用户名: 密码: 验证码:
基于新月柄杆菌RsaA分泌机制的高效通用胞外分泌表达系统pQABPS/E.coliM15的构建及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺乏高效、稳定、低成本、易纯化的重组蛋白表达系统是目前基因工程药物/疫苗研发、生产和相关生物技术的瓶颈之一。目前的表达载体几乎均以胞浆或周质间隙形式表达重组目的蛋白,存在种种缺陷,给下游工作带来重重困难。例如高表达的重组目的蛋白常常在胞内形成包涵体,生物活性不佳,复性困难;周质间隙表达虽可增加重组蛋白的可溶性,避免包涵体复性的繁琐程序,但其表达量有限且对重组蛋白的分子大小和结构有所限制,尤其不适合大规模生产。
     而胞外分泌型表达是提高重组蛋白有效产率和生物利用度更为理想的途径,因为胞外环境有利于蛋白的折叠和稳定,从而显著增加重组蛋白活性;同时胞外环境蛋白酶及宿主蛋白的干扰相对最少,重组蛋白更稳定,更易于纯化;此外还能够减轻对宿主菌及重组蛋白本身的毒性,并能持续分泌表达。
     实现重组蛋白胞外递送的一个有效途径是移植利用细菌的天然分泌系统,该途径与非特异的渗漏表达不同,具有高效、特异和高度可控的优点。因此本课题旨在将具有胞外分泌功能的新月柄杆菌RsaA分泌系统移植到原核表达最常用的工程菌E. coli中,使其成为重组蛋白胞外递送的工具,以发展具有自主知识产权的高效通用胞外分泌表达系统pQABPS。但新月柄杆菌本身的调控元件不能为E. coli所识别,简单地将RsaA分泌系统直接移植到E. coli中是不能重现胞外分泌功能的,需要依赖于外源基因表达调控序列的作用,使该系统多个功能基因在E. coli中以合理水平组成型表达。
     因此本课题拟通过基因操作,获得RsaA分泌系统功能基因rsaD、rsaE、rsaFa、rsaFb(RsaFa和RsaFb共同承担RsaF功能)及C-端信号序列rsaAs,并配合有效的外源调控序列(包括终止子、启动子、翻译增强序列及RBS等),构建到pQE30骨架载体上,得到原核胞外分泌型表达载体系统pQABPS,通过表达四个大小、来源不同及功能明确的外源重组蛋白GFP、EspA、UreB和hIL-24,检测其表达量与活性,验证其通用性及质粒稳定性,并在调控元件强度、宿主菌及分泌功能基因组织形式等方面对该系统进行优化。
     本课题完成了以下几个方面的工作:
     1.外源基因表达调控序列的筛选。
     首先克隆了六个基因表达调控序列rrnBT1(核糖体终止子)、强组成型T5启动子PTS及其突变体PTW、中等强度组成型β-内酰胺酶启动子PB及包含其本身SD序列的PBS,以及翻译增强序列Epsilon(T7噬菌体gene-10翻译增强子序列)及SD序列(简写为ESD)。然后观察在不同的宿主菌E. coli JM109和E. coli M15中,不同的调控序列组合调控报告基因GFP的表达情况,结果表明,rrnBT1-PTS-ESD和rrnBT1-PB-ESD两个组合效果较好。随后验证了它们对RsaA系统各单个分泌功能基因rsaD、rsaE、rsaFa和rsaFb的表达调控作用,结果表明它们起到了预期的作用,可以用于下一步的载体构建。
     2.胞外分泌表达载体pQABPS的构建及鉴定
     1)克隆了四个5’端带ESD序列的RsaA分泌功能基因rsaD、rsaE、rsaFa和rsaFb,利用同尾酶将它们连接起来,得到ESDDEFab片段,与第一部分筛选出的外源调控序列组合rrnBT1-PTS/rrnBT1-PTB及RsaA分泌系统C端信号序列rsaAs一起克隆至pQE30骨架载体,得到本课题的目的载体pQABPS。
     2)用该载体表达报告分子GFP,结果表明GFP能够被分泌至胞外培养基中,分泌量为1.0mg/L;同时在转录和翻译两个水平面检测到了分泌功能蛋白的组成型表达,结合Western blotting结果,证明GFP的胞外运输是通过特异的RsaA转运装置而非渗漏表达。
     3)质粒稳定性检测结果显示,在有选择压力存在的情况下,pQABPS质粒在M15中能够稳定存在60代,60代之后丢失率稍增加,总体来说稳定性良好。
     3.胞外分泌表达载体pQABPS的优化及应用初探
     1)克隆了三个大小、来源不同的外源蛋白EspA、UreB和hIL-24验证pQABPS/M15表达系统的通用性,结果表明,它们均被成功分泌至胞外培养基中。
     2)用ELISA试剂盒定量检测了培养上清中重组hIL-24的表达量,为336.5μg/L,随后直接用培养上清(对照为M15空菌培养上清)进行了体外诱导肿瘤细胞凋亡的实验,证实了上清中的hIL-24具有体外诱导肿瘤细胞凋亡的活性,且对正常细胞没有影响。说明pQABPS/M15系统分泌表达有利于外源蛋白的生物学活性。
     3)将分别载有四个外源蛋白GFP、EspA、UreB和hIL-24的pQABPS质粒转入E. coli XL1-Blue宿主菌中,观察不同宿主菌对分泌效果的影响,结果表明诱导表达后同样能在培养上清中检测到目的蛋白的表达。
     4)构建了缺失rsaFb基因(仅保留rsaD、rsaE和rsaFa基因)的质粒载体pQG2ABPS(-)、pQA2ABPS(-)、pQU2ABPS(-)和pQI2ABPS(-),将它们转入E. coli M15中,观察不同的分泌功能基因组织形式对分泌效果的影响,结果表明诱导表达后同样能在培养上清中检测到目的蛋白的表达,表达量没有明显变化。
     综上所述,本课题构建了基于新月柄杆菌RsaA系统的胞外分泌表达载体pQABPS。该载体具有一定的通用性,能够将外源蛋白特异地转运至胞外培养基中,且有利于生物学活性的保留。该质粒载体在宿主菌E. coli M15中具有良好的遗传稳定性。
Obtaining soluble proteins often constitutes a bottleneck in the production of recombinant proteins for drug developments, structural studies and proteomics. This can be accounted for, at least in part, the lack of efficient secretion systems capable of large-scale exportation of recombinant proteins. Secretory expression of recombinant proteins in Escherichia coli has exhibited several advantages over intracellular production, including: 