadian Journal of Soil Science. 1993, 73: 539~553.
    [218] Pacholski A, Cai G X, Fan X, H, Ding H, Chen D, et al. Comparison of different methods for the measurement of ammonia volatilization after urea application in Henan Province [J], China. Plant Nutr. Soil. Sci. 2008, 171: 361~369.
    [219] Peng S Z, Li D X, Jiao X Y, He Y, Yu J Y. Effect of water-saving irrigation on the seasonal emission of CH4 from paddy field [J]. Journal of Zhejiang University (Agriculture and Life Science), 2006, 32(5): 546~550. (in Chinese).
    [220] Robert T L, Janzen H H Comparison of direct and indirect methods of measuring fertilizer N uptake in winter wheat [J]. Can J Soil Sci, 1990, 70: 119~124.
    [221] Rochette P, Angers D A, Chantigny M H, et al. Ammonia volatilization following surface application of urea to tilled and no till soils: A laboratory comparison [J]. Soil & Tillage Research, 2008, 10: 1~6.
    [222] Ryden J C, Lund L J, Focht D D. Direct measurement of denitrification loss from soils: II.Laboratory evaluation of acetylene inhibition of nitrous oxide reduction [J]. Soil Science Society of America Journal, 1979, 43: 104.
    [223] Shen J B, Zhang F S. Theory and practice of nutrient resources management in rice [M]. Beijing: China Agricultural Press, 2006, 2~5.
    [224] Shen S~M. Contribution of nitrogen fertilizer to the development of agriculture and its loss in China [J]. Acta Pedol Sin, 2002, 39(supp.): 12~25 (in Chinese).
    [225] Skiba, U. Smith, K A., Fowler, D. Nitrification and denitrification as sources of nitric oxide and.a) nitrous oxide in a sandy loam soil .Soil Biol. Biolchem, 1993, 25: 1527~1536.
    [226] Shen S~M. Soil Fertility in China [M]. Beijing: China Agricultural Press. 1998. 57~110 (in Chinese)
    [227] Siva K B, Aminuddin H, Husni M H A, et al .Ammonia volatilization from urea as affected by tropical~based palm oil mill effluent pome and peat [J]. Communications in Soil Science of Plant Analysis, 1999, 30(5-6): 785~804.
    [228] Skeffington R A. Accelerated nitrogen inputs: A new problem or a new perceptive [J]. Plant and Soil, 1990, 128: 1~11.
    [229] Sommer S G, Sherlock R R, Khan R Z. Nitrous oxide and methane emissions from pig slurry amended soils [J]. Soil Biol Biolchem. 1996, 28: 1541~1544.
    [230] Stevens R J, Laughlin R J, Malone J P. Soil pH affects the processes reducing nitrate to nitrous oxide and dinitrogen [J]. Soil BioL Biolchem. 1998, 30 (89): 1119~1208.
    [231] Svensson B H, Klemedtsson L, Rosswall T. Prelimiary field denitrification studies of nitrate-fetilized and nitrogen-fixing crops. In: denitrification in the Nitrogen Cycle [M]. Golterman, E.L.ed., NATO Conference Series I: Ecology, Vol. 9, Plenum Press, New York, 1985.
    [232] Thompson R B, Meisinger J J. Gaseous nitrogen losses and ammonia volatilization measurementfollowing land application of cattle slurry in the mid-Atlantic region of the USA [J]. Plant and Soil, 2004, 266: 231~246.
    [233] Tian G M, Cao J L, Cai Z C, et al. Ammonia volatilization from wheat field top-dressed with urea [J]. Pedosphere, 1998, 8(4): 331~336.
    [234] Tonitto C, David M B, Li C S, et al. Application of the DNDC model to tile-drained Illinois agroecosystems: model comparison of conventional and diversified rotations [J]. Nutrient Cycling in Agroecosystems, 2007, 78: 65~81.
