用户名: 密码: 验证码:
聚酰亚胺带电粒子辐致电导率与介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以航天器介电材料充放电行为评价为研究背景,以空间应用聚酰亚胺及纳米SiO_2改性聚酰亚胺材料为研究对象,利用辐致电导原位测试、宽频介电谱测量、光激电流测试等现代测试技术及分析方法,研究了在电子辐照条件下(<170keV)聚酰亚胺辐致电导动力学行为以及质子辐照损伤效应对材料辐致电导和介电行为的影响,揭示了空间用聚酰亚胺辐致电导及介电行为演化规律和机制。
     研究结果表明,在不同能量和通量电子辐照条件下,聚酰亚胺辐致电导率动力学过程具有相似的特征,即由电子-空穴双极型传导控制电导动力学演化规律:辐致电导率随辐照时间以幂函数形式上升,然后到达稳态值,且辐致电导率稳态值是辐照电离剂量率的幂函数,辐致电导率上升过程的时间幂指数为材料中载流子陷阱浓度随能级分布的特征参数α,对于不同电子辐照条件下的聚酰亚胺辐致电导率上升过程,该幂指数均为0.26,表明电子辐照条件未改变聚酰亚胺中载流子陷阱分布。根据上述动力学特征分析,建立了描述聚酰亚胺辐致电导率随辐照电离剂量率的阶梯形式的动力学数学方程。研究发现,在短时循环电子辐照条件下,聚酰亚胺辐致电导率出现“过冲”现象,即循环辐照条件下,聚酰亚胺电导率可达到比连续辐照时更高的电导率值。基于电子辐照的电离效应特征揭示出在非连续辐照下,在材料中形成的自由基及其对载流子俘获、激发和复合过程的调制是产生这种“过冲”现象的主要原因。
     质子辐照后聚酰亚胺辐致电导行为研究结果表明,经质子辐照后,材料的辐致电导率会随辐照质子注量的增加而下降,但其辐致电导率动力学模式未发生变化。基于质子辐照后聚酰亚胺辐致电导率动力学规律以及光激电流谱分析表明,质子辐照损伤导致聚酰亚胺辐致电导率下降的原因包括两个方面,其一为质子辐照位移效应导致材料中均四苯二酐基团降解,造成聚酰亚胺载流子激发能力降低;另一方面,质子辐照损伤效应导致聚酰亚胺材料内部浅能级载流子陷阱增多,引起载流子传输效率下降。根据聚酰亚胺质子辐照损伤过程的特点,建立了质子辐照后聚酰亚胺辐致电导率随位移损伤剂量的衰减规律。
     对不同能量的质子辐照后聚酰亚胺介电性能的温谱/频谱演化行为研究表明,质子辐照导致聚酰亚胺结构损伤是引起聚酰亚胺介电行为变化的主要原因:质子辐照位移效应造成聚酰亚胺强偶极基团(如C=O和C-N等)的去除,降低了聚酰亚胺分子极化能力,使其介电常数下降;质子辐照在聚酰亚胺材料中形成非均匀损伤并产生异质界面,界面空间电荷极化可增强材料的极化能力,这与由于偶极基团衰减导致聚酰亚胺介电极化能力下降构成相互竞争机制。辐照损伤导致偶极基团的去除效应造成偶极弛豫减弱,从而引起高频(>10~4Hz)介电损耗系数下降;但是,由于质子辐照损伤引入大量的无定形相区域,使偶极转向的难度增加,造成能量损失增大,这两个因素同时影响高频损耗行为。辐照产生的界面空间电荷极化弛豫过程主要影响聚酰亚胺低频(<10~4Hz)损耗行为,引起聚酰亚胺低频介电损耗系数增加。
     对纳米SiO_2改性后聚酰亚胺辐致电导率研究表明,在低电离剂量率(<3.10×10~4rad/s)电子辐照条件下,SiO_2改性聚酰亚胺辐致电导行为呈现单极型电子传导控制的动力学特征,而在高电离剂量率(4.77×10~4rad/s)下为电子-空穴双极型传导控制动力学特征。同时在相同电离剂量率下,SiO_2改性聚酰亚胺稳态辐致电导率小于未改性材料的辐致电导率。分析结果表明,SiO_2与聚酰亚胺界面处的镜像势阱加剧载流子复合是造成SiO_2/PI辐致电导率下降的原因,同时SiO_2与聚酰亚胺界面处的类界面态对空穴载流子的俘获效应是造成SiO_2/PI辐致电导率动力学特征随辐照电离剂量率变化的主要原因。
As important parameters to evaluate charging/discharging behaviors of space-applied dielectric-material polyimide (PI), radiation-induced conductivity (RIC)behaviors of polyimide(PI) and nano-SiO_2surface modified polyimide(SiO_2/PI) werestudied under low energy (<170keV) electron irradiation. In order to investigate theirradiation damage of space radiation particles, RICs and dielectric properties werealso studied on PI and SiO_2/PI after proton irradiation with various proton energiesusing complementary techniques such as in-situ RIC measurements, broadbandfrequency dielectric spectroscopy and photo-stimulated discharge currentspectroscopy et. al. As results, it was determined the evolutional behaviors and thenshown the corresponding mechanisms of the RIC and dielectric properties ofpolyimide after proton irradiations. Furthermore, as an important application, theeffects of nano-SiO_2film were investigated on the RIC and dielectric properties ofthe modified polyimide.
