用户名: 密码: 验证码:
扬子地块周边(?)、P硅岩建造中硒的富集机理对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界中存在一套由硅质岩、泥质岩/页岩或板岩、碳酸盐岩和粉砂岩组成的沉积建造,并以富含有机质和菌藻微生物等为特征,沉积厚度较大,岩石类型以硅岩为主,称之为“硅岩建造”。硅岩建造中的硅质岩不仅是许多重要矿种(如金、硒、铀、钒、磷、锰、铂族元素、重晶石和黄铁矿等)的赋存层和含矿岩系的重要岩类,而且由于它形成于特定的地球化学条件下,能够反映出某些沉积相带特殊的地质背景,另外,硅质岩本身就是一种生物岩,对探讨生物成岩、成矿作用有重要意义。所以对硅岩建造及其内硅质岩研究具有十分重要的理论意义和实用价值。因此,本论文选择扬子地块周边寒武系(南秦岭紫阳硒富集区)、二叠系(湖北恩施双河渔塘坝硒矿床)富硒硅岩建造为研究对象。
     通过岩石地球化学、同位素地球化学、矿物学以及流体包裹体等方法从含硒规律、岩石成因、沉积环境、成矿流体性质等方面,分别对对两个不同时代或不同层位的富硒硅岩建造开展了系统的地球化学对比研究;并从矿物学、包裹体成分及物理化学条件等方面对渔塘坝硒矿床的成因作了探讨。通过研究,取得了以下主要认识:
     1 渔塘坝硒矿区和紫阳硒富集区富硒硅岩建造岩石以硅质岩为主,硅质岩中SiO_2含量范围分别为64.2%~95.84%和63.62%~95.24%。同时包括部分碳质硅质岩、碳质页岩和碳、硅板岩及含腐泥层的石煤;渔塘坝硒矿床硅质岩中Se含量大于80ug/g的样品均采自下二叠统茅口组的硅质岩段内,紫阳下寒武统硒富集体中硅质岩中硒的含量最高(可达278ppm)。
     2 微量元素研究表明,两地区富硒硅质岩中均含有较高的Cu、Ni、V、As、Sb、Cr,且U/Th>1。在U-Th、Zr-Cr和P_2O_5-Y相关图以及Fe-Mn-(Cu+Co+Ni)三角图上,两研究区内硅质岩样品点均落于热水沉积区。渔塘坝硒矿区硅质岩的REE总量较低,平均为38.9×10~(-6),紫阳硒富集区硅质岩REE总量除个别较高(达110×10~(-6)以上)外,总体也较低(12.0-37.6)×10~(-6);另外,从稀土元素配分模式看,两地区硅质岩均有较明显的Ce负异常,且Eu从无明显Eu异常到出现正Eu异常。都反映出热水沉
    
     积硅质岩的特征。从Si和。同位素组成来看,两个地区硅质岩的6 3051和61“0值
     也总体位于热水成因硅质岩区域内。根据隧石一水的氧同位素分馏方程计算得知,两
     研究区硅质岩的形成温度分别为46℃一72℃和78.6℃一126.20℃。
     地球化学特征表明,两地区富硒硅质岩均来自热水沉积作用。另外,渔塘坝硒
     矿区硅质岩中Cr含量较高,且存在腕足类生物化石;紫阳硒富集区硅质岩中Ba及
     有机质含量较高,且存在叶琳生物标志化合物。结合两地区碳同位素组成特征(渔塘
     坝地区6’3C为正值,可能和上扬子区早、晚二叠世之间多期次喷发的火山活动,造
     成地球史上二叠纪生物大灭绝有关:紫阳地区6‘3c为负值,说明碳同位素来源于沉
     积有机物质),暗示两地区硅质岩的成因可能与火山沉积作用有关,且在成岩过程中
     有部分生物的参与。
    3渔塘坝赋矿硅质岩硫同位素组成具有较高的负值,表明矿床形成于缺氧的海盆内;
     紫阳硒富集区形成黄铁矿的硫主要来自海水硫酸盐。
    4系统研究了渔塘坝硒矿区硒的矿物学,显示硒以自然硒、独立矿物、类质同像及有
     机吸附四种形式赋存于矿床中。废弃石煤堆中的自然硒矿物,是自然因素和人为活
     动共同干预的结果,并非石煤的缓慢自燃的结果。
    5对研究区成矿流体中包裹体均一温度、盐度和密度进行了系统研究,结果显示:两
     地区的流体包裹体以原生包裹体为主,数量较多且形态复杂;研究区(渔塘坝硒矿
     和紫阳硒富集区)成矿流体处于中一低温( 190一250)℃和(120一155)’C条件。渔塘坝硒矿
     区石英和方解石包裹体内的流体盐度分别为(59一10.1)不F召%和(3,9一4.5)砰百%,紫阳硒
     富集区流体盐度为(l .2一2.8)环省%,后者流体盐度明显低于前者。流体密度经计算分
     别为0.79一0.929/em,和0.69一0.96 g/cm3。
     重点对渔塘坝硒矿一区的石英和方解石包裹体进行了拉曼光谱成分测试,结果显
     示:包裹体成分以HZO和NZ为主,含少量CH4、CZH4、CZH6、C3HS、C4H6和C6H16
     等成分,说明成矿溶液介质主要为具有还原性质的水溶液,其成矿条件具还原性的
     特点。
    6渔塘坝硒矿区成矿物理化学条件的研究表明,即富硒成矿流体为中低温(190一250)℃、
    
     压力平均为60Mpa。成矿早期户2卜左论:相对较低,瓜较高,且声对及:>l,有利于
     硫化物沉淀在成矿主阶段,随着硫化物的沉淀,乃和介:相应增大,且fO:较高。
     高的fO:阻止了硒进入硫化物,而有利于硒化物的形成。
    7系统研究了富硒硅岩建造的沉积环境和构造环境特征,认为渔塘坝硒矿床中富硒硅
     质岩主要形成于浅海滞留的盆地沉积环境,紫阳下寒武统硅质岩沉积环境属于深水
     滞留沉积环境;渔塘坝硒矿床主要形成于拉张的断陷盆地中,紫阳硒富集体则形成
     于拉张的裂谷环境。
