用户名: 密码: 验证码:
扬子海盆晚奥陶世晚期至志留纪初期海平面升降与奥陶/志留系界线的划分与对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过生物地层、化学地层和层序地层的研究,对晚奥陶世晚期至志留纪初期的海平面变化以及奥陶/志留系界线的划分进行了探讨。
     笔石、腕足类、放射虫的形态、分异度和丰度的研究表明:扬子海盆晚奥陶世晚期至志留纪初期,总体上,海平面经历了上升→下降→上升的变化,海平面上升的最大阶段发生在Tangyagraptus typicus亚带下部,到观音桥层顶部,海平面下降到最低点。
     在苟家垭和大塘口剖面五峰组-龙马溪组底部,Ni,V,Sc,Rb,Sr和Ba等微量元素丰度以及稀土元素Ce异常的变化具有相似的规律性,可划分成5次旋回,分别对应于D.complexus带下部,D.complexus带上部,P.pacificus带下部,P.pacificus带上部至N.ojsuensis带,以及N.persculptus带至P.acuminatus带。在这2个剖面上,放射虫丰度变化也表现出相似的规律,与笔石和腕足类的形态、分异度和丰度变化所反应的海平面升降大体一致,和北美、非洲同期海平面的5次波动可以对比,据此指出,以上5次海平面旋回代表了晚奥陶世晚期至志留纪初期全球性海平面变化。在前4次旋回中,每次波动的周期为0.75~1Ma,与冰川活动引起的Ⅳ级海平面变化周期(0.1~1Ma)相近,以此进一步推断晚奥陶世晚期(从D.complexus带到N.ojsuensis带)发生过4次Ⅳ级海平面变化。
     根据放射虫、笔石、腕足类、海绵骨针以及岩性等对古环境的指示意义,认为五峰组底部灰绿色泥岩段产出时水深约60-100m,观音桥层水深约50-80m,在晚奥陶世最大海侵期(对应于T.typicus亚带下部),水深约400m,五峰组含放射虫硅质岩沉积时最小水深约200m,结合以上海平面变化的5次旋回,从而推算出各旋回海平面的变化幅度:在第①旋回,海平面变化范围大致为20~120m;在第②、第③和第④旋回中,海平面变化分别为80~130 m、大约150 m和50~250m;第⑤旋回的海平面升降幅度大于200 m。
     按“国际地层指南”的要求所划分的年代地层界线的地质标志不明显,不利于识别,并且与地球演化节律不完全吻合。从震旦/寒武系之交,到奥陶/志留系、弗拉斯期/法门期、二叠/三叠系、三叠/侏罗系以及白垩/第三系之交的各地史转折期,发生的地质事件存在如下规律:(1) C、O同位素异常事件所跨越的地史时间,长于或基本等于界线粘土层或生物绝灭事件所跨越的时间;(2)海侵事件一般紧随其它地质事件之后发生,并与生物绝灭之后的复苏基本一致;(3)海侵之前为事件发生的高峰期,之后为较平静的地史期;(4)以上相邻地史转折期的时间跨度分别为105Ma,66Ma,122Ma,45Ma和140Ma,可见地质事件以长、短周期相间出现,相邻2个长、短周期之和基本相等(66Ma+122Ma=188Ma,45Ma+140Ma=185Ma);(5)在二叠/三叠系、白垩/第三系等断代界线附近,地质事件的规模更大,不仅存在生物集群绝灭,还出现过全球性的化学异常事件。这些规律表明:地球演化存在节律性;全球性海侵事件可能为地球由非平衡状态走向平衡状态的转折点,或为地史转折期的转折点。因而指出,划分年代地层界线时要充分考虑体现地球演化节律的自然事件,特别是海侵事件的重要意义。
     根据生物演化的不可逆性、地球演化的节律性以及各地史转折期地质事件之间的规律,建议划分年代地层单元界线时,以生物地层划分为基础,密切结合自然事件,并以此为辅助标志。在划分奥陶/志留系界线时,主张以笔石N.persculptus的首现为生物标志,以基本同时发生的地质事件为其辅助标志,以利于全球广泛对比。鉴于不同地区留下的地质记录不完全相同,奥陶/志留系界线对比方法不同:在界线层型剖面上,以N.persculptus的首现为生物标志,以与之基本一致的海侵事件为辅助的物理标志,以生物集群绝灭事件和化学异常事件为辅助的生物和化学标志;在笔石极不发育的地区,则以海侵事件、生物绝灭事件或化学异常事件为辅助标志,以与其相距最近、并且具有区域对比性的其它门类化石(如牙形石)作为界线对比的生物标志;对于由于海退事件所造成地层缺失很多的地区,则以海退/海侵事件作为划分界线的物理标志,并以相映的海侵事件的开始作为奥陶/志留系的分界。
This paper probed into the sea-level changes from the latest Ordovician to the earliest Silurian and thesubdivision of the Ordovician-Silurian boundary based on the study of biostratigraphy, chemical stratigraphyand sequence stratigraphy.
     Analysis of the morphological feature, diversity and abundance of graptolite, brachiopod and radiolariaindicated that the sea-level in the Yangtze basin underwent the change from rising to falling, then to risingagain during the latest Ordovician to the earliest Silurian interval, and the maxium rising episode appeared inthe lower Tangyagraptus typicus Subzone and the maxium falling at the top of the Guanyinqiao bed.
