用户名: 密码: 验证码:
广西二叠纪深海硅质岩系中Guadalupian-Lopingian界线的确定及其全球对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二叠纪末期爆发的生物集群绝灭是生物演化史上规模最大、影响最深远的事件。金玉玕等(1995)认为:二叠纪末的生物大绝灭是由规模和性质不同的两幕组成的:茅口期末全球性海退使栖居地丧失而导致地方性类群和远洋浮游生物灭亡的前乐平统海洋动物灾变事件,和乐平世末全球性急速海侵破坏了残留陆棚,引发生物量锐减和高级类群的消亡的后乐平统生物集群绝灭事件。瓜德鲁普统与乐平统之交的生物灭绝事件就是前乐平统海洋动物灾变事件。而本文中二叠纪Guadalupian-Lopingian界线(即二叠纪乐平统底界)正是据以这一事件的基础上而划分的。
     1、本文通过对广西钦州地区小董镇大虫岭剖面放射虫生物地层,牙形石生物地层,放射虫生态演化特征,牙形石生态演化特征,稀土元素地球化学特征,岩石学特征六方面的研究,得到了以下的事实。
     (1)依据特征放射虫的组成及出现的地层范围,作者在大虫岭剖面识别了六个放射虫带,即Pseudoalbaillella longtanensis带,Pseudoalbaillella globosa带,Follicucullusmonacanthus带,Follicucullus scholasticus带,Follicucullus charveti带和Albaillella levis带,按由老到新的顺序。这六个放射虫带可以日本西南部和中国西南部的二叠纪放射虫带进行精确的对比。
     (2)在大虫岭深海硅质岩剖面中,本文作者首次处理出了较为系统的牙形石化石,并划分了四个牙形石带,即Jinogondolella granti带,Clarkina postbitteri hongshuiensis一带,Clarkina postbitteri postbitteri带和Clarkina dukouensis带,按由老到新的顺序。这四个牙形石带可以半深海碳酸盐岩和盆地灰岩—硅质岩系中Jin et al.(2001)和Henderson et al.(2002)划分的Guadalupian-Lopingian统界线地层牙形石带相对比。作为国际上最新的研究进展,Clarkina postbitteri带被划分成两个子带:Clarkina postbitteri hongshuiensis带和Clarkinapostbitteri postbitteri带,Jin et al.(2001)和Henderson et al.(2002)已正式建议在中国广西来宾县蓬莱滩建立乐平统底界全球界线层型和点(GSSP),并以Clarkina postbitteri postbitteriMei and Wardlaw的首次出现作为乐平统的生物地层底界。在本文中,作者正是以这个标准来划分二叠纪Guadalupian-Lopingian之间的界线的。
     (3)在本文划分的Guadalupian-Lopingian界线之下,丑币虫种(Follicucullus属)繁盛,丰度和分异度均很大,占统治地位,而阿尔拜虫(Albaillella属)的丰度和分异度均很低;而在接近Guadalupian-Lopingian界线及此界线之上时,丑币虫种(Follicucullus属)丰度和分异度急剧衰减,而阿尔拜虫(Albaillella属)丰度和分异度却大幅增加,而且变为泡沫虫亚目(Suborder Spumellaria Ehrenberg)占绝对优势,一直延续到本剖面结束。因此在从Guadalupian-Lopingian统的过程中,放射虫的生态演化出现了一个从衰减到复苏的过程。
     (4)在Guadatupian-Lopingian界线之下,只出现牙形石Jinogondolella属的种,如本
The end-Permian Mass Extinction is the greatest and the most influencing event on biotic evolutionary history. Jin et al.(1995)considered: the end-Permian Mass Extinction comprised two distinct phases: the pre-Lopingian crisis event of endemic benthos and pelagic faunas that occurred in coincidence with global regression at the end of Maokou Stage; and an end-Lopingian event characterized by sharp declination of biomass and extinction of major fossil groups, and corresponding with a worldwide rapid flooding.The mass extinctive event between Guadalupian and Lopingian is the pre-Lopingian crisis event of endemic benthos and pelagic faunas. The division of Guadalupian-Lopingian boundary in Permian in this dissertation (i.e the basal boundary of Lopingian Series) is on the basis of this event.1、 The author get the following facts from the research of radiolarian biostratigraphy, conodont biostratigraphy, ecological evolution of radiolarian and conodont, Rare Earth Element (REE) geochemical characteristics and lithology characteristics from Guadalupian to Lopingian Series in Dachongling section in Guangxi.(1) On the basis of the analyses of characteristic radiolarian species and their stratigraphic ranges, totally six radiolarian zones were recognized in Dachongling section, namely, the Pseudoalbaillella longtanensis Zone, the Pseudoalbaillella globosa Zone, the Follicucullus monacanthus Zone, the Follicucullus scholasticus Zone, the Follicucullus charveti Zone, the Albaillella levis Zone in ascending order. The stratigraphic ranges of the six biozones are able to be compared precisely with those from Southwest Japan and the southwestern area of China.