     The results indicate that in polyimide under electron irradiations with differentenergies and fluxes, there appears the same dynamics RIC mode namely RICincreases firstly in a power law of electron radiation time and then reaches a steadystate. This dynamical RIC mode in polyimide is determined as a conducting processcontrolled by bipolar carrier transportation mechanism. It was found that the second-stage steady RIC values could be formulated as a power law of ionization dose rateduring electron radiation. While in the first RIC increasing stage with radiation time,the index of power law dependence α was measured as0.26without changing withthe electron energy and flux. It should be noted that the index α is a characteristicparameter to define the distribution of carrier traps with energy in polyimide, thusunchanged index α during the experiments indicates that the electron irradiationshows no influence on the distribution of carrier traps in polyimide. On the basis ofthe abovementioned analysis of dynamics RICs, a step analytical mathematic modelwas established on the RIC behavior in polyimide under electron irradiation. On theother hand, a cyclic electron irradiation procedure was designed and applied toinvestigate the pre-irradiation effects of RIC. The results show that compared withthe above continuous electron radiation, cyclic electron radiation could result inovershooting the RIC to much higher values than the corresponding steady RIC.Based on ionization processes during electron radiations the mechanism for theovershoot phenomena is due to that radiation-induced free radicals in polyimidecould modulate the carrier trapping, stimulation and recombination processes,changing the conducting behaviors.
     Further investigations indicate that after proton pre-irradiation, it was measuredlower RIC in polyimide due to the structural damage effects, but the correspondingdynamics RIC mode shows no change. By analysis of the dynamics parameters ofRIC model and photo stimulated discharge current spectra, there are two optionsarisen to explain the reasons on the decrease of RIC of polyimide after proton pre-irradiation. In one hand, proton pre-irradiation damage effect results in moregenerations of carrier traps with shallow energy-levels, thus decreasing transportationefficiency of carriers in polyimide during electron irradiation. On the other hand,proton pre-irradiation could degrade pyromellitimide groups which are the mainsource of carrier generation, thus decreasing the generation rate of carriers. Based onthe displacement damage mechanisms during proton irradiation, the change model ofsteady RIC values could be established as a function of displacement dose inpolyimide..
     For polyimide materials after high-energy (5MeV) and low-energy (<200keV)proton irradiations, the results on temperature/frequency dependence of dielectricproperties indicate that proton irradiation induced structural damage should be themain reason for the degradation of dielectric properties in polyimide: One is that theeffects of decarbonyl and removal of dipole groups as C-N result in decreasingthe dielectric polarization, hence, the dielectric constant decreases with increasingproton irradiation fluence; the other is that the inhomogeneous damagecharacteristics around the proton tracks in polyimide introduces the interfacialpolarization, which enhances the polarization in polyimide. The abovementionedtwo factors play reverse roles on the change of the dielectric constants of polyimideafter proton irradiations. The degradation of dipole groups induces the decrease ofdipole relaxation, and thus reduces the dielectric loss at high frequency band10~4Hz).Meanwhile, displacement damage process during proton irradiations may produce alarge number of amorphous phase regions and then increase the energy loss fordipole polarization. This factor may act as a competitive mechanism to change thedielectric loss together with former factor related with dipole degradation. At lowerfrequency band (<10~4Hz), the track interfacial space charge relaxation processexerts influences the dielectric loss behaviors.