     The variation of the microelement Ni, V, Sc, Rb, Ba and Sr was analogous to the change of the Ceanomaly from the Wufeng Formation to the basal Longmaxi Formation at the Goujiaya and Datangkousections, and 5 cycles, separately corresponding to the lower and upper part of the Dicellograptus complexusZone, the lower Pacificograptus pacificus Zone, the upper part of P. pacificus Zone to the Normalograptusojsuensis Zone, and N. persculptus to Parakidograptus acuminatus Zones, could be recognized during theinterval. In addition, the abundance changes of the radiolaria at the Goujiaya and Datangkou sections werecoincided with the sea-level changes, and correlatable with the synchorous 5 fluctuations of the sea-level inNorth America and Africa. So above-mentioned 5 cycles could represent the eustasies during the latestOrdovician to the earliest Silurian. Every fluctuation period of the earlier 4 cycles covered 0.75 to 1 Ma beingsimilar to that of the fourth-order glacial-eustasy with the interval of 0.1 to 1 Ma, imagining there probablyoccurred 4 fourth-order eustasies during the latest Ordovician from the D. complexus Zone to N. ojsuensisZone.
     In the light of the paleoenvironmental significance reflected by the radiolaria, graptolite, brachiopod,sponge spicule and the rock character, it's suggested that the greyish green mudstone at the basal WufengFormation of the Goujiaya section would be probably deposited in 60 to 100 meters deep water, theGuanyinqiao bed in 50 to 80 meters deep, and the radiolaria-bearing silicalite from Wufeng Formation inwater with 200 to 400 meters deep. Combining the above-mentioned water depth with the sea-level changecycles, the change range of every one of the 5 cycles could be further conjectured. They were in ascendingorder: 20~120 m, 80~130 m, about 150 m, 50~250 m, and in excess of 200 m.
     The boundary marks of the chronostratigraphic units which is determined on the InternationalStratigraphic Guide, weren't convenient for being identified, and all of them didn't coincide with thegeoevolutional rhythm. However, the studies of the Sinian-Cambrian, Ordovician-Silurian,Frasnian-Famennian, Permian-Triassic, Triassic-Jurassic and Cretaceous-Tertiary boundaries indicated that,the geological events at these boundary intervals generally comply with the following laws: (1) the age rangeof the carbon and oxygen isotope events was equal to or longer than that of the boundary clay or massextinction events. (2) The transgression events closely followed the other geological events and basicallycoincided with the organism recovery after extinction. (3) The peak of the geological events happened before transgression and the quiet time afar the transgression. (4) Two adjacent geological events above-mentionedcovered respectively 105 Ma, 66Ma, 122Ma, 45M and 140Ma. It can see that, the geological events withlonger period alternated with those events spanning shorter period, and the sum of a longer period and itsadjacent shorter period was identical (66Ma+122Ma=188Ma; 45Ma+140Ma=185Ma). (5) The geologicalevent scales across the Permian-Triassic and the Cretaceous-Tertiary intervals were bigger, occurred not onlymass extinctions but also global chemical anomaly events. These laws above-mentioned indicated the earthevolutional rhythm, and the global transgression event probably represents the turning point of the earthevolution from unbalanced to balanced condition, or the turnover of geohistory. Therefore present author holdsthat the natural events (catastrophic events), characterizing the geoevolution rhythm, especially thetransgression event above-mentioned, should be fully considered in the subdivision of the chronostratigraphicboundaries.
     On the basis of the irreversibility of the bioevolution, geoevolution rhythm and above-mentioned laws ofthe geological events at the turning point of the geohistory, it's suggested that the subdivision of thechronostratigraphic boundaries should be in line with the biostratigraphic classification at first, in associationwith the natural events and regard the latter as the supplementary indicators. Therefore the Ordovician-Silurianboundary should he defined by the FAD of N. persculptus displaying the geohistorical rhythm as the biomark,and by the not fully identical geological events as the supplementary marks for the global correlation. In viewof geological records preserved from different regions of the world are not identical, it's suggested that, whencorrelating the Ordovician-Silurian boundary, at the global boundary stratotype section, the FAD of N.persculptus be selected as the biomark, the transgression event identical to the FAD of N. persculptus as theauxiliary physical mark and the mass extinction and chemical anomaly events respectively as the auxiliarybiomark and chemomark. In some regions with few graptolite, the Ordovician-Silurian boundary should beindicated by the auxiliary marks, such as the transgression event, mass extinction or chemical anomaly event,with the other fossil such as conodont nearest to other geological events as the provincial biomark forcorrelation. In other regions with much stratigraphic hiatus originated from the regression, theOrdovician-Silurian boundary should he marked by the regression-transgression event nearly relevant to the N.persculptus Zone.