1) to facilitate the downstream process; 2) to enhance the biological activity; 3) to increase the stability and solubility of recombinant proteins. Among the five major secretion systems (type I, II, III, IV, and V) that can export protein into the extracellular space. Type I (ATP-binding cassette) secretion system featuring a number of striking features has been recognized to be an attractive candidate for development of extracellular expression systems of recombinant proteins.
     In E. coli, the a-haemolysin (HlyA) transporter is a representative member of the type I transporter family. Indeed, it has been utilized extensively. Despite many advantages, the HlyA secretion pathway has a number of drawbacks. Probably, there is not sufficient room for further improvement of HlyA-based secretion systems, demanding the exploration of more efficient and less restrictive secretion systems for recombinant protein exportation.
     RsaA (regular surface array protein) secretion system in Caulobacter crescentus, which mediates the secretion of surface layer protein (SLP) is considered as a promising candidate for development of improved recombinant protein secretory delivery systems. Theoretically, as long as the four secretion element genes rsaD, rsaE, rsaFa and rsaFb were cloned and expressed, the heterologous proteins fused to RsaAs, the rsaA C-terminal secretory signal, will be secreted to the extracellular medium. However, the regulatory elements of C. crescentus couldn’t be recognized by the host E. coli. So some other regulatory elements that can work in E. coli should be involved.
     In this work, we cloned a series of genes encoding exporter proteins rsaD, rsaE, rsaFa, rsaFb, the C-terminal signal sequence rsaAs and three other exogenous regulatory components respectively. These genes and the foreign regulatory components were directionally inserted into pQE30 vector, resulting in the plasmid, termed as pQABPS. Then four heterologous proteins (GFP, EspA UreB and hIL24) from different origins and of different sizes were fused to the C-terminal signal for evaluation of the extracellular secretion capacity of the newborn plasmid pQABPS.
     The study has been involved in the following aspects:
     1. Selection and determination of exogenous regulatory components
     Six gene expression regulatory components—strong terminator rrnBT1, strong constitutive T5 promotor PTS and its mutant PTW, moderate constitutiveβ-lactamase promoter PB and PBS (its SD sequence was included), Epsilon (UUAACUUUA, T7 phage gene 10 translation enhancer), along with Shine-Dalgarno (SD) consensus sequence AAGGAG (abbreviated as ESD), were cloned. SDS-PAGE analysis showed that the reporter protein GFP was constitutively expressed under the regulation of them. Two optimized group rrnBT1-PTS-ESD and rrnBT1-PB-ESD were selected to regulate the expression of four secretion element genes.