     For the case of polyimide modified with surface nano-SiO_2film, it is interestedto be noted that the conductive mechanism is changed from electron-hole carriersbipolar-controlled transportation mode under higher ionization dose rate (4.77×10~4rad/s) to electron carriers unipolar one as the ionization dose rate is lower than3.1×10~4rad/s. Meanwhile, the RIC of SiO_2/PI samples is measured lower than thoseof the pristine polyimide under electron irradiation with the same ionization dose rate.Theoretical analysis indicates that interfacial image potential well between nano-SiO_2film and PI substrate enhances the carrier recombination, inducing decrease of RIC in SiO_2/PI; while the quasi-interfacial states would trap more hole carriers at theinterface of SiO_2/polyimide, resulting in changing the conductive mode fromelectron-hole carriers bipolar transportation mechanism to electron carrier unipolartransportation one in SiO_2/PI as the ionization dose rate is low.
引文
[1] Gussenhoven M, Mullen E. Space radiation effects program: An overview[J].Nuclear Science, IEEE Transactions on,199340(2):221-227.
    [2] Holmes-Siedle A, Adams L. Handbook of radiation effects[M]. London:Oxford University Press,1993:305-407.
    [3] Kiefer J, Pross H. Space radiation effects and microgravity[J]. MutationResearch/Fundamental and Molecular Mechanisms of Mutagenesis,1999430(2):299-305.
    [4] Mandell M, Katz I, Cooke D. Potentials on large spacecraft in LEO[J].Nuclear Science, IEEE Transactions on,198229(6):1583-1588.
    [5] Lai S T. Fundamentals of Spacecraft Charging: Spacecraft Interactions WithSpace Plasmas[M]. New Jersey: Princeton University Press,2011:78-79.
    [6] Koons H C, Mazur, J. E,Selesnick, R. S.,Blake, J. B.,Fennell, J. F. TheImpact of the Space Environment on Space Systems[C]. Proceedings of the6th Spacecraft Charging Conference. USA: Hanscom AFB.1999:7-11.
    [7] Garrett H B, Whittlesey A C. Spacecraft charging, an update[J]. PlasmaScience, IEEE Transactions on,200028(6):2017-2028.
    [8] Lai S T. A critical overview on spacecraft charging mitigation methods[J].Plasma Science, IEEE Transactions on,200331(6):1118-1124.
    [9] Hall D F. Flight experiment to measure contamination enhancement byspacecraft charging[C]. SPIE proceedings Los Angeles: The InternationalSociety for Optical Engineering.1980:131-139.
    [10] Clark D, Hall D. Flight evidence of spacecraft surface contamination rateenhancement by spacecraft charging obtained with a quartz crystalmicrobalance[C]. Spacecraft Charging Technology Conference. USA:NASA/AirForce Geophysics Laboratory.1980:493-508.
    [11] Catani J-P, Payan D. Electrostatic behaviour of materials in a charging spaceenvironment[C]. Solid Dielectrics,2004. ICSD2004. Proceedings of the2004IEEE International Conference on. IEEE.2004:917-927.
    [12] Garrett H, Schwank D, Higbie P, Baker D. Comparison between the30-to80-keV electron channels on ATS6and1976-059A during conjunction andapplication to spacecraft charging prediction[J]. Journal of GeophysicalResearch,198085(A3):1155-1162.
    [13] Catani J-P. Electrostatic Discharges and Spacecraft Anomalies[C].Proceedings of the Seventh International Conference. Netherlands: EuropeanSpace Agency.2001:33.
    [14] Mikaelian T. Spacecraft Charging and Hazards to Electronics in Space[J].2009.
    [15] Fennell J F, Koons H C, Chen M W, Blake J. Internal charging: apreliminary environmental specification for satellites[J]. Plasma Science,IEEE Transactions on,200028(6):2029-2036.
    [16] Lai S T, Tautz M F. Aspects of spacecraft charging in sunlight[J]. PlasmaScience, IEEE Transactions on,200634(5):2053-2061.