(2) Based on the stratigraphic distribution of characteristic conodont species in pelagic chert sequence in Dachongling section, we divided them into four conodont zones, namely, Jinogondolella granti Zone. Clarkina postbitteri hongshuiensis Zone, Clarkina postbitteri postbitteri Zone and Clarkina dukouensis Zone, in ascending order. The four conodont zones can be correlated with those in bathyal carbonate and lime-chert sequences identified by Jin et al.(2001) and Henderson et al.(2002). As a recent result, Jin et al.(2001) and Henderson et al.(2002) have formally proposed to establish the Global Stratotype Section and Point (GSSP) for the basal boundary of the Lopingian Series at the first occurrence of Clarkina postbitteri postbitteri Mei and Wardlaw in the Penglaitan Section in South China. In this paper, we identified the Guadalupian-Lopingian boundary (i.e the basal boundary of the Lopingian Series) on the basis of this standard.(3) Below the inferred Guadalupian-Lopingian boundary, the species of radiolarian genus Follicucullus have much higher diversity and abundance, but those of the genus Albaillella are very low. Upon the inferred Guadalupian-Lopingian boundary, the Follicucullus genus decreased intensively, but the diversity and abundance of genus Albaillella increased too much and Suborder Spumellaria Ehrenberg is dominant until the end of Dachongling Section.The
    radiolarian ecological evolutionary process cross the inferred Guadalupian-Lopingian boundary is from a declined state to a recovery state.(4) Below the inferred Guadalupian-Lopingian boundary, conodont genus Jinogondolella occurred, but upon the boundary, all the genus Jinogondolella disappeared and the genus Clarkina took the dominant place of it. So, conodont genera show an abrupt change from Guadalupian to Lopingian Series, too. From the above, we can see that a abrupt change of ecological evolution of radiolarian and conodont occurred from Guadalupian to Lopingian Series.(5) An anomalous zone with the higher Ce/Ce* values in range from 1.42 to 1.80 (the background values are in range from 0.5-0.8, 2-3 times of the background values) occurred underlying the inferred Guadalupian-Lopingian biostratigraphic boundary. The Ce/Ce* values coincided with the process of the ecological evolution cross the inferred Guadalupian-Lopingian biostratigraphic boundary. Moreover, the Shale-normalized REE pattern of chert show that almost all of the samples have stable negative Ce anomaly below Dch45-4 ,but some high positive Ce anomaly occurred nearby the Guadalupian-Lopingian biostratigraphic boundary.(6) Lithology characteristics: before the pre-Lopingian crisis event, lithology is mainly thin to extremely thin radiolarian-bearing chert; after the pre-Lopingian crisis event, the lithology become extremely thin clay chert or chert clay, intercalating white tuffaceous chert and claystone, and clay content increase too much, which indicate that the sediment was affected greatly by the terrigenous matter. Lithology characteristics change greatly through the Guadalupian-Lopingian boundary.2 > The above-mentioned facts draw the following conclusions( 1 ) The conodont zones in Guadalupian/Lopingian boundary stratigraphy in bathyal carbonate and lime-chert sequences responds well in the pelagic chert sequence in Dachongling section.(2) The author identified Guadalupian-Lopingian biostratigraphic boundary at the base of Dch46-C in Dachongling section according to the correlation of the four conodont zones in Dachongling section with those in bathyal carbonate and basin lime-chert sequence by Jin et al.(2001) and Henderson et al.(2002).