     2. Development and evaluation of the extracellular secretion vector pQABPS
     1) Four Caulobacter crescentus RsaA secretion elements rsaD, rsaE, rsaFa and rsaFb and three exogenous regulatory components were directionally inserted into pQE30 vector, generating the interested plasmid designated pQABPS.
     2) The reporter protein GFP were subjected to expression assays using this newly-developed expression system, pQABPS/E. coli M15. The hybrid protein in the culture supernatant was detected by SDS-PAGE and Western bloting. The secretion amount was about 1.0mg/L. To test whether the target protein was secreted through the special RsaA transporter, expression of four structural proteins RsaD, RsaE, RsaFa and RsaFb was tested by RT-PCR and SDS-PAGE. As a result, the GFP hybrid protein was exported from the E. coli cells in an RsaA secretion system dependent manner, but not a nonspecific leakage after long-time cultivation.
     3)The stability of the pABPS plasmid in E. coli M15 was analysed. It showed that the plasmid had good genetic stability in M15 with selective pressure.
     3. Application and optimization of the pQABPS vector
     1) Three other heterologous proteins, EspA (E. coli secreted protein), UreB (H. Pylori urase subunit B) and hIL-24 (human Interleukin-24) -with different sizes and from different origin were selected to evaluate the extracellular secretion capability of the newly-developed pQABPS vector system. Results of Western blotting analysis revealed that they were efficiently secreted into culture supernatant.
     2) Extracellular expression product of recombinant hIL-24 was identified by ELISA. It showed that the secretion amount of hIL-24 was 336.5μg/L. The biological activity of inducing tumor cells apoptosis of recombinant hIL-24 was detected by MTT and morphology overview. It showed that the recombinant hIL-24 in the culture supernatant of M15 induced apoptosis of tumor cells in vitro, while and no effect on normal cells. It revealed that the hybrid hIL-24 expressed extracelluarly remained biological activity.
     3) The new host E. coli XL1-Blue harbouring pQABPS can also export the four heterologous proteins GFP, EspA, UreB and hL-24 to the outer space.
     4) Four plasmids lacking of rsaFb gene pQG2ABPS(-), pQA2ABPS(-), pQU2ABPS(-) and pQI2ABPS(-) were constructed and transformed to E. coli M15. Western blotting analysis revealed that the four heterologous proteins GFP, EspA, UreB and hL-24 were all secreted to the culture supernatant. There were no obvious change of secretion capacity.
     In conclusion, novel extracellular expression system, pQABPS/E. coli (M15), carrying Caulobacter crescentus RsaA secretion elements was developed. Caulobacter crescentus RsaA secretion elements and three other exogenous regulatory components were directionally inserted into pQE30 vector, generating the interested plasmid designated pQABPS. Four heterologous genes (gfp, espA, ureB and il24) were subjected to expression assays using this newly-developed expression system, pQABPS/E. coli (M15). Western blot analysis and bioactivity tests revealed that they were efficiently secreted into culture supernatant and remained biological activity, implying that pQABPS fulfills the capability of extracellular delivering bioactive foreign proteins in E. coli (M15). Taken together, the expression system of pQABPS/E. coli (M15) can function as another useful tool for extracellular secretary expression of exogenous proteins.
引文
1.陈金中,薛京伦.载体学与基因操作.科学出版社. 2007:121-123
    2. Hoffmann F, Rinas U. Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng Biotechnol. 2004, 89:73-92.
    3. Sugamata Y, Shiba T. Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an alpha-hemolysin transporter from Escherichia coli. Appl Environ Microbiol. 2005, 71(2):656-662.
    4. Shokri A, Sanden AM, Larsson G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol. 2003, 60(6):654-664.
    5. Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol. 2004, 64(5):625-635.
    6. Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005, 115(2):113-128.
    7. Mergulhao FJ, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv. 2005, 23(3):177-202.
    8. Kerr JR. Gram-negative bacterial protein secretion. J Infect. 2000, 40(2):121-126.
    9. Omori K, Idei A. Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. J Biosci Bioeng. 2003, 95(1):1-12.
    10. Young J, Holland IB. ABC transporters: bacterial exporters-revisited five years on. Biochim Biophys Acta. 1999, 1461(2):177-200.
    11.张兆山主编.病原细菌生物学研究与应用.化学工业出版社. 2007:124.