As a sediment formation, silicalite formation with a large sedimentary thickness is consist of siliceous rocks (cherts), mud stone/shale or callys, carbonatite and siltstone, and is charactered by enrichment in organic and bacterium-alga microbe. In addition, the cherts in siliclite formation, as an uppermost member, generally, possess many mineral products, such as Au, Se, U, V, P, Mn, PGE, barite and py etc). Thereupon, it is important to undertake study on the silicalite formation and cherts. This dissertation mainly focuses on two selenium-rich "silicalite formation" from Yutangba Selenium Deposit in Shuanghe(in Permian) and Ziyang Selenium-rich area in Southern Qinling(in the early Cambrian), respectively.
    Based on the petrochemistry, isotopic geochemistry, mineralogy and fluid inclusion, the Ph.D dissertation mainly focused on mineralization law, petrogenesis, sedimentary environment and fluid type of two areas, respectively, in addition, discussed the mineralogy, the composition of inclusions and physical chemistry characteristics of the selenium deposit in Yutangba, Hubei province. By studying, the main conclusions have been put forward as follows:
    1 The SiO2 content is 64.2%~95.84% and 63.62%-95.24% of two areas. Se contents analysis for the representative samples shows that the enrichment of selenium is strictly sedimentary strata-bound. With the exception of the Maokou Formation limestones, the samples with the Se contents higher than 80ug/g were all collected from the Lower Permian Maokou Formation siliceous rocks. The highest selenium's content is 278ppm of the siliceous rocks in Ziyang.
    2 For the trace elements, both of two areas have high Cu, Ni, V, As, Sb, Cr and U/Th (>1), Along with the projection in AI-Fe-(Cu+Co+Ni) ternary diagram, in U-Th, Zr-Cr and P2O5-Y relative diagram, both of two study areas' silicalite
    
    
    samples fall into the hydrothermal field. In Yutangba selenium deposit, the REE content of siliceous rocks is Iow(38.9x10-6), and enriched in LREE. In Ziyang selenium-rich area, it is from (12.0-37.6)x10-6, In both of two areas, there exist Ce negative anomaly and Eu positive anomaly. They both show the character of hydrothermal genesis, the silicon and oxygen isotope composes are similar with the hydrothermal origin. Based on the Oxygen isotope fractionation equation of chert and water, the petrogenetic temperatures of the silicalites in two study areas are (46-72)C and (78.6-126.20)C.