    [17] Lai S. An overview of electron and ion beam effects in charging anddischarging to spacecraft[J]. Nuclear Science, IEEE Transactions on,198936(6):2027-2032.
    [18] Bower S. Spacecraft Charging Characteristics and Protection[J]. NuclearScience, IEEE Transactions on,197724(6):2266-2269.
    [19] Purvis C K, Garrett H B, Whittlesey A, Stevens N J. Design guidelines forassessing and controlling spacecraft charging effects[M]. USA: NationalAeronautics and Space Administration, Scientific and Technical InformationBranch,1984:58-72.
    [20] McPherson D, Cauffman D, Schober W. Spacecraft charging at highaltitudes: SCATHA satellite program[J]. Journal of Spacecraft and Rockets,201212(10):621.
    [21] Catani J-P, Payan D. Electrostatic behaviour of materials in a charging spaceenvironment[C]. Proceedings of the2004IEEE International Conference on.Toulouse: IEEE.2004:917-927.
    [22] DeForest S E. Spacecraft charging at synchronous orbit[J]. Journal ofGeophysical Research,197277(4):651-659.
    [23] Frederickson A, Cotts D, Wall J, Bouquet F. Spacecraft dielectric materialproperties and spacecraft charging[M]. New York: American InstituteAeronaut and Astronaut,1986:25-27.
    [24] Farmer F. Electrical properties of polystyrene[J]. Nature,1942150:521.
    [25] Viel-Inguimbert V, Bourdarie S, Reulet R, Levy L. Laboratory GroundSimulation of GEO and LEO Environment[C]. Spacecraft ChargingTechnology. Netherlands.2001:435.
    [26] Payan D, Catani J, Reulet R, Dirassen B, Levy L. An Improved Method ForSimulating The Charge Of Dielectrics In A Charging ElectronEnvironment[C].8th Spacecraft Charging Technology Conference.Netherlands: ESA Publications Division.2003:351-358.
    [27] Gallot-Lavallée O, Teyssedre G. Space charge measurement in soliddielectrics by the pulsed electro-acoustic technique[C]. Solid Dielectrics,2004. ICSD2004. Proceedings of the2004IEEE International Conferenceon. IEEE.2004:268-271.
    [28] Griseri V, Fukunaga K, Maeno T, Laurent C, Levy L, Payan D. Pulsedelectro-acoustic technique applied to in-situ measurement of chargedistribution in electron-irradiated polymers[J]. Dielectrics and ElectricalInsulation, IEEE Transactions on,200411(5):891-898.
    [29] Imai S, Tanaka Y, Fukao T, Takada T, Maeno T. Development of new PEAsystem using open upper electrode [pulsed electro-acoustic method][C].Electrical Insulation and Dielectric Phenomena,2004. CEIDP'04.2004Annual Report Conference on. IEEE.2004:61-64.
    [30] Liu R, Takada T, Takasu N. Pulsed electro-acoustic method for measurementof space charge distribution in power cables under both DC and AC electricfields[J]. Journal of Physics D: Applied Physics,199926(6):986.
    [31] See A, Fothergill J C, Dissado L A, Alison J. Measurement of space-chargedistributions in solid insulators under rapidly varying voltage using the high-voltage, high-speed pulsed electro-acoustic (PEA) apparatus[J].Measurement Science and Technology,200112(8):1227.
    [32] Fukunaga K, Griseri V, Maeno T, Laurent C, Payan D, Levy L. Internalspace charge measurement for space environment monitoring[C]. Propertiesand Applications of Dielectric Materials,2003. Proceedings of the7thInternational Conference on. IEEE.2003:662-664.
    [33] Perrin C, Griseri V, Laurent C, Fukunaga K, Maeno T, Levy L, Payan D,Schwander D. Space Charge Detection in Kapton and PTFE PolymerFilms by the Open Pulsed Electro-Acoustic Method[J]. High PerformancePolymers,200820(4-5):535-548.
    [34] Miyake H, Honjoh M, Maruta S, Tanaka Y, Takada T, Koga K, Matsumoto H,Goka T, Dirassen B, Levy L. Space charge accumulation in polymericmaterials for spacecraft irradiated electron and proton[C]. ElectricalInsulation and Dielectric Phenomena,2007. CEIDP2007. Annual Report-Conference on. IEEE.2007:763-766.