引文
常美丽.1981.湖北宜昌晚奥陶世末期赫南特贝动物群.古生物学报,20(6):557-565
    成汉均,汪明洲,陈祥荣,许安东.陈淑娥.1988.大巴山奥陶系的研究.西安地质学院学报,10(1):1-13
    成汉均,王玉忠.1991.五峰期上扬子淡化海成因之讨论.地层学杂志,15(2):109-114
    成汉钧,叶剑.汪明洲主编.1993.大巴山早古生代地层.西安:西北工业大学出版社.P47-60
    陈均远.1988.奥陶纪头足类壳体的水深学信息及海平面位置年代学的初探.古生物学报,27(3):331-345
    陈旭,丘金玉.1986.宜昌奥陶纪的古环境演变.地层学杂志,10(1):1-14
    陈旭,肖承协,陈洪治.1987.华南五峰期笔石动物群的分异及缺氧环境.古生物学报,26(3):326-344
    陈旭.1990.论笔石的深度分带.古生物学报.29(5):507-526
    陈旭,戎嘉余.1990.集群绝灭的基本概念及奥陶纪晚期的实例剖析.见:理论古生物学文集,91-120,戎嘉余,方宋杰,吴同甲编.南京大学出版社
    陈旭,戎嘉余.汪啸风,周志毅,王志浩,陈挺恩,耿良玉,邓占球,胡兆珣,堇得源,李军,张元动,詹仁斌.1993.中国奥陶纪生物地层学研究的新进展.地层学杂志,17(2):89-101
    陈旭,戎嘉余.1999.从生物地层学到大地构造学——以华南奥陶系和志留系为例.现代地质——中国地质大学研究生院学报,13(4):385-389
    陈旭,戎嘉余,樊隽轩,詹仁斌,张元动,王志浩,王宗哲,李荣玉,王怿,米切尔(Mitchell C.E.),哈帕尔(Harper D. A.T.).2000.扬子区奥陶纪末赫南特亚阶的生物地层学研究.地层学杂志,24(3):169-175
    陈旭,戎嘉余,樊隽轩,詹仁斌,张元动,李荣玉,王怿,米切尔(Mitchell C.E.),哈帕尔(Harper D. A. T.).2000.奥陶-志留系界线地层生物带的全球对比.古生物学报,39(1):100-114
    陈旭,阮亦萍,A.J.布科(主编).2001.中国古生代气候演变.北京:科学出版社
    方一亭,边立曾,俞剑华,冯洪真.1993.晚奥陶世五峰期扬子板块沉积模式.沉积学报,11(3):7-12
    冯增昭主编.1997.沉积岩石学(第二版).下册.北京:石油工业出版社.P118-122
    冯洪真,俞剑华.方一亭,边立曾.1993.五峰期上扬子海古盐度分析.地层学杂志,17(3):179-185
    冯洪真,俞剑华,方一亭,曹奇原.1997.Ce_(anom)对古海洋氧化还原条件相对变化的另一种可能解释.南京大学学报(自然科学),33(3):402-408
    冯洪真,Erdtmann B. D.,王海峰.2000.上扬子区早古生代全岩Ce异常与海平面长缓变化.中国科学(D辑),30(1):66-72
    高长林.1992.陕西南岭碳酸盐岩的稀土元素特征及其古海洋学意义.地球化学,(4):383-389
    何心一,徐桂荣等编.1993.古生物教程.北京:地质出版社.P25-27
    黄汲清,任继舜.姜春发等.1984.中国大地构造及其演化.北京:科学出版社
    黄志诚,黄钟瑾,陈智娜.1991.下扬子区五峰组火山碎屑岩与放射虫硅质岩.沉积学报,9(2):1-15
    蒋志.1995.地质体运动理论及其应用.北京:科学出版社
    金若谷.1987.四川龙门山北段晚二叠世大隆组放射虫岩及其形成环境.地质论评,33(3):238-248
    金玉玕,陈旭,戎嘉余等译.2000.国际地层指南,地层分类、术语和程序,第二版,萨尔瓦多主编.北京:地质出版社.P1-160
    孔庆玉.龚与觐.1986.安徽巢县下二叠统茅口阶放射虫硅质岩的发现.地质论评,32(5):505-510
    李积金,王琨,B.D.E.查特顿.1993.中国扬子海盆奥陶纪末期生物集群绝灭事件.地层学杂志,17(4):292-301
    李祥辉.1992.四川龙门山区早泥盆世Emsian期群落古环境分析[J].矿物岩石,12(3):57-65
    李祥辉,包向农.2000.海平面变化成因及其盆地响应.地球科学进展,15(1):71-75
    刘本培主编.1986.地史学教程.北京:地质出版社.P20-29
    刘本培,李儒峰,尤德宏.1994.黔南独山石炭系层序地层及麦粒蜒带冰川型全球海平面变化[J].地球科学. 16(5):553-564
    刘文均等编.1996.四川龙门山区泥盆系(Ⅱ)-层序地层[C].成都:成都科技大学出版社.P66-67
    刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣编著.1984.元素地球化学.北京:科学出版社
    刘英俊,曹励明主编.1985.元素地球化学导论.北京:地质出版社.P42-56,P60-61
    马杏垣.1982.重力构造概论,构造地质学进展.北京:科学出版社
    孟祥化等著.1993.沉积盆地与建造层序.北京:地质出版社.P44-80
    牟堡垒编著.1999.元素地球化学.北京大学出版社
    穆恩之,李积金,葛梅钰,陈旭,倪寓南,林尧坤.1981.华中区晚奥陶世古地理图及其说明书.地层学杂志,5(3):165-170
    穆恩之,戎嘉余.1983.论国际奥陶—志留系的分界.地层学杂志,7(2):81-91
    穆恩之,李积金,葛梅钰等.1993.华中区上奥陶统笔石.中国古生物志,总号第182册,新乙中第29号
    P.亨德森编.1988.稀土元素地球化学.北京:地质出版社.P149-154,P195-213
    戎嘉余.1979.中国的赫南特贝动物群(Hirnantia fauna)并论奥陶系与志留系的分界.地层学杂志,3(1):1-29
    戎嘉余、陈旭.1987.华南晚奥陶世的动物群分异及生物相、岩相分布模式.古生物学报,26(5):507-535
    戎嘉余.詹仁斌.1999.华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响.现代地质——中国地质大学研究生院学报,13(4):390-394
    戎豪余.陈旭.2000.关于奥陶系最上部赫南特(Hirnantian)亚阶全球层型的建议.地层学杂志,24(3):176-181
    史晓颖.1996.35Ma-地质史上一个重要的自然周期-自然临界的概念及其成因[J].地球科学,21(3):253-242
    宋天锐,王乃文.1977.广东曲江——仁化地区早二叠世“当冲层”的放射虫岩.地质科学,(4):390-393
    苏文博.1999.从层序地层学观点论奥陶—志留系界线划分.华南地质与矿产,(1):1-12
    苏文博,李志明,陈建强,龚淑云,李全国,高勇群.1999.海平面变化全球可比性的可靠例证—上扬子地台东南缘奥陶纪层序地层及海平面变化研究.沉积学报.17(3):345-354
    孙兆元.1996.应力场星球(云)说,地球南南西统—应力场及其意义.北京:石油工业出版社
    汪啸风.1980.中国奥陶系.地质学报,(1):1-8
    汪啸风.1980.中国奥陶系.地质学报,(2):85-94