    Geochemistrical characteristics of the selenium-rich cherts from Yutangba and Ziyang suggest that the silicalite resulted from hydrothermal sediment. In addition, the high Cr content, the brachiopodous biology fossil existing in Yutangba cherts, and the high Ba contents, the organic matter in Ziyang samples, together with the positive 13C for the cherts of Yutangba, and negative 13C for the cherts of Ziyang, all imply that the petrogenesis of the cherts is related with volcanism, however, during diagenetic process, biology may be an important role.
    3 The negative Sulfur isotope compositions of the pyrite in the cherts of Yutangba indicate that the selenium deposit was formed in an anoxic oceanic basin. However, the selenium of the cherts from Ziyang resulted from sea water due to the sulfur isotopic compositions.
    4 The study on the mineralogy suggests that there are four type forms for selenium existing in the deposits, such as native selenium, independent selenium minerals, isomorphism and organic adsorption. Native selenium minerals from the abandoned coal pile are the results of natural factors and anthropologic activities, instead of the slow combustion of the coal.
    5 Systematic studies on many multiform fluid inclusions including temperature, salinity and density have been conducted for the quartzes and calcites of
    
    Yutangba selenium deposit and Ziyang selenium-rich area, and the results show that most of fluid inclusions from two study areas are primary. The homogenization temperatures of the fluid inclusions from two study areas (Yutanba and Ziyang) are changeable fr
引文
1.陈洪德,曾允孚.广西丹池盆地上泥盆统留江组硅质岩沉积特征及成因讨论.矿物岩石.1989,9(4):22-28
    2.陈露明.新矿物—硒锑矿.矿物学报.1993,13(1):7-11
    3.陈有年.陕南寒武系下统鲁家坪组毒重石矿产出地基本特征.陕西地质科技情报.1989,3:28-38
    4.地质矿产部情报研究所矿产室编.国外矿产资源.地质矿产部情报研究所.1988:316-318
    5.丁悌平.氢氧同位素地球化学.北京:地质出版社.1980,103-116
    6.丁悌平,蒋少涌,万德芳.硅同位素地球化学.北京:地质出版社.1994,17-88.
    7.杜乐天.碱烃流体地球化学原理.北京:地质出版社.1996:464-475
    8.瑞木合顺.镇巴—城口震旦系毒重石成矿带地质特征.西安矿业学院学报.1999,19(4):329-332
    9.冯彩霞,刘家军.硅质岩的研究现状及其成矿意义.世界地质.2001,2(20):119-123
    10.冯彩霞,刘家军.鄂西南双河渔塘坝硒矿区硅质岩地球化学特征.吉林大学学报(地球科学版).2002,32(1):21-25.
    11.冯彩霞,刘家军,刘燊,等.渔塘坝硒矿硅质岩的地球化学特征及成因.沉积学报.2002,20(4):727-732
    12.冯增昭,何幼斌,吴胜和.中下扬子地区二叠纪岩相古地理.沉积学报.1993,11(3):13-23.
    13.范德廉.大洋缺氧事件与沉积矿床.矿床地球化学(涂光炽主编).北京:科学出版社.1997,1-30
    14.福尔(Faure G,1977,中译本).同位素地质学原理.北京:科学出版社.1983
    15.甘理明.硒矿开发利用及前景分析.湖北地质科技情报.1992,(1):9-12
    16.高振敏,李朝阳.分散元素矿床地球化学研究.中国科学院地球化学研究所等.资源环境和可持续发展.北京:科学出版社.1999,241-248
    17.管正学,张宏志,高静娴,等.膳食硒资源及其开发利用.资源科学.1998,20(4):57-64
    18.韩德馨主编.中国煤岩学.北京:中国矿业大学出版社.1996
    19.韩发,沈建忠.大厂锡矿床硅、氧同位素地球化学.矿物学报.1994,14(2):172-180.