    [35] Sorensen J, Rodgers D, Ryden K, Latham P, Wrenn G, Levy L, Panabiere G.ESA's tools for internal charging[C]. Radiation and Its Effects onComponents and Systems,1999. RADECS99.1999Fifth EuropeanConference on. IEEE.1999:27-33.
    [36] Rose A. Performance of Photoconductors[J]. Proceedings of the IRE,195543(12):1850-1869.
    [37] Fowler J F. X-ray induced conductivity in insulating materals[C]. Proc. Roy.Soc. London.1956:464-80.
    [38] Malstrokecki J A. Linear decay of charge in electrets[J]. Physical Review B,199959(15):9954.
    [39] John F F. Radiation-induced Conductivity in the Solid State, and SomeApplications[J]. Physics in Medicine and Biology,19593(4):395.
    [40] Tyutnev A, Ikhsanov R, Marchenkov K, Saenko V, Pozhidaev E. Doseeffects in radiation-induced conductivity of polypyromellitimide[J]. PolymerScience Series A,200850(4):429-433.
    [41] Tyutnev A, Ikhsanov R, Saenko V, Pozhidaev E. Theoretical analysis of theRose-Fowler-Vaisberg model[J]. Polymer Science Series A,200648(11):1196-1201.
    [42] Tyutnev A, Ikhsanov R, Saenko V, Pozhidaev E. Numerical simulation ofannealing of dose effects in radiation-induced conductivity of polymers[J].Polymer Science Series A,200850(2):212-219.
    [43] Skotheim T A, Reynolds J R. Handbook of conducting polymers[M]. NewYork: CRC PressI Llc,2007:3-5.
    [44] Armand M. Polymers with ionic conductivity[J]. Advanced Materials,19902(7):278-286.
    [45] Meyer R A, Bouquet F L, Alger R S. Radiation Induced Conductivity inPolyethylene and Teflon[J]. Journal of Applied Physics,195627(9):1012-1018.
    [46] Arkhipov V I, et al. Transient photocurrent due to step-function excitation indisordered materials-computer simulation and analytical treatment[J].Journal of Physics D: Applied Physics,198417(7):1469.
    [47] Gross B, Faria R M, Ferreira G F L. Radiation-induced conductivity inTeflon irradiated by x rays[J]. Journal of Applied Physics,198152(2):571-577.
    [48] Tyutnev A, Ikhsanov R, Saenko V, Pozhidaev E. Theoretical analysis of theRose-Fowler-Vaisberg model: Dipolar conductivity[J]. Polymer ScienceSeries A,200749(7):861-866.
    [49] Khatipov S A. Radiation-Induced Electron Transport Processes in PolymericDielectrics (A Review)[J]. High Energy Chemistry,200135(5):291-307.
    [50] Tyutnev A, Saenko V, Smirnov I, Pozhidaev E. Radiation-inducedconductivity in polymers during long-term irradiation[J]. High EnergyChemistry,200640(5):319-330.
    [51] Runt J P, Fitzgerald J J. Dielectric spectroscopy of polymeric materials[M].Washington: American Chemical Society Washington, DC,1997.
    [52] H.M A-H. Effect of electron beam irradiation on polypropylene films—dielectric and FT-IR studies[J]. Solid-State Electronics,200549(7):1163-1167.
    [53] Costantini J M, Salvetat J P, Couvreur F, Bouffard S. Carbonization ofpolyimide by swift heavy ion irradiations: Effects of stopping power andvelocity[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2005234(4):458-466.
    [54] Davenas J, Boiteux G. Ion Beam Modified Polyimide[J]. AdvancedMaterials,19902(11):521-527.
    [55] Alegaonkar P S, Bhoraskar V N, Balaya P, Goyal P S. Dielectric propertiesof1MeV electron-irradiated polyimide[J]. Applied Physics Letters,200280(4):640-642.
    [56] Qureshi A, Singh N L, Rakshit A K, Singh F, Avasthi D K. Swift heavy ioninduced modification in polyimide films[J]. Surface and CoatingsTechnology,2007201(19-20):8308-8311.
    [57] Quamara J, Garg M, Prabhavathi T. Effect of high-energy heavy ionirradiation on dielectric relaxation behaviour of kapton-H polyimide[J]. ThinSolid Films,2004449(1):242-247.