    12. Gentschev I, Dietrich G, Goebel W. The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol. 2002, 10(1):39-45.
    13. Hahn HP, von Specht BU. Secretory delivery of recombinant proteins in attenuated Salmonella strains: potential and limitations of Type I protein transporters. FEMS Immunol Med Microbiol. 2003, 37(2-3):87-98.
    14. Toporowski MC, Nomellini JF, Awram P , et al. Two outer membrane proteins are required for maximal type I secretion of the Caulobacter crescentus S-layer protein. J Bacteriol. 2004, 186(23):8000-8009.
    15. Bingle WH, Nomellini JF, Smit J. Secretion of the Caulobacter crescentus S-layer protein: further localization of the C-terminal secretion signal and its use for secretion of recombinant proteins. J Bacteriol. 2000, 182(11):3298-3301.
    16. Sara M, Sleytr UB. S-Layer proteins. J Bacteriol. 2000, 182(4):859-868.
    17. Smit J, Engelhardt H, Volker S , et al. The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy. J Bacteriol. 1992, 174(20):6527-6538.
    18. Holland IB, Schmitt L, Young J. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol. 2005, 22(1-2):29-39.
    19. Umelo-Njaka E, Nomellini JF, Bingle WH , et al. Expression and testing of Pseudomonas aeruginosa vaccine candidate proteins prepared with the Caulobacter crescentus S-layer protein expression system. Vaccine. 2001, 19(11-12):1406-1415.
    20.宁亚蕾,邹全明.基因工程重组蛋白胞外分泌Ⅰ型系统的研究进展.生物技术通讯. 2006, 17(2):235-237.
    21. Golshani A, Kolev V, AbouHaidar MG , et al. Epsilon as an initiator of translation of CAT mRNA in Escherichia coli. Biochem Biophys Res Commun. 2000, 273(2):528-531.
    22. O'Connor M, Dahlberg AE. Enhancement of translation by the epsilon element is independent of the sequence of the 460 region of 16S rRNA. Nucleic Acids Res. 2001, 29(7):1420-1425.
    23.卢圣栋主编.现代分子生物学实验技术.第1版.北京:高等教育出版社. 1993:378-381.
    24.孙乃恩,孙东旭,朱德熙.分子遗传学.南京大学出版社. 1990:285-289.
    25.孙乃恩,孙东旭,朱德熙.分子遗传学.南京大学出版社. 1990:189-193.
    26.默克公司. pET系统操作手册第十版.35.
    27. Meacock PA, Cohen SN. Genetic analysis of the inter-relationship between plasmid replication and incompatibility. Mol Gen Genet. 1979, 174(2):135-147.
    28. Aristidou AA, San KY, Bennett GN. Modification of central metabolic pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the bacillus subtilis acetolactate synthase gene. Biotechnol Bioeng. 1994, 44(8):944-951.
    29. Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of itsamino-terminal residue. Science. 1986, 234(4773):179-186.
    30. Swamy KH, Goldberg AL. Subcellular distribution of various proteases in Escherichia coli. J Bacteriol. 1982, 149(3):1027-1033.
    31. Talmadge K, Gilbert W. Cellular location affects protein stability in Escherichia coli. Proc Natl Acad Sci U S A. 1982, 79(6):1830-1833.
    32. Michaelis S, Beckwith J. Mechanism of incorporation of cell envelope proteins in Escherichia coli. Annu Rev Microbiol. 1982, 36:435-465.
    33. Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science. 1996, 271(5255):1519-1526.
    34. Pluckthun A. Mono- and bivalent antibody fragments produced in Escherichia coli: engineering, folding and antigen binding. Immunol Rev. 1992, 130:151-188.
    35. Better M, Chang CP, Robinson RR , et al. Escherichia coli secretion of an active chimeric antibody fragment. Science. 1988, 240(4855):1041-1043.
    36. Bingle WH, Nomellini JF, Smit J. Linker mutagenesis of the Caulobacter crescentus S-layer protein: toward a definition of an N-terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion. J Bacteriol. 1997, 179(3):601-611.
    37. Samuelson P, Gunneriusson E, Nygren PA , et al. Display of proteins on bacteria. J Biotechnol. 2002, 96(2):129-154.
    38. Ackermann M, Stearns SC, Jenal U. Senescence in a bacterium with asymmetric division. Science. 2003, 300(5627):1920.
    39. Adhya S, Gottesman M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell. 1982, 29(3):939-944.
    40. Nishihara T, Iwabuchi T, Nohno T. A T7 promoter vector with a transcriptional terminator for stringent expression of foreign genes. Gene. 1994, 145(1):145-146.