    20.侯增谦,吴世迎,T.Urable.四川呷村黑矿型矿床硅质岩的硅、氧同位素组成及其与现代海底硅质烟囱比较研究.地质论评.1996,42(6):531-539.
    21.黄毅坚,谭见安.我国低硒带典型景观植物硒的研究.地理学报.1990,45(4):451-456
    22.孔庆玉,龚玉觐.苏皖地区下二叠统放射虫硅质岩形成环境探讨.石油天然气地质.1987,1:86-89
    23.李秉伦,石岗.矿物中包裹体气体成分的物理化学参数图解.1986,第2期:126-137
    24.黎敦朋.紫阳地区微量元素特征及富硒作物开发建议.陕西地质.1999,19(1):67-73
    25.李继云,任尚学,陈代中.陕西省环境中的硒与大骨节病关系的研究.环境科学学报.1982,2(2):91-100
    26.李家熙,张光弟,葛晓立等.人体硒缺乏与过剩的地球化学环境特征及其预测.北京:地质出版社.2000,20-30
    27.李任伟,张淑坤,雷加锦,等.震旦纪地层黄铁矿同位素组成时空变换特征及扬子地块与晚元古
    
    超大陆关系的论证.地质科学.1996,31(3):209-215
    28.黎彤.地壳元素丰度的若干统计特征.地质与勘探.1992,28(10):1-7
    29.李有禹.湘西下寒武统黑色页岩伴生元素研究进展.矿床地质.1995,14(4):346-354
    30.李振寰编.元素性质数据手册.石家庄:河北人民出版社.1985
    31.粱有彬,朱文凤,王宗学.我国黑色岩系中硒矿资源及其前景分析.矿产与地质.1994,8(4):266-272
    32.林建英.峨眉山玄武岩系的岩石组合及其地质特征.成都地质矿产研究所所刊,第8号.1987,109-119
    33.刘斌.利用流体包裹体及其主矿物共生平衡的热力学方法计算形成温度和压力.中国科学(D辑).1987,(3):303-310
    34.刘斌,沈昆.流体包裹体热力学.北京:科学出版社.1988:175-217
    35.刘家军,冯彩霞,郑明华.硒资源研究现状.世界科技研究与发展.2001,5:16-21
    36.刘家军,刘建明,郑明华等.西秦岭寒武系金矿床中硅岩的地质地球化学化学特征及其沉积环境意义.岩石学报.1999,15(1):145-154.
    37.刘家军,郑明华.硅质岩的新成因——热水沉积作用.四川地质学报,1991,11(4):251-254
    38.刘家军,郊明华.热水沉积硅岩的地球化学.四川地质学报.1993,13(2):110-118
    39.刘家军,郑明华.拉尔玛层控金矿床中硒富集体的发现及其意义.地球科学进展.1993,8(6):89
    40.刘家军,郑明华.硒矿资源研究及其开发利用.见:资源、环境与持续发展战略.中国环境科学出版社.1995,114-116
    41.刘家军,郑明华,刘建明等.西秦岭降扎地区寒武系层控金矿床中金-硒共同富集成矿机制.地球化学.2001,30(2):155-162
    42.刘家军,郑明华,刘建明等.西秦岭寒武系层控金矿床中硒的矿化富集及其找矿前景.地质学报.1997,71(3):266-273
    43.刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报.1997,17(4):448-456
    44.刘建明,刘家军,顾雪祥.沉积盆地中流体活动及其成矿作用.岩石矿物学杂志.1997,16(4):341-352
    45.刘英俊,曹励明.元素地球化学导论.北京:地质出版社.1987:244-257
    46.卢焕章,李秉伦,喻铁阶,等.包裹体地球化学.北京:地质出版社.1990:1-124
    47.卢衍豪等.生物环境控制论及其在寒武纪生物地层学上和古生物地理上的应用.南京地质古生物研究所集刊.1974,第5号:59-60
    48.雒克定,魏均,张静宜,等.单斜蓝硒铜矿—一种新的亚硒酸盐矿物.科学通报.1980,25(2):85-89
    49.雒昆利,姜继圣.陕西紫阳、岚皋下寒武统地层的硒含量及其富集规律.地质地球化学.1995,(2):68-71.