(3) Guadalupian-Lopingian biostratigraphic boundary located between the upper radiolarian Albaillella levis Zone on the basis of the correlation of radiolarian zones with the co-occurring conodont zones.(4) The abrupt change of ecological evolution of radiolarian and conodont through Guadalupian to Lopingian, and the geochemical anomalous zone with the higher Ce/Ce* values underlying the Guadalupian-Lopingian biostratigraphic boundary, and the great change of lithology through the G-L boundary may indicate the pre-Lopingian crisis event of endemic benthos and pelagic faunas.(5) The Guadalupian-Lopingian event stratigraphic boundary was divided at Dch45-1 in Dachongling section at the beginning of the pre-Lopingian crisis event.(6)The author consider it is the tectotic activity that resulted in the pre-Lopingian crisis event that occurred in coincidence with global regression at the end of Maokou Stage from the analyses
    of ecology, geochemical characteristics and lithology. This viewpoint agree with that of Jin(1995), moreover, the author draw other two conclusions: the first one is that the event occurredvery abruptly in the beginning, which resulted from the abrupt change of radiolarian ecologicalcharacteristics; the second is that the event continued a long time because the anomalous zonewith the higher Ce/Ce* values continued a long time.3> The innovative points in this dissertation and the main unsolved problems andsuggestionsThe innovative points in this dissertation:(1) Guadalupian-Lopingian biostratigraphic boundary and event biostratigraphic boundary is first identified in pelagic chert .sequence in this dissertation.(2) It's the first time to approximately divide the Guadalupian-Lopingian boundary in the radiolarian zones on the basis of the correlation of co-occurring conodont zones.(3) The pre-Lopingian crisis event is first discovered to respond well in pelagic chert sequence.(4) It's the first time to do an elementary research of the process of the pre-Lopingian crisis event in pelagic chert sequence.Main unsolved problems and suggestions:Although the author have made some achievement in the research of Guadalupian-Lopingian boundary in Dachongling chert section, there still leave some unsolved problems.(1) The other conodont zones in the middle and upper of Lopingian have not been found in Dachongling because the sedimentary basin closed earlier, therefore , I suggest that we find a better chert section in the future in Guixi basin.(2 ) The interval of Rare Earth Element samples is relatively wide. In the key layers, samples should be tested for geochemical characteristics bed by bed and more items should be analysed in order to establish more integrated geochemical stratigraphy from Guadalupian to Lopingian Series. All these will do benefit to research the stages of the pre-Lopingian crisis event.(3) The character and causes of the pre-Lopingian crisis event needed to be researched further, for example, the research of Mylankovitch cycles might discover if the character and causes of the pre-Lopingian crisis event related with the rhythm of the earth, and the research of volcano activity in this epoch (there are some tuff layers near the Guadalupian-Lopingian boundary in Dachongling section) might discover if the pre-Lopingian crisis event was affected by the volcano activity.(4) A further research should be done that the detail number of the families and genus and species of radiolarian extinction and origin as well as times of radiolarian extinction and process of biological recovery through Guadalupian to Lopingian in Permian.