    41. Hayashi MN, Hayashi M. Cloned DNA sequences that determine mRNA stability of bacteriophage phi X174 in vivo are functional. Nucleic Acids Res. 1985, 13(16):5937-5948.
    42. Newbury SF, Smith NH, Robinson EC , et al. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987, 48(2):297-310.
    43. Neves BC, Shaw RK, Frankel G , et al. Polymorphisms within EspA filaments ofenteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun. 2003, 71(4):2262-2265.
    44. Daniell SJ, Kocsis E, Morris E , et al. 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol Microbiol. 2003, 49(2):301-308.
    45. Neves BC, Knutton S, Trabulsi LR , et al. Molecular and ultrastructural characterisation of EspA from different enteropathogenic Escherichia coli serotypes. FEMS Microbiol Lett. 1998, 169(1):73-80.
    46. Noguera-Obenza M, Ochoa TJ, Gomez HF , et al. Human milk secretory antibodies against attaching and effacing Escherichia coli antigens. Emerg Infect Dis. 2003, 9(5):545-551.
    47.王庆旭,毛旭虎,邹全明, et al.肠出血性大肠埃希氏菌O157:H7 espA基因的克隆与表达.中华微生物学和免疫学杂志. 2006, 26(6):535-538.
    48.刘艳青,毛旭虎,邹全明, et al.肠出血性大肠杆菌O157:H7 EspA与Intimin C300融合蛋白的构建表达.中国人兽共患病学报. 2007, 27(3):332-334.
    49. Lock RA, Coombs GW, McWilliams TM , et al. Proteome analysis of highly immunoreactive proteins of Helicobacter pylori. Helicobacter. 2002, 7(3):175-182.
    50. Smythies LE, Novak MJ, Waites KB , et al. Poliovirus replicons encoding the B subunit of Helicobacter pylori urease protect mice against H. pylori infection. Vaccine. 2005, 23(7):901-909.
    51. Sarkar D, Su ZZ, Lebedeva IV , et al. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci U S A. 2002, 99(15):10054-10059.
    52. Fisher PB. Is mda-7/IL-24 a "magic bullet" for cancer? Cancer Res. 2005, 65(22):10128-10138.
    53. Jiang H, Lin JJ, Su ZZ , et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995, 11(12):2477-2486.
    54. Li Y, Chen CX, von Specht BU , et al. Cloning and hemolysin-mediated secretory expression of a codon-optimized synthetic human interleukin-6 gene in Escherichia coli. Protein Expr Purif. 2002, 25(3):437-447.
    55. Gentschev I, Dietrich G, Spreng S , et al. Use of the alpha-hemolysin secretion system of Escherichia coli for antigen delivery in the Salmonella typhi Ty21a vaccine strain. Int J Med Microbiol. 2004, 294(6):363-371.
    56. Nakano H, Kawakami Y, Nishimura H. Secretion of genetically-engineered dihydrofolate reductase from Escherichia coli using an E. coli alpha-hemolysin membrane translocation system. Appl Microbiol Biotechnol. 1992, 37(6):765-771.
    57. Hanke C, Hess J, Schumacher G , et al. Processing by OmpT of fusion proteins carrying the HlyA transport signal during secretion by the Escherichia coli hemolysin transport system. Mol Gen Genet. 1992, 233(1-2):42-48.
    58. Kern I, Ceglowski P. Secretion of streptokinase fusion proteins from Escherichia coli cells through the hemolysin transporter. Gene. 1995, 163(1):53-57.
    59. Li Y, Hess C, von Specht B , et al. Molecular analysis of hemolysin-mediated secretion of a human interleukin-6 fusion protein in Salmonella typhimurium. FEMS Immunol Med Microbiol. 2000, 27(4):333-340.
    60. Li Y, Reichenstein K, Ullrich R , et al. Effect of in situ expression of human interleukin-6 on antibody responses against Salmonella typhimurium antigens. FEMS Immunol Med Microbiol. 2003, 37(2-3):135-145.
    61.王亚馥,戴灼华主编.遗传学.北京:高等教育出版社. 1996:230-232.
    62. Oner ET, Kirdar B, ZI O , et al. Modeling of the expression for high-level production of a forein protein by recombinant E. coli under the control of the T7 phage promoter. Process Biochemistry. 2003, 39:315-323.