    50.雒昆利,潘云唐,王五一等.南秦岭早古生代地层含硒量及硒的分布规律.地质论评.2001,47(2):211-217
    51.雒昆利等.陕南志留系五峡河组地层的沉积环境与笔石生存和保存的关系.沉积学报.1992,第2期,79-87
    52.吕志成.南秦岭毒重石成矿带成矿机制研究.中国科学院地球化学研究所博士后研究工作报告.
    
    贵阳:中国科学院地球化学研究所.2002
    53.毛大钧,苏宏灿.鄂西自治州硒中毒的地理因素.湖北预防医学杂志.1993,4(3):23-25
    54.毛大钧,郑宝山,苏宏灿.渔塘坝硒中毒的医学地理特征.地方病通报.1997,12(2):59-61
    55.毛大钧,郑宝山,严文祥.鄂西南石煤和石煤出露区土壤中硒和镉的含量.湖北预防医学杂志.1999,10(2):1-2
    56.梅紫青.我国发现的两个硒区综述.中国地方病杂志.1985,(4):379-385
    57.牛志军,徐安武,段其发,等.湖北建始北部二叠纪地层硒的来源与富集.中国区域地质.2000,19(4):396-401.
    58.潘家永,张乾,马东升,等.滇西羊拉铜矿区硅质岩特征及与成矿的关系.中国科学(D辑).2001,31(1):10-16
    59.彭安,王子健,P.D.Whanger,C.F.Combs,J.Y.Yeh.著.硒的环境生物无机化学.北京:中国环境科学出版社,1995,20-62
    60.彭大明.中国硒矿资源概述.化工矿产地质.1997,19(1):37-42
    61.彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩硅氧同位素组成及其成因分析.地质论评.1995,41(1):34-41.
    62.蒲心纯,周浩达,王熙林,等.中国寒武纪岩相古地理与成矿作用.北京:地质出版社.1993,2-21
    63.陕西省地质矿产局.陕西省区域地质志.中华人民共和国地质矿产部.地质专报,(一):区域地质,第13号.1982,76-302.
    64.沈渭洲.同位素地质学教程.北京:原子能出版社.1997,183-255.
    65.宋成祖.鄂西南渔塘坝沉积硒矿化区概况.矿床地质.1989,8(3):83-89
    66.宋成祖.鄂西南渔塘坝硒矿区硒污染成因探讨.地质论评.1995,41(2):121-126
    67.宋天锐,丁悌平.硅质岩中的硅同位素(δ ~(30)Si)应用于沉积相分析的新尝试.科学通报.1989,34(18):1408-1411.
    68.苏晓云主编.中国硒资源的开发和利用.北京:气象出版社.1998
    69.孙少华,张琴华,秦清香,等.Sr/Ba-V/Ni比值组的沉积地球化学意义.欧阳自远.矿物岩石地球化学新探索.北京:地震出版社.1993:128-130
    70.谭见安主编.中华人民共和国地方病与环境图集.北京:科学出版社.1989,27-27;39
    71.谭见安等.我国克山病病带发硒分布的地理规律.地理学报.1982,37(2):135-141
    72.谭见安等.我国低硒带与克山病、大骨节病病因关系的研究.环境科学.1989,7(4):39
    73.涂光炽.本世纪80年代地球科学若干问题进展.地质评论,1990,36(6):510-517
    74.涂光炽主编.中国层控矿床地球化学(第三卷).北京:科学出版社.1988,11-16
    75.汪成民.我国断气层测量在地震科学研究中的应用成就.见:断气层测量在地震科学中的应用.北京:地震出版社.1991,1-17
    76.王东安.雅鲁藏布江深断裂带所产硅质岩的特征及其成因,见:中国科学院青藏高原综合科学考察队著.西藏南部的沉积岩.北京:科学出版社.1981:1-86
    77.王鸿发,李均权.湖北恩施双河硒矿矿床地质特征.湖北地质.1996,10(2):10-21.