    [58] Harris I, Chambers A, Roberts G. Preliminary results of an atomic oxygenspaceflight experiment[J]. Materials Letters,199731(3):321-328.
    [59] Zhao X H, Shen Z G, Xing Y S, Ma S L. An experimental study of low earthorbit atomic oxygen and ultraviolet radiation effects on a spacecraftmaterial–polytetrafluoroethylene[J]. Polymer degradation and stability,200588(2):275-285.
    [60] Packirisamy S, Schwam D, Litt M. Atomic oxygen resistant coatings for lowearth orbit space structures[J]. Journal of materials science,199530(2):308-320.
    [61] Xing A, Gao Y, Yin J, Ren G, Liu H, Ma M. Preparation and atomic oxygenerosion resistance of silica film formed on silicon rubber by sol–gelmethod[J]. Applied Surface Science,2010256(20):6133-6138.
    [62] Zhang X, Wu Y, He S, Yang D, Li F. An investigation on the atomic oxygenerosion resistance of surface sol–gel silica films[J]. Surface and CoatingsTechnology,2008202(15):3464-3469.
    [63] Duo S W, Song M M, Liu T Z, Li M S. SiO2Coatings Prepared by Sol-GelProcess Protecting Silver from Atomic Oxygen Erosion[J]. AppliedMechanics and Materials,2012121:3044-3047.
    [64] Zhu Z E, Zhang Y W, An Z L, Zheng F H. Study of trap levels by photo-stimulated discharge for nano-powder doping low density polyethylene[C].Electrets (ISE)201114th International Symposium on.2011:65-66.
    [65]张沛红,李刚,盖凌云,雷清泉.聚酰亚胺薄膜的高场电导特性[J].材料研究学报,200620(5):465-468.
    [66] Sessler G M, Hahn B, Yoon D Y. Electrical conduction in polyimide films[J].Journal of Applied Physics,198660(1):318-326.
    [67] Lafemina J P. Photoconduction in polyimide[J]. Chemical Physics Letters,1989159(4):307-309.
    [68] Chekunaev N, Fleurov V. Hopping dispersive transport in site-disorderedsystems[J]. Journal of Physics C: Solid State Physics,198417:2917.
    [69] Odagaki T, Lax M, Day R. Dispersive hopping conduction in quasi-one-dimensional systems[J]. Physical Review B,198430:6911-6916.
    [70] Pfister G. Hopping transport in a molecularly doped organic polymer[J].Physical Review B,197716(8):3676.
    [71]中国科学院空间科学与应用研究中心.宇航空间环境手册[M].北京:中国科学技术出版社,2000:140-145.
    [72]胡建民. GaAs太阳电池空间粒子辐照效应及在轨行为评价方法[D].哈尔滨:哈尔滨工业大学博士论文,2009:89-91.
    [73] Tyutnev A P, Karpechin A I, Boev S G, Saenko V S, Pozhidaev E D. CurrentOvershoot in Polymers under Continuous Irradiation[J]. physica status solidi(a),1992132(1):163-170.
    [74] Sun C, Wu Y, Xiao J, Li R, Yang D, He S. Pyrolytic carbon free-radicalevolution and irradiation damage of polyimide under low-energy protonirradiation[J]. Journal of Applied Physics,2011110(12):124909-11.
    [75] Ries H R, Harries W L, Long S A T, Long Jr E R. Mechanism of electricalconductivity in an irradiated polyimide[J]. Journal of Physics and Chemistryof Solids,198950(7):735-738.
    [76]孙承月.航天用介电材料辐照自由基演化及损伤行为研究[D].哈尔滨:哈尔滨工业大学博士论文,2012:31-59.
    [77] Prabha T, Quamara J K. Thermally stimulated depolarization currentbehaviour of75MeV oxygen ion irradiated Kapton-H polyimide film[J].Radiation Effects and Defects in Solids,2005160(5):187-195.
    [78] Sharma A, Quamara J K. Photoinduced polarization investigations in75MeV oxygen ion irradiated kapton-H polyimide[J]. Thin Solid Films,2009518(1):66-70.
    [79] Quamara J, Kaushik B, Mahna S, Asokan K. Electret behaviour of ionirradiated polycarbonate and kapton-H polyimide films[J]. Vacuum,199748(12):995-997.