    63. Tzschaschel BD, Guzman CA, Timmis KN , et al. An Escherichia coli hemolysin transport system-based vector for the export of polypeptides: export of Shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nat Biotechnol. 1996, 14(6):765-769.
    64.王芃,段海清,张兆山. ET重组--Escherichia coli中最新分子克隆方法.军事医学科学院院刊. 2002, 26(4):289-293.
    1. Hoffmann F, Rinas U. Stress induced by recombinant protein production in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 2004, 89: 73–92.
    2. Galen J E, Levine M M. can a‘flawless’live vector vaccine strain be engineered? Trends in Microbiology. 2001, 9(8): 372-376.
    3. Li Y, Chen C X, Specht B-U von,et al. Cloning and hemolysin-mediated secretory expression of a codon-optimized synthetic human interleukin-6 gene in Escherichia coli. Prot. Expr. Purif. 2002, 25(3): 437-447.
    4. Mergulhao F J M, Summers D K, Monteiro G A. Recombinant protein secretion in Escherichia coli. Biotechnology advances. 2005, 23: 177-202.
    5. Shokri A, Sandén A M, Larsson G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl. Microbiol. Biotechnol. 2003, 60 (6): 654–664.
    6. Sorensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnology. 2005, 115(2): 113-128.
    7. Henderson I R, Nataro J P, Kaper J B, et al. Renaming protein secretion in the Gram-negative bacteria. Trends in microbiology. 2000, 8(8): 352.
    8. Young J. and Holland I B. ABC transporter: bacterial exporters- revisited five years on. Biochem. Biophys. Acta. 1999, 1461: 177-200.
    9. Gentschev I, Dietrich G, Goebel W. The E.coliα-hemolysin secretion system and its use in vaccine development. Trends in Microbiology. 2002, 10(1): 39-45.
    10. Schneider E and Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspect of the ATP-hydrolyzing subunit/domains. FEMS microbiol Rev. 1998, 22(1): 1-20.
    11. Omori K and Akikoidei. Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. Journal of Bioscience and Bioengineering. 2003, 95(1): 1-12.
    12. Thanabalu T, Koronakis E, Hughes C, et al. Substrate-induced assembly of a continuous channel for protein export from E. coli reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J. 1998, 17: 6487-6496.
    13. Koronakis V, Sharff A, Koronakis E, et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Science. 2000, 405(6789):914-919.
    14. Hess J, Wels W V M and Goebel W. Nucleotide sequence of a plasmid-encoded hemolysin determinant and its comparison with a corresponding chromosomal hemolysin sequence. FEMS Microbiol Lett. 1986, 34(1): 1-11.
    15.周立雄,张兆山.大肠杆菌α-溶血素分泌系统基因表达调控研究进展.生物技术通讯。2004,15(4):374-378.
    16. Gentschev I, Mollenkopf H, Sokolovic Z, et al. Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene. 1996, 179: 133-140.
    17. Gentschev I, Dietrich G, Spreng S, et al. Delivery of protein antigens and DNA by virulence-attenuated strains of Salmonella typhimurium and Listeria monocytogenes. J. Biochem. 2000, 83, 19-26.
    18. Li Y, Reichenstein K, Ullrich R, et al. Effect of in situ expression of human interleukin-6 on antibody responses against Salmonella typhimurium antigens. FEMS Immunology and Medical Microbiology. 2003, 37(2-3): 135-145.
    19. Sara M and Sleyer U.B. S-layer proteins. Journal of Bacteriology. 2000(4), 182: 859-868.
    20. Ackermann M, Stearns S C, and Jenal U. Senescence in a bacterium with asymmetric division. Science. 2003, 300(5627): 1920.
    21. Umelo-Njaka E, Nomellini, J F. Yim H, et al. Development of small high-copy-number plasmid vectors for gene expression in Caulobacter crescentus. Plasmid. 2001, 46: 37-46.
    22. Bingle W H, Nomellini J F and Smit J. Secretion of the Caulobacter crescentus S-layer protein: further localization of the C-terminal secretion signal and its use for secretion of recombineant proteins. J. Bacteriol. 2000, 182(11): 3298-3301.
    23. Hahn H P, von Specht B-U. Secretory delivery of recombinant proteins in attenuated Samonella strains: potential and limitations of typeⅠprotein transporters. FEMS Immunology and Medical Microbiology. 2003, 37: 87-98.
    24. Nierman W C, Feldblyum T V, Laub M T, et al. Complete genome sequence of Caulobacter crescentus. Pro. Natl. Acad. Sci. USA. 2001, 98(7): 4136-4141.