    汪啸风,曾庆銮,周天梅等.1983.长江三峡东部地区奥陶纪晚期与志留纪初期的化石群兼论奥陶系与志留系的界线问题.中国地质科学院宜昌地质矿产研究所所刊,第6号:95-182
    汪啸风,曾庆銮,周天梅等.1987.长江三峡地区生物地层学(2)早古生代分册.北京:地质出版社.P43-137,
    汪啸风,柴之芳.1989.奥陶系与志留系界线处生物绝灭事件及其与铱和碳同位素异常的关系.地质学报,(3):255-264
    汪啸风.1993.全球奥陶系年代地层学研究—进展与问题.地球科学进展,8(1):28-34
    汪啸风,陈旭,陈孝红,朱慈英编著.1996.中国地层典—奥陶系.北京:地质出版社.P11
    汪啸风,Erdtmann B.D.,陈孝红.1999.“赫南特阶”和奥陶系—志留系界线的厘定.华南地质与矿产,(3):12-17
    汪啸风,陈孝红.1999.中国奥陶纪古生物地理与古气候.地层古生物论文集,(27):1-26
    王东安,陈瑞君.1996.扬子地台不同时代层状硅岩的硅同位素结果的讨论.沉积学报,14(2):82-88
    王传尚,江啸风,陈孝红.2000.奥陶纪笔石体的复杂化及与海平面变化的关系.华南地质与矿产,(1):11-15
    王鸿祯主编.1985.中国古地理图集.北京:地质出版社.P45-46
    王鸿祯,李光岑编译.1990.国际地质时代对比表[M].北京:地质出版社.1副
    王鸿祯,史晓颖,王训练,殷鸿福等.2000.中国层序地层研究.广东科技出版社
    王训练.1997.华南上泥盆统和下石炭统层序地层学[J].地球学报,(18):98-105
    王训练.苏文博,王鸿祯.1999.“自然界线”在地层学中的地位与作用.现代地质——中国地质大学研究生院学报,(2):253-254
    王训练.1999.露头层序地层学研究的几个基本理论问题.中国科学(D辑).29(1):22-30
    王玉净.1991.中国古生代放射虫十年来研究的进展.微体古生物学报,8(3):237-251
    王中刚.1989.稀土元素地球化学.北京:科学出版社.P247-342
    吴浩若.1982.放射虫——门从新令人注目的微体古生物.国外地质,(6):20-22
    吴智勇,姜衍文.1996.地质事件与高分辨率事件地层学.地层学杂志,20(3):237-240
    夏邦栋,钟立荣,方中,吕洪波.1995.下扬子区早二叠世孤峰组层状硅质岩成因.地质学报,69(2):125-137
    殷鸿福,徐桂荣,丁梅华.华南古、中生代之交海洋生物界的更替.1984.国际交流地质学术论文集1.北京:地质出版社.P195-204
    殷鸿福,徐道一,吴瑞棠编著.1988.地质演化突变观.中国地质大学出版社
    殷鸿福,童金南.丁梅华,张克信等.1994.扬子区晚二叠世-中三叠世海平面变化[J].地球科学,16(5):627-632
    殷鸿福,童金南.1995.层序地层界面与年代地层的关系.科学通报,40(6):194-212
    殷鸿福,张克信,童金南,吴顺宝等.2001.全球二叠系-三叠系界线层型剖面和点.中国基础科学,(10):10-23
    曾庆銮,倪世钊.徐光洪.赖才根,项礼文,周天梅,汪啸风,李志宏.1983.长江三峡东部地区奥陶系划分与对比.中国地质科学院宜昌地质矿产研究所所刊,(6):1-68
    曾庆銮.1991.峡东地区奥陶纪腕足类群落与海平面升降变化.中国地质科学院——宜昌地质矿产研究所所刊,(16):19-42
    张守信译.1979.国际地层指南,地层划分、术语和程序,第一版,赫德伯格主编.北京:科学出版社.P1-105
    张维.1991.海绵的分类、演化及其地质意义.古生物学报,30(6):772-783
    张文佑.1984.断块构造导轮.北京:石油工业出版社
    赵伦山,张本仁编著.1988.地球化学.北京:地质出版社.P150—157,P194—212
    赵希涛,杨达源等编著.1992.全球海平面变化.北京:科学出版社
    赵希涛.甄勇毅,李文范译.1984.地质时代的气候(Lawrence A.Frakes著,1979).北京:海洋出版社.P149-159
    全国地层委员会.2001.中国地层指南及中国地层指南说明书.第一版.北京:科学出版社.P1-59
    Ager, D. V. 1981. Major marine cycles in the Mesozoic. Geological Society of London. Journal, (138): 159-166
    Apollonov M. K.. Bandaletov S. M. and Nikitin J. F. 1980. The Ordovician-Silurian Boundary in Kazakhstan. "Nauka" Kazakhstan SSR Publishing House. P1-232
    Bai S. L.. Bai Z. Q.. Ma X. P.. Wang D. R. and Sun Y. L.(eds.). 1994. Devonian events and biostratigraphy of South China. Conodont zonation and correlation, bio-event and chemo-event, Milankovitch cycle and nickel-episode. Peking University Press. P13-16. P19-20
    Banks. M. R, 1988. The base of the Silurian System in Tasmania. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28): 191-194
    Barnes. C. R. 1988. Stratigraphy and Palaeontology of the Ordovician-Silurian boundary interval Anticosti Island, Quebec. Canada. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28): 195-220
    Boris B. Nazarov and Allen R. Ormiston. 1985. Evolution of Radiolaria in the Paleozoic and its correlation with the development of other marine fossil groups. Senkenbergiana lethaea. 66(3/5):203-215
    Boris B. Nazarov and Allen R. Ormiston. 1986. Trends in the development of Paleozoic Radiolaria. Marine Micropaleotology. (11): 3-32
    Bosellini A. and Winterer E. L. 1975. Pelagic limestone and radiolarite of the Tethyan Mesozoic: a genetic model. Geology, (.3):279-282