    [235] Wan Y J. Gross nitrogen transformations and related N2O emissions in an intensively used calcareous soil [J]. Soil Science Society of America Journal, 2009, 73: 102~112.
    [236] Wang H, McCaig T.N, Depauw R M et al. Physiological characteristics of recent Canada Western Red Spring wheat cultivars: components of grain nitrogen yield [J]. Can. J. Plant Sci., 2003, 83(4): 699~707.
    [237] Way F J, Peng G Y, Lan L W et al. Studies on the precess of fertilizer-N absorption in rice plant by using isotope 15N and on the effect of the application of N-fertilizer [J]. Sci. Agric. Sin., 1981, 14(4): 66~71.
    [238] Wigley T M, Raper S C. Interpretation of high projections for global mean warming [J]. Science, 2001, 293: 451~454.
    [239] Witt C, Dobermann A., Abdulrachman S., et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical [J]. Asia. Field Crops Res. 1999, 63: 113~1.
    [240] Wu J, Nofziger D L, Hattey J A. Modeling ammonia volatilization from surface-applied swine effluent [J]. Soil Science Society of America Journal, 2003, 67(1~2): 1~11.
    [241] Wulf S, Maeting M, Clemens J.application technique and slurry Co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading [J]. Journal of Environmental Quality, 2002, 31: 1789~1794.
    [242] Xing G X & Zhu Z L. An assessment of N loss from agricultural fields to the environment in China [J].Nutr. Cycle Agroecosyst, 2000, 57: 67~73.
    [243] Xu R.K. NH4+ in rain water in China and its effecton soil acidification [J]. Chin J Soc Agro-Environ Protec., 1996, 15(3): 139~140 (in Chinese).
    [244] Yan W.J., Zhang S, Wang J.H. Nitrogen biogeochemical cycling in the Changjiang drainage basin and its effect on Changjiang River dissolved inorganic nitrogen: temporal trend for the period 1968~1997 [J]. Acta Geog Sin, 2001, 56(5):505~514 (in Chinese)
    [245] Yan zhi, Ju Xiaotang, Liu Xinyu, ZHang Lijuan, Li Xin, Liu Nan. Ampact of different nitrogen application on nitrogen movement and gaseous loss of einter wheat fields [J]. Journal of Soil and Water Conservation. 2010, 24 (3): 113~118.
    [246] Zhang J F, Han X G. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China [J]. Atmospheric Environment, 2008, 42: 291~302.
    [247] Zhang Y M, Chen D L, zhang J B, et al. Ammonia Volatilization and Denitrification losses fromanirrigated maize-wheat rotation field in the North China [J] Plain.Pedosphere, 2004, 14(4): 533~540.
    [248] Zhang Y H, Wu J, Zhang Y L et al. Genotypic variation of nitrogenaccumulation and translocation in japonica rice (Oryza sativaL.) cultivars with different height [J]. J. Nanjing Agric. Univ., 2006, 29(2): 71~74.
    [249] Zhou B Y, Yang Z J. Role and function of organic fertilizer in agroecosystem [J]. Chinese Journal of Ecology, 1992, 11(3): 53~55. (in Chinese).
    [250] Zhou S, Hou H, Hosomi M. Nitrogen removal, N2O emission, and NH3 volatilization under different water levels in a vertical flow treatment system [J]. Water Air Soil Pollution, 2008, 191: 171~182.
    [251] Zhu Z L, Chen D L. Nitrogen fertilizer use in China contributions to food production impacts on the environment and best management strategies [J]. Nutrient Cyclingin Agroecosystems, 2002, 63: 117~127.
    [252] Zou G Y, Zhang F S, Ju X T, et al .Study on soil denitrification in wheat-maize Rotation system [J]. Agricultural Sciences in China, 2006, 5(1): 45~49.
    [253] Zou J W, Huang Y, Jiang J Y, Zheng X H, Sass R L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China. effects of water regime,crop residue, and fertilizer application [J]. Global Biogeochemical Cycles, 2005, 19(2): GB2021. 154~157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700