    25. Toporowski M C, Nomellini J F, Awram P, et al. Two outer membrane proteins are required for maximal typeⅠsecretion of the Caulobacter crescentus S-layer protein. J. Bacteriology. 2004, 186(23): 8000-8009.
    [1] M. Forstner, L. Leder, L.M. Mayr, Optimization of protein expression systems for modern drug discovery, Expert Rev Proteomics 4 (2007) 67-78.
    [2] S. Yokoyama, Protein expression systems for structural genomics and proteomics, Curr Opin Chem Biol 7 (2003) 39-43.
    [3] C.W. Goulding, L.J. Perry, Protein production in Escherichia coli for structural studies by X-ray crystallography, J Struct Biol 142 (2003) 133-143.
    [4] R. Binet, S. Letoffe, J.M. Ghigo, P. Delepelaire, C. Wandersman, Protein secretion by Gram-negative bacterial ABC exporters--a review, Gene 192 (1997) 7-11.
    [5] H.P. Hahn, B.U. von Specht, Secretory delivery of recombinant proteins in attenuated Salmonella strains: potential and limitations of Type I protein transporters, FEMS Immunol Med Microbiol 37 (2003) 87-98.
    [6] Y. Sugamata, T. Shiba, Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an alpha-hemolysin transporter from Escherichia coli, ApplEnviron Microbiol 71 (2005) 656-662.
    [7] F.J. Mergulhao, D.K. Summers, G.A. Monteiro, Recombinant protein secretion in Escherichia coli, Biotechnol Adv 23 (2005) 177-202.
    [8] A. Shokri, A.M. Sanden, G. Larsson, Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli, Appl Microbiol Biotechnol 60 (2003) 654-664.
    [9] J.H. Choi, S.Y. Lee, Secretory and extracellular production of recombinant proteins using Escherichia coli, Appl Microbiol Biotechnol 64 (2004) 625-635.
    [10] J.R. Kerr, Gram-negative bacterial protein secretion, J Infect 40 (2000) 121-126.
    [11] K. Omori, A. Idei, Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins, J Biosci Bioeng 95 (2003) 1-12.
    [12] I.B. Holland, L. Schmitt, J. Young, Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review), Mol Membr Biol 22 (2005) 29-39.
    [13] I. Gentschev, G. Dietrich, W. Goebel, The E. coli alpha-hemolysin secretion system and its use in vaccine development, Trends Microbiol 10 (2002) 39-45.
    [14] J. Young, I.B. Holland, ABC transporters: bacterial exporters-revisited five years on, Biochim Biophys Acta 1461 (1999) 177-200.
    [15] I. Gentschev, G. Dietrich, S. Spreng, B. Neuhaus, E. Maier, R. Benz, W. Goebel, J. Fensterle, U.R. Rapp, Use of the alpha-hemolysin secretion system of Escherichia coli for antigen delivery in the Salmonella typhi Ty21a vaccine strain, Int J Med Microbiol 294 (2004) 363-371.
    [16] M.A. Blight, I.B. Holland, Heterologous protein secretion and the versatile Escherichia coli haemolysin translocator, Trends Biotechnol 12 (1994) 450-455.
    [17] S. Fraile, A. Munoz, V. de Lorenzo, L.A. Fernandez, Secretion of proteins with dimerization capacity by the haemolysin type I transport system of Escherichia coli, Mol Microbiol 53 (2004) 1109-1121.
    [18] S. Spreng, G. Dietrich, W. Goebel, I. Gentschev, The Escherichia coli haemolysin secretion apparatus: a potential universal antigen delivery system in gram-negative bacterial vaccine carriers, Mol Microbiol 31 (1999) 1596-1598.
    [19] W.H. Bingle, J.F. Nomellini, J. Smit, Secretion of the Caulobacter crescentus S-layer protein: further localization of the C-terminal secretion signal and its use for secretion of recombinant proteins, J Bacteriol 182 (2000) 3298-3301.
    [20] M. Sara, U.B. Sleytr, S-Layer proteins, J Bacteriol 182 (2000) 859-868.
    [21] J. Smit, H. Engelhardt, S. Volker, S.H. Smith, W. Baumeister, The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy, J Bacteriol 174 (1992) 6527-6538.
    [22] J.F.N.a. Michael C. Toporowski a, Peter Awram a, Assaf Levi b, John Smit, Transcriptional regulation of the S-layer protein type I secretion system in Caulobacter crescentus, FEMS Microbiology Letters 251 (2005) 29-36.