    Brenchley, P, J. 1984. Late Ordovician extinction and their relationship to the Gondwana glaciation. In: Brenchley P. J.(eds.), Fossils and Climate. London. P291-315
    Brenchley P. J. 1988. Environmental changes close to the Ordovician-Silurian boundary. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28): 377-385
    Brenchley P. J. and Marshall Jim D. 1999. Relative timing of critical events during the late Ordovician mass extinction-new data from Olso. Acta Universitatis Carolinae-Geologica, 43(1/2): 187-190
    Chen Xu, Rong Jiayu, Mitchell C. E., Harper D. A. T., Fan Junxuan, Zhan Renbin, Zhang Yuandong, Wang Zhihan and Wang Yi. 1999. Stratigraphy of the Hirnantian Substage from Wangjiawan, Yichang, westem Hubei and Honghuayuan, Tongzi, northern Guizhou, China. Acta Universitatis Carolinal-Geologlca, 43(1/2):233-236
    CLIMAP Members. 1976. The surface of the lce-age Earth. Science, (191):1131-1137
    Cocks, L. R. M. 1985. The Ordovician-Silurian boundary. Episodes, Ottawa, (8): 98-100
    Cocks, L. R. M. 1988. The Ordovician-Silurian Boundary and its Working Group. In: Cocks L. R. M. and Rickards R. B.(eds.), A Global Analysis of the Ordovician-Silurian boundary. Bulletin of the British Museum(Natutal History). Geology, 43(28): 9-15
    Cocks. L. R. M. and Rickards, R. B. 1988. Intruduction. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28):5-7
    Crayton J. Yapp and Harald Poths. 1992. Ancient atmospheric CO_2 pressures inferred from natual goehites. Nature. (355): 342-344
    Cuerda A., Rickards R. B.and Cingolani C. 1988. The Ordovician-Silurian boundary in Bolivia and Argentina. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natutal History). Geology, 43(28): 291-294
    Darrel G. F. Long, 1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Anticosti Island Quebec. Palaeogeography, Palaeoclimatology, Palaeoecology, (104): 49-59
    Destombes. J. and Willefert, S. 1988. The Ordovician-Silurian boundary in Morocco. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28): 165-170
    Ding Meihua. Zhang Kexin and Lai Xulong. 1996. Evolution of Clarkina lineage and Hindeodus Isarcicella lineage at Meishan soction. South China. In: Yin Hongfu(eds.), The Palaenzoic-Mesozoic boundary., candidates of the Global Stratotype Section and Point of the Permian-Triassic Boundary. China University of Geosciences Press, Wuhan. P65-71
    Edward O. Amon. Andreas Braun and Kirill S. Ivanov. 1995. Upper Silurian Radiolarians from the Southern Urals, Geologica et Palaeontologica, (29): 1-17
    Eldertield H., Hawkesworth C. J., Greaves M. J. et al. 1981. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochimica et Cosmochimica Acta. (45):513-528
    Fortey R. A. and Holdsworth B. K. 1971. The oldest known well-preserved Radiolaria. Bollettino della Societa Paleontologica Italiana, 10(1): 35-41
    Gates, E. L.. 1976. Modeling the Ice-age climate. Science, (191): 1138-1144
    Gerilyn S. Soreghan and Willian R. Dickinson. 1994. generic types of stratigraphic cycles controlled by eustasy. Geology, (22): 759-761