引文
1、广西壮族自治区地质矿产局,1985。广西壮族自治区区域地质志。地质出版社。
    2、 龚一鸣,1992。新疆北部泥盆纪放射虫及其岩相分布和环境意义。地层学杂志,16(3):224-228
    3、 何科昭,赵崇贺,邰道乾,聂泽同,乐昌硕,周正国,1996。赣东北蛇绿混杂岩带中多次发现含晚古生代放射虫硅质岩。现代地质,10(3):303-307
    4、 何科昭,聂泽同,赵崇贺等,2000。赣东北晚古生代放射虫化石综述。现代地质,14(1):1-7
    5、 冯庆来,刘本培,1993。滇西南晚二叠世和早、中三叠世放射虫研究。地球科学—中国地质大学学报,18(5):540-552
    6、 冯庆来,刘本培,1993。滇西南晚二叠纪放射虫研究,地球科学—中国地质大学学报,18(5):553—564
    7、 冯庆来,杜远生等,1996。南秦岭勉略蛇绿岩带中放射虫的发现及其意义。中国科学D辑,26(增刊):78-82
    8、 霍有光,1987。西准噶尔的放射虫硅质岩。西北地质,3:15-20
    9、 霍有光,冯益民,1990。西准噶尔放射虫硅质岩类型、环境及地质意义。西北地质,3:1-7
    10、金若谷,1987。四川龙门山北段晚二叠世大隆组放射虫岩及其形成环境。地质论评,33(3):238-248
    11、金若谷,1987。陕南西乡晚二叠世大隆组及其沉积环境。地层学杂志,11(4):278-285
    12、金玉干,张进,尚庆华。1995。前乐平统海洋动物灾变事件。古生物学报,34(4):410-427
    13、金玉干,王向东,尚庆华,王月,盛金章,1999。中国二叠纪年代地层划分和对比。地质学报,73(2):97-108
    14、丁振举,刘丛强,姚书振,周宗桂,2000。海底热液沉积物稀土元素组成及其意义。地质科技情报,19(1):27-30
    15、丁林,钟大赉,1995。滇西昌宁—孟连带古物提斯洋硅质岩稀土元素和铈异常特征。中国科学(B)辑,25(1):91—100
    16、李文厚,柳益群,尹凤娟,林晋炎,1993。南郑梁山地区下占生界放射虫硅质岩的发现。西北大学学报(自然科学版)23(1):75-76
    17、李曰俊,吴浩若,李红生,孙东立,1997。藏北阿木岗群、查桑群和鲁谷组放射虫的发现及其有关问题讨论。地质论评,43(3):250-256
    18、李红生,边千滔,1993。可可西里西金乌蓝—冈齐曲蛇绿岩混杂岩中晚古生代放射虫。现代地质,7(4):410—420
    19、刘宝珺,许效松,潘杏南等,1993。中国南方古大陆沉积地壳演化与成矿。北京:科学出版社。40—42,106—107。
    20、马文璞,1996。华南陆域内古特提斯形迹、二叠纪造山作用和互换构造域的东延。地质科学,31(2):105—112。
    21、尚庆华,M.卡里杜瓦,王玉净,2001。广西南部二叠纪长兴期放射虫动物群。微体古生物学报.18(3):229—240
    22、盛金章,王玉净,1985。南京龙潭孤峰组的放射虫化石。古生物学报,24(2),171—180
    23、宋天锐,王乃文,1977。广西曲江—仁化地区早二叠世“当冲组”的放射虫岩。地质科学,4:390-393
    24、沙庆安,吴望始,傅家谟主编,1990。黔桂地区二叠系综合研究。科学出版社,1—7
    25、孙晓猛,聂泽同,梁定益,1995。滇西北金沙江带硅质岩沉积环境的确定及大地构造意义。地质论评,4(2):174-178
    26、孙晓猛,张保民,聂泽同,梁定益,1997。滇西北金沙江带蛇绿岩、蛇绿混杂岩形成环境及时代。地质评论,43(3):113-120
    27、王希斌、郝梓国,1994。中国造山带蛇绿岩的时空分布及构造类型。中国区域地质,50(3):193-204
    28、王玉净,1991。中国古生代放射虫十年来研究的进展。微体古生物学报,8(3):237—252。
    29、王玉净,1994。广西钦州地区硅质岩及其放射虫化石组合带。科学通报,39(13):1208—1210。
    30、王玉净,李家骧,1994。二叠纪放射虫Follicucullus bipartitus—F. charveti组合带的发现及其地质意义。微体古生物学报,11(2):201—212
    31、王玉净,齐敦伦,1995。苏皖南部孤峰组放射虫动物群。微体古生物学报,12(4):374—387。