    [80] Sharama A, Garg M, Quamara J K. Thermally stimulated discharge currentstudies of corona polarized pristine and swift heavy ion irradiated kapton-Hpolyimide[J]. Radiation Effects and Defects in Solids: Incorporating PlasmaScience and Plasma Technology,2006161(1):41-49.
    [81] R.A.Creeswell, M.M.Perlman, M.Katayama. Dielectric Properties ofpolymers[M]. New York: Plenum press,1975.
    [82] Lijuan H, Dongni W, Jinglei C, Lei Z, Xuan W, Qingquan L. Study on thedistribution of trap levels in PI by OPO laser[C]. Laser Physics and LaserTechnologies (RCSLPLT) and2010Academic Symposium onOptoelectronics Technology (ASOT),201010th Russian-ChineseSymposium on.2010:167-169.
    [83] Lijuan H, Yang C, Li D, Ying Z, Lei Z, Jinglei C, Xuan W, Qingquan L. Theobservation of photo-stimulated discharge of typical polymers by OPOlaser[C]. Properties and Applications of Dielectric Materials,2009.ICPADM2009. IEEE9th International Conference on the.2009:1102-1105.
    [84] Kan L, Kao K C. Ultraviolet absorption and photoconduction spectra ofpolyimide films fabricated at various curing temperatures[J]. The Journal ofChemical Physics,199398(4):3445-3451.
    [85] LaFemina J P, Arjavalingam G, Hougham G. Electronic structure andultraviolet absorption spectrum of polyimide[J]. The Journal of ChemicalPhysics,198990:5154.
    [86]李瑞琦. Kapton/Al二次表面镜带电粒子辐照损伤效应及机理[D].哈尔滨:哈尔滨工业大学博士论文,2007:129-140.
    [87] Kudo H, Sudo S, Oka T, Hama Y, Oshima A, Washio M, Murakami T. Ion-beam irradiation effects on polyimide-UV-vis and infrared spectroscopicstudy[J]. Radiation Physics and Chemistry,200978(12):1067-1070.
    [88] Sun C, Wu Y, Shi Y, Xiao J, Yue L. Effect of Nano-SiO2 filmson the Evolution of Proton-irradiated Free-radicals in Kapton[J]. PolymerDegradation and Stability,2011.
    [89] Wu Y, Sun C, Xiao J, Li R, Yang D, He S. A study on the free-radicalevolution and its correlation with the optical degradation of170keV proton-irradiated polyimide[J]. Polymer Degradation and Stability,201095(7):1219-1225.
    [90] Xu G, Gryte C C, Nowick A S, Li S Z, Pak Y S, Greenbaum S G. Dielectricrelaxation and deuteron NMR of water in polyimide films[J]. Journal ofApplied Physics,198966(11):5290-5296.
    [91] Fukao K. Dynamics in thin polymer films by dielectric spectroscopy[J]. TheEuropean Physical Journal E: Soft Matter and Biological Physics,200312(1):119-125.
    [92] Fukao K, Uno S, Miyamoto Y, Hoshino A, Miyaji H. Dynamics of α and βprocesses in thin polymer films: Poly (vinyl acetate) and poly (methylmethacrylate)[J]. Physical Review E,200164(5):051807.
    [93] Jonscher A K. Dielectric relaxation in solids[M]. London: ChelseaDielectrics Press,1983:123-125.
    [94] Sharma A, Quamara J. Dielectric constant/loss measurements in pristine and75MeV oxygen-ion irradiated kapton-H polyimide[J]. Radiation Effects&Defects in Solids,2007162(1):1-10.
    [95] Hartmann L, Gorbatschow W, Hauwede J, Kremer F. Molecular dynamics inthin films of isotactic poly (methyl methacrylate)[J]. The European PhysicalJournal E: Soft Matter and Biological Physics,20028(2):145-154.
    [96] Garg M, Quamara J. Effect of high energy238U ion-irradiation on thedielectric relaxation behaviour of Kapton-H polyimide film. Thermallystimulated depolarization current study[J]. Nuclear Instruments and Methodsin Physics Research Section B: Beam Interactions with Materials and Atoms,2001179(1):83-88.