    Goldberg E. D. Koide M., Schmitt R. A. et al. 1963. Rare-earth distributions in the marine environment. Journal of Geophysical Research. (68): 4209-4217
    Goodfellow Wayne D., Nowlan Godfrey S.. McCracken Alexander D.. Lenz Alfred C. and Gregoire D. Conrad. 1992. Geochemical anomalies near the Ordovician-Silurian boundary, Northern Yukon Territory, Canada. Historical Biology, (6): 1-23
    Guiterrez-Marco J. C.. Robardet M. and Picarra J. M. 1998. Silurian Stratigraphy and Paleogeography of the Iberian Peninsula(Spain and Portugal). In: Gutierrez-Marco J C and Rabano I.(eds.), Proceeding of the Sixth International Graptolite Conference of the GWG(IPA) and the 1998 Field Meeting of the International Subcommission on Silurian Stratigraphy(ICS-IUGS). Instituto Technologic Geominero de Espana, Temas Geologico-Mineros, (23): 1344
    Hallam A. and Wignall P. B. 1997. Mass Extinctions and Their Aftermath. Oxford. New York. Tokyo, Oxford University Press. P39-61
    Harper, D. A. T. 1988. Ordovician-Silurian junctions in the Girvan District, S. W. Scotland. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28):45-52
    Hays, J. D., Imbrie. J. and Shackleton, N. J. 1976. Variations in the Earth's orbit:Pacemaker of the ice ages. Science, (194):1121-1132
    Heckel, P. H. 1972. Recognition of ancient shallow marine environments. In: Rifoy J. K. and Hamblin Wm. K.(eds.), Recognition of ancient sedimentary environments. Special Publication. (16): 226-286
    Hedberg, H. D.(eds.) 1976. International Stratigraphic Guide. A Guide to Stratigraphic Classification. Terminology, and Procedure by Intemational Subcommission on Stratigraphic Classification of IUGS Commission on Stratigraphy. Wiley, New York
    Hirokazu Goto. 1992. Masaki Umeda and Hirokazu Ishiga, Late Ordovician Radiolarians from the Lachlan Fold Belt, Southeastern Australia. Mem. Fac. Sci. Shimane Univ., (26): 145-170
    Hiroshi Furutani. 1983. Middle Palaeozoic Palaeoscenidiidae (Radiolaria) from Mt. Yokokura, Shikoku, Japan, Part Ⅰ, Trans. Proc. Palaeot. Soc. Japan. N. S.. (130): 96-116
    John B, Dunhan and Michael A. Murphy. 1976. An occurreoce of well preserved Radiolaria. from the Upper Ordovician (Caradocian). Eureka County, Nevada. Journal of Paleontology, 50(5): 882-887
    John D. Cooper. 1999. Depositional and Sequence Stratigraphic Framework of Upper Ordovician Platform to Basin Sections. Central Nevada. USA. Acta Universitatis Carolinae-Geologica. 43(1/2):143-146
    Johnson J. H., Klapper G.and Sandberg C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin. 96(5):567-587
    Kobluk, D. R. 1984. Coastal paleokarst near the Ordovician-Silurian boundary, Manitoulin Island, Ontario. Bull. Can. Pet. Geol. Calgary. 32(4):398-407
    Lapworth. C. 1879. On the tripartite classification of the Lower Palaeozoic rocks, Geol. Mag., London. (6):1-15
    Leatham. W. B. 1985. Ages of the Fish Haven and lowermost Laketown Dolomites in the Bear River Range, Utah. Oubls Utah geol. Ass. Salt Lake City. (14): 29-38
    Lenz. A. C. and McCracken A. D. 1982. The Ordovician-Silurian boundary, northern Canadian Cordillera: graptolite and conodont correlation. Can. J. Earth Sci.. Ottawa. (19): 1308-1322, 2pls.