    [23] G. Duncan, C.A. Tarling, W.H. Bingle, J.F. Nomellini, M. Yamage, I.R. Dorocicz, S.G. Withers, J. Smit, Evaluation of a new system for developing particulate enzymes based on the surface (S)-layer protein (RsaA) of Caulobacter crescentus: fusion with the beta-1,4-glycanase (Cex) from the cellulolytic bacterium Cellulomonas fimi yields a robust, catalytically active product, Appl Biochem Biotechnol 127 (2005) 95-110.
    [24] B. Simon, J. Nomellini, P. Chiou, W. Bingle, J. Thornton, J. Smit, J.A. Leong, Recombinant vaccines against infectious hematopoietic necrosis virus: production by the Caulobacter crescentus S-layer protein secretion system and evaluation in laboratory trials, Dis Aquat Organ 44 (2001) 17-27.
    [25] E. Umelo-Njaka, J.F. Nomellini, W.H. Bingle, L.G. Glasier, R.T. Irvin, J. Smit, Expression and testing of Pseudomonas aeruginosa vaccine candidate proteins prepared with the Caulobacter crescentus S-layer protein expression system, Vaccine 19 (2001) 1406-1415.
    [26] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, J Biol Chem 193 (1951) 265-275.
    [27] M.D. Reisbig, N.D. Hanson, Promoter sequences necessary for high-level expression of the plasmid-associated ampC beta-lactamase gene blaMIR-1, Antimicrob Agents Chemother 48 (2004) 4177-4182.
    [28] L.K. Siu, P.L. Lu, J.Y. Chen, F.M. Lin, S.C. Chang, High-level expression of ampC beta-lactamase due to insertion of nucleotides between -10 and -35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment, Antimicrob Agents Chemother 47 (2003) 2138-2144.
    [29] A. Golshani, V. Kolev, M.G. AbouHaidar, I.G. Ivanov, Epsilon as an initiator of translation of CAT mRNA in Escherichia coli, Biochem Biophys Res Commun 273 (2000)528-531.
    [30] M. O'Connor, A.E. Dahlberg, Enhancement of translation by the epsilon element is independent of the sequence of the 460 region of 16S rRNA, Nucleic Acids Res 29 (2001) 1420-1425.
    [31] A. Golshani, V. Golomehova, R. Mironova, I.G. Ivanov, M.G. AbouHaidar, Does the epsilon sequence of phage T7 function as an initiator for the translation of CAT mRNA in Escherichia coli, Biochem Biophys Res Commun 236 (1997) 253-256.
    [32] R.M. La Ragione, S. Patel, B. Maddison, M.J. Woodward, A. Best, G.C. Whitelam, K.C. Gough, Recombinant anti-EspA antibodies block Escherichia coli O157:H7-induced attaching and effacing lesions in vitro, Microbes Infect 8 (2006) 426-433.
    [33] J.E. Galan, H. Wolf-Watz, Protein delivery into eukaryotic cells by type III secretion machines, Nature 444 (2006) 567-573.
    [34] R.K. Shaw, C.N. Berger, B. Feys, S. Knutton, M.J. Pallen, G. Frankel, Enterohemorrhagic Escherichia coli exploits EspA filaments for attachment to salad leaves, Appl Environ Microbiol 74 (2008) 2908-2914.
    [35] H. Jiang, J.J. Lin, Z.Z. Su, N.I. Goldstein, P.B. Fisher, Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression, Oncogene 11 (1995) 2477-2486.
    [36] W. Qian, J. Liu, Y. Tong, S. Yan, C. Yang, M. Yang, X. Liu, Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis, Leukemia 22 (2008) 361-369.
    [37] J. Yang, W. Zhang, K. Liu, S. Jing, G. Guo, P. Luo, Q. Zou, Expression, purification, and characterization of recombinant human interleukin 24 in Escherichia coli, Protein Expr Purif 53 (2007) 339-345.
    [38] M. Sauane, I.V. Lebedeva, Z.Z. Su, H.T. Choo, A. Randolph, K. Valerie, P. Dent, R.V. Gopalkrishnan, P.B. Fisher, Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways, Cancer Res 64 (2004) 2988-2993.
    [39] M.C. Toporowski, J.F. Nomellini, P. Awram, J. Smit, Two outer membrane proteins are required for maximal type I secretion of the Caulobacter crescentus S-layer protein, J Bacteriol 186 (2004) 8000-8009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700