    78.王月翠,张荣英,彭志忠.富硒硫银锗矿的矿物学研究.岩石矿物及测试.1984,3(2):124-130
    79.王忠诚,储雪蕾.早寒武世重晶石与毒重石的锶同位素比值.科学通报.1993,33(6):1490-1492
    
    
    80.温汉捷.分散元素硒的有机成矿作用初析.地球学报.1999,20(2):190-194.
    81.夏邦栋,钟立荣,方中,等.下扬子区早二叠世孤峰组层状硅质岩成因.地质学报.1995,69(2):125—137
    82.夏卫平,谭见安.中国一些岩类中硒的比较研究.环境科学学报.1990,10(2):125-131
    83.徐跃通,胡文,徐克勤,等.浙西石炭纪层状硅质岩地球化学特征及其意义.地层学杂志.1997,21(1):47-54
    84.徐跃通,周保华,黄福生.山东平阴地区中元古代层状硅质岩热水沉积地球化学特征及沉积环境意义.北京大学学报(自然科学版).1997,33(2):197-174.
    85.徐文炘.矿物包裹体成分数据的热力学计算方法及应用.矿产地质研究院学报.1985,第1期:35-50
    86.杨家騄,余素玉,刘桂涛,等.东秦岭-大巴山寒武纪岩相古地理及三叶虫动物群.武汉:中国地质大学出版社.1991,1-94
    87.杨礼茂.鄂西南地区硒资源及其综合开发.地域研究与开发.1998,17(4):72-76
    88.杨瑞东,朱立军,王世杰,等.贵州台江中、下寒武统界线附近碳同位素负异常的生物和地层意义.中国科学(D辑).2002,32(6):500-506
    89.杨玉卿,冯增昭.华南下二叠层状硅质岩的形成及意义.岩石学报.1997,13(1):111-119
    90.姚林波,高振敏.恩施渔塘坝硒矿床成因探讨.矿物岩石地球化学通报.2000,19(4):350-352
    91.姚林波,高振敏,杨竹森,等.渔塘坝独立硒矿床中硒赋存形式的电子探针分析研究.矿物学报.2001,21(1):49-51
    92.姚林波.渔塘坝硒矿床地球化学特征及其成因.中国科学院研究生院博士学位论文.贵阳:中国科学院地球化学研究所.2002,64
    93.叶永烈.编著.化学元素漫谈.北京:科学出版社,1974.
    94.伊海生,曾允孚,夏文杰.湘黔贵地区上震旦统沉积相及硅质岩成因研究.矿物岩石.1989,9(4):54-58
    95.易爽庭,李本海,薛秀娣.伊梨雅马渡自然硒的矿物学研究.新疆地质.1986,6(4):12-15
    96.虞人育.湖北双河硒矿地质特征及成因浅析.湖北地质.1993,7(1):50-56.
    97.臧世权,候满堂,王文昭.镇旬铅锌矿田矿物包裹体研究.陕西地质.2001,19(1):30-36
    98.张爱云,伍大茂,郭丽娜,等.海相黑色页岩建造地球化学及成矿意义.北京:科学出版社.1987,1-30
    99,张国林,蔡宏渊.广西大厂沟多金属矿床成因探讨.地质论评.1987,33(5):426-435
    100.张国伟等.秦岭造山带的形成及其演化.西北大学出版社,1987.
    101.张军营,任德贻,许德伟,等.煤中硒的研究现状.煤田地质与勘探.1999,2(1):16-18
    102.张生,李统锦,王联魁.广东长坑金银矿床的成矿地球化学—硫同位素研究.地球化学.1997,26(4):78-85
    103.张同纲,储雪蕾,张启锐,等.陡山沱期古海水的硫和碳同位素变化.科学通报.2003,48(8):850-855
    
    
    104.张文淮,陈紫英.流体包裹体地质学.武汉:中国地质大学出版社.1993:83-90
    105.赵景德,谢先德等.地质研究的微矿物学技术.北京:科学出版社.1989
    106.郑宝山.鄂西富硒岩层中硒富集规律及成因研究.矿物岩石地球化学通报.1991,(3):129-131.