    Marshall James D. and Middleton Paul D. 1990. Changes in marine isotopic composition and the late Ordovician glaciation, Journal of the Geological Society, London, (147): 1-4
    Marshall James D.. Brenchley P. J.. Mason Paul, Wolff George A.. Astini Ricardo A.. Hints Linda and Meidla Tonu. 1997. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeography, Palaeoclimatology. Palaeoecology, (132): 195-210
    Mcbride E. F. and Folk R. L. 1979. Features and origin of Italian Jurassic radiolarites deposited on continental crust, Jour. Sed. Petrology. 49(3): 837-868
    Mclaren. D. J. and Goodfellow. W. D. 1990. Geological and biological consequences of giaut impacts. Annu. Rev. Earth Planet. Sci.. (18): 123-171
    Melchin M. J.. Koren T. N. and Williams S. H. 1998. Global correlation of the lower part of the earliest Silurian Akidograptus ascensus-Paraladograptus acuminatus zone. In: Gutierrez-Marco J. C.and Rabano(eds.), Proceedings of the Sixth International Subcommission on Silurian Stratigraphy(ICS-IUGS):107-108. Instituto Tecnologico Geominero de Espana, Temas Geologico-Mineros 23
    Melchin, M. J.and Williams, S. H. 2000. A restudy of the Akidograptine graptolites from Dob's Linn and a proposed redefined zonation of the Silurian stratotype. Palaeontology Down-Under 2000,Cockle P.,Wilson G. A. and Brock G. A.et al.(eds.):Abstracts P63, Geological Society of Australia No.61
    Michael J. Melchin, Alexander D. Mccracken and Fred J. Oliff. 1991. The Ordovician-Silurian boundary on Cornwallis and Truro islands, Arctic Canada: preliminary data, Can. J. Earth Sci., (28): 1854-1862
    Michael J. Meichin and Charles E. Mitchell. 1991. In: Barnes C. R. and Williams S. H. (ech.), Late Ordovician extinction in the Graptoloidea. Advances in Ordovician in the Geology. P157-164
    Mu Enzhi, Boucot A. J. Chen Xu and Rong Jiayu. 1986. Correlation of the Silurian rocks of China. Geological Society of America Special Paper 202:80
    Naima Hamoumi. 1999. Upper Ordovician glaciation spreading and its sedimentary record in Moroccan North Gendwana margin. Acta Universitatis Carolinae-Geologica, 43(1/2): 111-114
    Nowlan, G. S. 1983. Early Silurian conedonts of eastern Canada. Fossils Strata, Olso, (15):95-110, 2pls.
    Orth C. J., Gilmore J. S., Quintana L. R. and Sheehan P. M. 1986. Terminal Ordovician extinction: geochemical analysis of the Ordovician/Silurian boundary, Anticosti Island, Quebec. Geology, (14):433-436
    Owen A. W., Harper D. A. T. and Rong Jiayu. 1991. Himantian trilobites and brachiopods in space and time. In: Barnes C. R. and Williams S. Henry (eds.), Late Ordovician extinction in the Graptoloidea. P179-190
    Paul Copper. 1999. Brachiopods during and after the Late Ordovician mass extinctions, on Anticosti Island, E Canada. Acta Universitais Carolinae-Geologica, 43(1/2): 207-208
    Paula Noble and Jonathan Aitchison. 2000. Early Paleozoic radiolarian biozonation. Geology, 28(4): 367-370
    Percival, I. G. 1978. Inarticulate brachiopods from the Late Ordovician of New South Wales, and their palaeoecological significance. Alcheringa 2, P 117-141
    Petryk. A. A. 1981. Upper Ordovician Glaciation:Effects of Eustatic Fluctuations on the Anticosti Platform Succession, Quebec. In: Lesperance P. J.(eds.), Field Meeting Anticosti-Gaspe, Quebec, 1981, 2. Stratigraphy and paleontology: 81-85. Montreal(IUGS Subcommission on Silurian Stratigraphy Ordovician-Silurian Boundary Working Group)
    Pierre J. Lesp e rance. Christopher R. Barnes, Williams B. N. Berry, Arthur J. Boucot and Mu Enzhi. 1987. The Ordovician-Silurian boundary stratotype:consequences of its approval by the IUGS. Lethaia, Oslo. (20):217-222
    Rampino Michael R. and Stothers Richard B. 1988. Flood basalt volcanism, comet showers, and impact-mass extinction events. In: The Third international conference on global bioevents: abrupt changes in the global biota. University of Colorado, Boulder. CO. USA
    Renz. G. W. 1990. Late Ordovician (Caradocian) radiolarians from Nevada. Micropaleontology, 36(4): 367-377
    Renz. G. W. 1990. Ordovician Radiolaria from Nevada and Newfoundland-A Comparison at the Family Level. Marine Micropaleotology, (15): 393-402
    Riva. J. 1988. Graptolites at the below the Ordovician-Silurian boundary on Anticosti Island. Canada. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28):221-238
    Rong Jiayu. 1984. Brachiopods of latest Ordovician in the Yichang district, westem Hubei.central China. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica(eds.), Stratigraphy and Palaeontology of systemic boundaries in China. Ordovician-Silurian Boundary.Hefei:Anhui Science and Technology Publishing House. (1): 111-176
    Rong Jiayu and Chen Xu. 1986. A big event of latest Ordovician in China. In: Walliser. O. H.(eds.), Global Bio-events, Lecture Notes in Earth Sciences., Springer-Verlag Berlin Heidelberg. (8):127-131
    Rong Jiayu, Xu Hankui. 1987. Terminal Ordovician Himantia fauna of the Xainza district, northern Xizang. Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica, (11):1-19
    Rong Jiayu and Harper, D. A. T. 1988. A global synthesis of the latest Ordovician Himantian brachiopod faunas. Trans. Roy. Soc. Edinburgh, Earth Sci., (79):383-402
    Ross C. A.and Ross J. R. P. 1995. North American Ordovician Depositional Sequences and Correlations[A]. In: Cooper J. D., Droser M. L., Finney S. C.(eds.), Ordovician Odyssey, SEPM Pacific Scetion[C]. Las Vegas: University of Nevada. P309-313
    Ross June R. P. and Ross Charles A. 1992. Ordovician sea-level fluctuations, In: Webby B. D. and Laurie J. R. (eds). Global Perspectives on Ordovician Geology, P 327-335
    Roedemann Rudolf and Wilson T. Y. 1936. Eastern New York Ordovician Cherts. Bulletin of the Geological Society of America, (47): 1535-1586
    Russell D. A. 1977. The biotic crisis at the end of the Cretaceous period Syllogeus, (12): 11-23
    Scpkoski. J. J. 1982. Mass Extinctions in the Phanerozoic oceans: A review. Geol. Soc. Amer. Spec., (190): 283-289
    Sepkoski. J. J. 1986. Phanerozoic Overview of Mass Extinction. In: Raup, D. M. and Jablonski, D.(eds.), Patterns and Processes in the History of Life. P277-293.