    32、王玉净,樊志勇,j997。内蒙古西拉木伦河北部蛇绿岩中二叠纪放射虫的发现及其地质意义。古生物学报,36(1):58—69。
    33、王玉净,邝国敦等,1998。广西钦州小董-板城上古生代硅质岩相地层,微体古生物学报,15(4):351-366
    34、王玉净。2001。中国古生代放射虫研究世纪回顾。微体古生物学报,18(4):313—320
    35、王玉净,尚庆华,2001。贵州紫云晒瓦群中放射虫Neaalbaillella动物群的发现。微体古生物学报.18(2):111—121
    36、王忠诚,吴浩若,邝国敦,1995。广西晚古生代硅岩的地球化学及其形成的大地构造环境。岩石学报,11(4):449—455。
    37、王忠诚,吴浩若,邝国敦,1997。桂西晚古生代海相玄武岩的特征及其形在环境。岩石学报,13(2):260—265。
    38、王鸿祯,1986。中国华南地区地壳构造发展的轮廓。见:王鸿祯等主编,华南地区古大陆边缘构造史。武汉地质学院出版社。P1—15。
    39、王汝建。1993。南京湖山地区孤峰组硅质岩中的放射虫化石。微体古生物学报,10(4):459—468
    40、王汝建,1993。南京巢湖孤峰组的放射虫化石。古生物学报,32(4):442-457
    41、王汝建,1995。南京巢湖孤峰组放射虫化石新资料。地球科学—中国地质大学学报,20(5):508—510
    42、王汝建,1995。南京湖山地区下二叠统孤峰组放射虫动物群。地质科学,30(2):139-146
    43、吴浩若,邝国敦。1997。广西晚古生代构造沉积背景的初步研究。地质科学,32(1):11—17
    44、吴浩若,李红生,1989。滇西孟连地区的石炭和二叠纪放射虫化石。微体古生物学报,6(4):337—343
    45、吴浩若,咸向阳,邝国敦,1994a。广西南部晚古生代放射虫组合及其地质意义。地质科学,29(4):339-345.
    46、吴浩若,邝国敦,咸向阳等,1994b。桂南晚古生代放射虫及硅质岩广西古特提斯的初步探讨。科学通报,39(13):1208-1210.
    47、吴福元,孙加鹏,张兴洲,1998。扬子地块南缘晚古生代洋壳存在的Nd同位素证据。岩石学报,14(1):22—33。
    48、许靖华等,1987。是华南造山带不是华南地台。中国科学(B辑),1108—1115。
    49、杨晓松,薛重生,张克信等,1997。赣东北浅变质岩系中微体古生物化石及其大地构造意义。科学通报,42(4):409-412
    50、杨美芳,李继亮,李红生,陈海泓,何海清,1997。浙江长兴地区长兴组放射虫化石及其指相意义。地质科学,32(2):229-232
    51、殷鸿福,吴顺宝,杜远生,徐思煌等,1997。中国南方恢复原型海相沉积盆地研究。中国石油天然气总公司新区勘探事业部,南方新区油气勘探经理部。3页
    52、张克信,吴顺宝,刘勇勤,1992。南京湖山大隆组放射虫和牙形石及其指相意义。地质科学—中国地质大学学报,17(3):295-300
    53、张宁,夏文臣,张素新,1998。华南海西-印支期放射虫生态环境,石油天然气地质,19(2):124-131
    54、张宁,夏文臣,1998。华南晚古生代硅质岩的时、空分布及再生残留海槽演化,地球科学,2(5):124-131
    55、张思纯,唐尚文,1983。北秦岭早古生代放射虫硅质岩的发现与板块构造。陕西地质,2:1-9
    56、张伯友,石满全,杨树锋,陈汉林,1995。古特提斯造山带在华南两广交界地区的新证据。地质论评,41(1):1—6。
    57、曾允孚,刘文均,陈洪德等,1995。华南右江复合盆地的沉积构造演化。地质学报,69(2)13—124。
    58、张驰,黄萱,1992。新疆西准噶尔蛇绿岩形成时代和环境的探讨。地质论评,38(6):509-524
    59、赵崇贺,何科昭,莫宣学,邰道乾等,1995。赣东北深断裂带蛇绿混杂岩中含晚古生代放射虫硅质岩的发现及其意义。科学通报,40(23):2161-2163
    60、Blome C. D. and Reed K. M., 1992. Permian and Early(?) Triassic radiolarian faunas from the Grindstone Terrane, Central Oregon, Journal of Paleontology, 66(3): 351-358.