    107.郑宝山,洪业汤,赵伟等.鄂西的富硒碳质硅质岩与地方性硒中毒.科学通报.1992,37(11):1027-1029.
    108.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社.2000,193-265
    109.《中国大百科全书》编写组.中国大百科全书地质卷.北京:中国大百科全书出版社.1993:197
    110.周永章.丹池盆地热水成因硅质岩地球化学特征.沉积学报.1990,8(3):75-83
    111.朱建明.自然硒矿物的形貌特征及其成因研究.矿物岩石地球化学通报.2000,19(4):353-3556
    112.朱建明,郑宝山,刘世荣,等.多形态自然硒得首次发现及成因初探.矿物学报.2000,20(4):327-334
    113.朱同兴.安徽南部下二叠统结核状硅质岩和层状硅质岩的沉积学特征和成因探讨.岩相古地理.1989,43(5):1-7
    114.朱新鹏,郑武生.安康地区硒资源现状及开发利用.陕西农业科学.2000,第11期,30-32
    115.庄龙池,郑兰,陈文芳.湖南石门磺厂雄黄矿区硅质岩的硅、氧同位素研究和成因.华南地质与矿产.1997,2:51~53
    116. Adachi M, Yamamoto K, Suigiski R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of Ocean Ridge Activity. Sedimentary Geology. 1986, 47(1/2): 125-148.
    117. Balistrieri, L.S. and T.T.chao. Adsorption of Se by amorphous iron oxhydroxide and manganess dioxide. Geochemistry et Cosmoschemicai Acta.1990, 54(3): 739-751
    118. Balistrieri, L.S. and T.T.chao. Selenium adsorption by goethite.Soil. Soc. Am. J. 1987, 51:1145-1151
    119. Bautar JR.J.C., Emeleus H.J., Nyholm R. Comprehensive inorganic chemistry(2). Oxford. Pergamon Pree Ltd. 1973
    120. Blatt H, Middleton G V, Murray R C.Origin of Sedimentary rocks. New Jersey: Prentice-Hall,. 1980, 570~586.
    121. Block P B, Ahlfeid F. Die Selenlagerstatte Pacajake, Bolivia. Zeitschrift fur Praktische Geologie. 1937, 45: 9-14
    122. Bodnar, R J. Revised equation and table for freezing point depressions of H_2O-Salt fluid inclusions (Abstract), PACROFI IV, Fourth Biennial Pan-American Conference on research on fluid inclusion. Program and A bstracts, CA.1992, 4: 108-111
    123. Bostrom K, Rydell H, Joensuu O. Langbank: An exhalative sedimentary deposit. Econ Geol. 1979,
    
    74(5) : 1002-1011
    124. Brown, M.J. and D.L. Carter. leaching of added selenium from alkaline soils as influenced by sulfate. Soil Sci. Soc. Am. Proc. 1969, 33: 563-565
    125. Brown R D Jr. Selenium. 1999, 131-133
    126. Brown R D Jr. Selenium (PDF). Mineral commodity summaries, U.S. Geological Survey. 1996-2002
    127. Brown R D Jr. Selenium and tellurium (PDF). Minerals Yearbook, U.S. Geological Survey. 1994-2000
    128. Calvert S E. Sedimenary geochemistry of silicon. In S.R. Aston (ed.). Silicon Geochemistry and Biogeochemistry. 1983, 143-170
    129. Cary, E.E. and G.Gissel-Nielsen. Effect of fertilizer anions on the solubility of native and applied selenium in Soil. Soil Sci. Soc. Am. Proc.1973, 37: 590-593
    130. Ciaypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotope in marine sulfur and their mutual interpretation. Geochimica et Cosmochimica ACTA. 1980, 44: 199-260
    131. Clayton R N. High temperature isotope effects in the early solar system. In: Valley et al. ed. Review in Mineralogy. 1986, 16: 129-139.
    132. Clayton R N and Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxide and silicates for isotopic analysis. Geochim. Cosmochim. Acta. 1963, 27: 43~52.