    [97] Garg M, Quamara J K. Multiple relaxation processes in high-energy ionirradiated kapton-H polyimide: Thermally stimulated depolarization currentstudy[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2006246(2):355-363.
    [98] Quamara J K, Pillai P K C, Sharma B L. Surface potential decaycharacteristics and TSDC studies in corona charged kapton polyimidefilm[J]. Acta Polymerica,198334(5):265-267.
    [99] Garg M, Quamara J K. Effect of high energy238U ion-irradiation on thedielectric relaxation behaviour of Kapton-H polyimide film. Thermallystimulated depolarization current study[J]. Nuclear Instruments and Methodsin Physics Research Section B: Beam Interactions with Materials and Atoms,2001179(1):83-88.
    [100] Comer A C, Kalika D S, Rowe B W, Freeman B D, Paul D R. Dynamicrelaxation characteristics of Matrimid polyimide[J]. Polymer,200950(3):891-897.
    [101] Myakin S, Zagranichek A, Sychev M, Vasil’eva I, Sosnov E, Bochkareva N,Dorofeev A, Zaitseva T, Lomasov V. Changes in electrical and opticalproperties of polyimide films under the action of accelerated electrons[J].Russian Journal of Applied Chemistry,201184(7):1276-1280.
    [102] Numata S, Miyake H, Tanaka Y, Takada T. Dielectric characteristicevaluation of proton beam irradiated polyimide films[C]. ElectricalInsulation and Dielectric Phenomena (CEIDP),2010Annual ReportConference on. West Lafayette: IEEE press.2010:1-4.
    [103] Green N W, Dennison J. Deep dielectric charging of spacecraft polymers byenergetic protons[J]. Plasma Science, IEEE Transactions on,200836(5):2482-2490.
    [104]赵双孔.介电谱方法及应用[M].北京:化学工业出版社,2008:10-11.
    [105] Murugaraj P, Mainwaring D, Siegele R. Electron transport properties ofirradiated polyimide thin films in single track regime[J]. Applied PhysicsLetters,200994(12):122101-3.
    [106] Tyutnev A P, Sadovnichii D N, Boev S G. Chemical aspects of the radiation-induced conductivity in polymers[J]. Acta Polymerica,199647(2-3):119-124.
    [107] Zhang X, Wu Y, He S, Yang D. Investigation on the atomic oxygen erosionresistance of sol–gel alumina–silica composite films on Kapton[J]. MaterialsChemistry and Physics,2009114(1):179-184.
    [108] Czeremuszkin G, Latrèche M, Wertheimer M R. Charging/discharge eventsin coated spacecraft polymers during electron beam irradiation in a scanningelectron microscope[J]. Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms,2001185(1–4):88-99.
    [109]张欣. Kapton表面氧化铝-氧化硅复合膜的结构及抗原子氧性能[D].哈尔滨:哈尔滨工业大学博士论文,2008:116-119.
    [110] Mingaleev G, Tyutnev A, Gerasimov B, Kulchitskaya I. Numerical Analysisof the Transient Radiation‐Induced Conductivity in the Framework of theRose‐Fowler‐Vaisberg Formalism[J]. physica status solidi (a),198693(1):251-262.
    [111] Stern F. Image potential near a gradual interface between two dielectrics[J].Physical Review B,197817(12):5009.
    [112] McLean F B, Oldham T R. Basic mechanisms of radiation effects inelectronic materials and devices[R]. DTIC Document,1987:
    [113] Srour J. Basic Mechanisms of radiation effects on electronic materials,devices, and integrated circuits[R]. DTIC Document,1982:
    [114] Van Lint V, Flanagan T, Leadon R, Naber J. Mechanisms of radiation effectsin electronic materials. Vol.1[M]. New York: Wiley-Interscience,1980:217-219.
    [115] Srour J R, McGarrity J M. Radiation effects on microelectronics in space[J].Proceedings of the IEEE,198876(11):1443-1469.
    [116] Duzellier S. Radiation effects on electronic devices in space[J]. Aerospacescience and technology,20059(1):93-99.
    [117] Oldham T R. Ionizing radiation effects in MOS oxides[M]. Singapore:World Scientific Publishing Company Incorporated,1999:121-124.
    [118] Argall F, Jonscher A. Dielectric properties of thin films of aluminium oxideand silicon oxide[J]. Thin Solid Films,19682(3):185-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700