    61、Bowring S A, Erwin D H, Jin Yugan, Wang Wei, Martin M W, Davidek K, 1998. Geochronologic constraints on the End-Permian mass extinction. Science, 280(5366): 1039-1045.
    62, Henderson C M, 2001. Conodonts around the Guadalupian-Lopingian boundary in Laibin area, south China: a report of independent test. Acta Micropalaeontologica Sinica, 18 (2):122-132.
    63, Henderson C M, Mei S and Wardlaw, 2002. New Conodont Definitions at the Guadalupian-Lopingian Boundary. Canadian Society of Petroleum, Memoir 19: 725-735.
    64, Ishiga H, 1986. Late Carboniferous and Permian Radiolarian Biostatigraphy of Southwest Japan. Journal of Geosciences, Osaka City University, 29: Art. 3, p. 89-100.
    65 , Jin Y G, 2000. Conodont definition for the basal boundary of the Lopingian series. Acta Micropalaeontologica Sinica, 17(1): 18-29.
    66, Jin Y, Henderson C M, Wardlaw B R et a]., 2001. Proposal for the Global Stratotype Section and Point (GSSP) for the Guadalupian-Lopingian Boundary. Permophiles, 39:32-42.
    67, Kuwahara K, Yao A and Yamakita S , 1998. Reexamination of Upper Permian radiolarian biostratigraphy. Earth Science ( Chikyu Kagaku), 52: 391-404.
    68, Kuwahara K, Yao A and An T, 1997. Paleozoic and Mesozoic complexes in the Yunnan area, China (Part 1): Preliminary report of Middle—Late Permian radiolarian assemblages. Journal of Geosciences, Osaka City University, 40: Art. 3, p. 37-49.
    69, Kuwahara K and Yao A, 1998. Diversity of Late Permian radiolarian assemblages. News of Osaka Micropaleont, Spec. vol. No. 11: 33-46.
    70, Kuwahara K, 1997. Paleontological study of Late Permian Albaillella (Radiolarian). Journal of Geosciences, Osaka City University, 40: Art. 2, p. 15-36.
    71, Kuwahara K, 1997. Upper Permian radiolarian biostratigraphy: Abundance zones of Albaillella. News of Osaka Micropaleont., Spec. vol. No. 10: 55-75.
    72, Kuwahara K, 1999. Phylogenetic Lineage of Late Permian Albaillella ( Albaillella, Radiolarian). Journal of Geosciences, Osaka City University, 42: Art. 6, p.85-101.
    73, Mei S, Henderson C M., Wardlaw B R., Shi X, 1999a. On provincialism, evolution and zonation of Permian and Earliest Triassic conodonts. In: Yin H., Tong J. (Eds.), Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition. Wuhan, March 9—11, 1999. China University of Geosciences Press, 22—28.
    74, Mei S, Henderson C M, 2001. Permian conodont provincialism, evolution and their controlling factors. Acta Palaeontologica Sinica, 40(4): 471—485 (Oct., 2001).
    75, Mei S, Jin Y G, Wardlaw B R, 1994b. Succession of Wuchiapingian conodonts from Northeastern Sichuan and its worldwide correlation. Acta Micropalaeontologica Sinica, 11(2): 121—139.
    76, Mei S, Jin Y G, Wardlaw B R, 1994c. Succession of conodont zones from the Permian "Kufeng" Formation, Xuanhan, Sichuan and its implication in global correlation. Acta Palaeontologica Sinica, 33(1): 1—23.
    77, Murray R. W., Buchholtz ten Brink M. R., Jones D. L., Gerlach D. C, Russ G. P., 1990. Rare earth elements as indicators of different marine depositional environment in chert and shale. Geology, 18:268-271.