    Stig M. Bergstrom. 1979. First report of the enigmatic Ordovician microfossil Konyrium in North America. Journal of Paleontology, 53(2): 320-327
    Storch P. 1988. The Ordovician-Silurian boundary in the Prague Basin. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28): 95-100
    Storch P. and Loydell D. K. 1996. The Himantian Graptolites Normalograptus persculptus and Glyptograptus' bohemicus: Stratigraphical consequences of their synonymy. Palaeontology, 39(4): 869-881
    Stanley. C. Finney. William B. N. Berry, John D. Cooper et al. 1999. Late Ordovician mass extinction: A new perspective from stratigrapic sections in central Nevada. Geology, 27{3): 215-218
    Su Wenbo. 1999. The SMST (shelf margin wedge systems tract) subjacent to the Ordovician-Silurian boundary and its potential on Ordovician chronostratigraphy. Acta Universitatis Carolinae-Geologlca, 43(1/2): 183-186
    Swain, F. M. 1977. Stratigraphic micropalaeotology of Atlantic Basin and Beoderlands. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York: P167-184
    Taniel Danelian. 1999. Taxonomic study of Ordovician (Lianvim-Caradoc) Radiolaria from the Southern Uplands (Sex,and. U. K.). Geodiversitas. 21(4): 625-635
    Temple, J. T. 1988. The Ordovician-Silurian boundary strata in Whales. In: Cocks L. R. M. and Rickards R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28): 65-72
    Vail P. R.. Audemard F.. Boman S. A. et al. 1991. The stratigraphic signatures of tectonics, eustesy and sedimeotology-an overview[A]. In: Einsele G.. Ricken W..Seilacher A.(eds.), Cycles and Events in Stratigraphy[C]. Spinger-verlag. P617-659
    Wang Yujing, 1993. Middle Ordovician radiolarians from the Pingliang Formation of Gansu Province, China. Microppaleontology Special Publication. (6): 98-114
    Webby B. D. and Blom W. M. 1986. The first well-preserved Radiolarians from the Ordovician of Australia. Journal of Paleontology, 60(1): 145-157
    Webby B. D. 1998. Steps toward a global standard for Ordovician stratigraphy. Newsi. Stratigr., 36(1): 1-33
    Williams. E.G.(eds.) 1981. Megacycle Benchmark Papers in Geology, (57)
    Wright. A. D. 1988. The Ordovician-Silurian boundary at Keislet, Cumbia. In: Cocks L. R. M. and Rickatds R. B.(eds.), A global analysis of the Ordovician-Silurian Boundary. Bulletin of the British Museum(Natural History). Geology, 43(28):59-64
    Wang Kun, Chatterton B. D. E., Moses Attrep, Jr. and Orth C. J. 1992. Iridium abundance maxima at the latest Ordovician mass extinction horizon, Yangtze Basin, China: Terrestrial or extraterrestrial?, Geology, (20): 39-42
    Wang Kun, Orth C. J., Moses Attrep Jr., Chatterton B. D. E.,Wang Xiaofeng and Li Jijin. 1993. The great latest Ordovician extinction on the South China Plate: Chemostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, (104): 61-79
    Wang Xiaofeog and Chai Zhifang. 1990. Ordovician-Silurian Boundary Extinction and Its Relationship to Iridium and Carbon Isotope Anomalies. Acta Geologica Sinica, 3(1): 81-92
    Wang Xiaofang, Erdtmann B. D. Chan Xiaohong and Mao Xiaodong. 1998. Integrated sequence-, bio- and chemostratigraphy of the terminal Proterozoic to Lowonnost Cambrian "black rock series" from central South China. Episodes, 21(3): 178-189
    Wang X. F.. Erdtmaon B. D.and Chen Xu. 1999. The "Himantian Stage" and the Ordovician-Silurian Boundary revised. In: Kraft. P.(eds.), Proceeding paper of 8th ISOS, Pruge
    Wang Y. L., Liu Y. G. and Schmitt R. A. 1986. Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My. Geochimica et Cosmochimca Acta, (50): 1337-1355
    William R. Riedel and Helen P. Foreman. 1961. Paleontological notes type specimens of North American Paleonzoic Radiolaria. Journal of Paleontology, 35(3): 628-635
    William B. N. Berry. 1987. The Ordovician-Silurian boundary: new data. new concerns. Lcthaia, (20): 209-221
    Yin Hongfu, Zhang Kexin, Tong Jinnan, Yang Zunyi and Wu Shunbao. 2001. The Global Stratotype Section and Point(GSSP) of the Permian-Triassic Boundary. In: Proceeding of the international symposium on The Global Stratotype of the Permian-Triassic Boundary and the Paleozoic-Mesozoic events. Changxing County, Zhejiang Province, PRC. P1-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700