    78, Murray R. W., 1992. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 20: 271—274.
    79, Murray R. W., 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90:213-232.
    80, Sheng J Z and WangY J, 1985. Fossil radiolarian from Kufeng formation at Longtan, Nanjing. Acta Micropalaeontologica Sinica, 24(2): 177-180.
    81, Sashida K, Salyapongse S & Nakornsri N 2000. Latest Permian radiolarian fauna from Klaeng, eastern Thailand. Micropaleontology, 46(3): 245-263.
    82, Sashida K, Igo H, Adachi S, Ueno K, Kajiwara Y, Nakornsri N & Sardrud A, 2000. Late Permian to Middle Triassic radiolarian faunas from northern Thailand. Journal of Paleontology, 74(5): 789-811.
    83, Sashida K, Adachi S, Igo H, Koike T, and Airman I B, 1995. Middle and Late Permian radiolarians from the Semanggol Formation, Northwest Peninsular Malaysia. Trans. Proc.Palaeont. Soc. Japan, 177:43-58.
    84, Sweet W C and Mei S, 1999. Conodont succession of Permian Lopingian and basal Triassic in northwest Iran. In: Yin H., Tong J. (Eds.), Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition. Wuhan, March 9—11, 1999. China University of Geosciences Press, 43-47.
    85, Wang Y J and Li J X, 1994. Discovery of the Follicucullus Bipartitus-F. charveti radiolarian assemblage zone and its geological significance. Acta Micropalaeontologica Sinica, 11(2): 201-212.
    86, Wang C Y, Wu J J and Zhu T, 1998. Permian conodonts from the Penglatan section, Laipin county, Guanxi and the base of the Wuchiapingian stage (Lopingian series). Acta Micropalaeontologica Sinica, 15(3): 225-235.
    87, Wang C Y, 2000. The base of the Lopingian series - Restudy of the Penglatan section. Acta Micropalaeontologica Sinica, 17(1): 1-17.
    88, Wang C Y, 2001. Conodont Identification and the Base of the Lopingian. Acta Micropalaeontologica Sinica, 18(4): 365-372.
    89, WangY J, Cheng Y N and Yang Q, 1994. Biostratigraphy and Systematics of Permian Radiolarian in China. Palaeoworld, 4: 172-202.
    90, Wardlaw B R, Lance L and Mei S, 1999. Succession of latest Guadalupian (Permian) conodont faunas from south China and west Texas. In: Yin H., Tong J. (Eds.), Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition. Wuhan, March 9—11, 1999. China University of Geosciences Press,156.
    91, Wardlaw B R and Mei S, 1999. Refined conodont Biostratigraphy of the Permian and lowest Triassic of the Salt and Khizor ranges, Pakistan. In: Yin H, Tong J (Eds.), Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition. Wuhan, March "9—11, 1999. China University of Geosciences Press, 154-156.
    92, Xia W C and Zhang N, 1998.Early to Middle Permian radillarians from the Kufeng Formation in southeastern Guangxi, South China. China, Earth Science, 52(3): 188-202.
    93, Yao J, Yao A and Kuwahara K, 2001. Upper Permian biostratigraphic correlation between conodont and radiolarian zones in the Tamba—Mino Terrane, Southwest Japan, ournal of Geosciences, Osaka City University, 44(5):97—117.
    94, Yao A and Kuwahara K, 1999. Middle- Late Permian Radiolarian from the Guangyuan-Shangsi Area, Sichuan Province, China. Journal of Geosciences, Osaka City University, 42: Art. 5, p.69-83.
    95, Yao A and Kuwahara K, 2000. Permian and Triassic radiolarians from the southern Guizhou Province, China. Journal of Geosciences, Osaka City University, 43: Art. 1, p. 1-19.
    96, Zhang L , Xia W C and Shao J, 2002. Radiolarian Successional Sequences and Rare Earth Element Variations in Late Paleozoic Chert Sequences of South China: An Integrated Approach for Study of the Evolution of Paleo-Ocean Basins. Geomicrobiology Journal, 19: 1-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700