    133. 1995
    134. Combs, G. F. Jr. and Combs, S.B. eds. The role of selenium in nutrition. Academic press, Inc. Orlando, FL, USA. 1986
    135. Coveney R M Jr and Nansheng C. Ni-Mo-PGE-Au-rich ores in chinese black shales and speculations on possible analogues in the United States. Mineral. Deposita. 1991, 26: 83-88
    136. Douthitt C B. The geochemistry of the stable isotopes of silicon. Geoch. Cosmoch. Acta. 1982, 46(8): 1449-1458.
    137. Edmond J M. Ridge crease hydrothermal activity and balance of the major and minor elements in the ocean: The Galapogas data. Earth planet, sci. lett. 1979, 46: 1-1813
    138. Edmond J M, Datum K V. Hotspring at the Seafloor. Science. 1983, (8): 37-50.
    139. Eisler, R. Selenium hazards to fish, wildlife and invertebrates: A synoptic review. U. S. Fish and Wildlife Serv. Biol. Rep., 85 (1.5). U.S. Gov. Print. Office, Washington, D.C., 1985
    140. Faure Gunter. Principles of Isotope Geology. John Wiley & Son. 1970
    141. Fleet A J. Hydrothermal and hydrogenous ferromanganese deposits. In: P A Rona et al. Hydrothermal Process at Sea Floor Spreading Centres. Amsterdam: Elsevier Science Publishers B V.1983, 537-570
    142. Fouquet Y, Stackelberg U, Charlou J L et al. Metallogenesis in back-arc environments: The Lau basin example, Southwest Pacific. Econ Geol. 1983, 88: 237-249.
    143. Gissel—Nielsen, G. and B. Bisbjerg. The uptake of applied selenium from soils by plants, 2. The utilization of various selenium compounds. Plant Soil. 1979, 32: 382-396
    144. Godfrey T D. The deuterium content of hydrous mineral from the East-central Sierra Nevada and Yosemite National Park. Geochim. Cosmochim. Acta. 1962, 261: 1215-1245
    145. Hein J R, Vallier T L, Allan M A. Chert petrology and geochemistry, Mid-Pacific Mountain Band
    
    Hess Rise, deep sea drilling project Log62. Initial reports of the deep sea drilling project. 1981, 62: 711-748
    146. Hoefs J. Stable isotope geochemistry. Third ed. New York: Springer-Verlag, 1997
    147. Holland H D. Gangue minerals in hydrothermal system. In H.L.Barners (ed.). Geochemistry of Hydrothermal Ore Deposits. 1967, 382-436
    148. Hurlbut C S, Aristarain L F. Olsacherite, Pb_2(SeO_4)(SO_4), a new mineral from Bolivia. American Mineralogist. 1969, 54: 1519-1527
    149. Johnson J W., Oelkers E H and Helgenson H C. SUPCRT 92: a software package for calculating the standard molar thermodynamic prosperities of minerals, gas、aqueous spaces, and reaction from 1 to 5000bar and 1 to 1000℃. Computers and Geosciences. 1992, 18(7): 899-949
    150. Klinkhammer G, Elderfield H and Hudson A. Rare earth elements in seawater near hydrothermal Vents. Nature. 1983, 305: 185-188
    151. Kolodny Y and Epstein S. Stable isotope geochemistry of deep sea cherts. Geoch. Cosmoch. Acta. 1976, 40(10): 1195~1209.
    152. Krauskof K B. Factors controlling the concentration of thirteen rare metals in sea-waters. Geochemistry and Cosmochemistry Acta. 1956, 9(1): 32
    153. Kump L. Interpreting carbon isotope excursions: Strangelove oceans. Geology. 1991, 19(4): 299-302
    154. 1983, 112(1): 51-57
    155. Knauth P L, Epstein S. Hydrogen and oxygen isotope rations in nodular and bedded cherts. Geoch. Cosmoch. Acta. 1976, 40(9): 1095-1108.
    156. Liu Jiajun, Liu Jianming, Zheng Minghua et al. The Au-Se Paragenesis in Cambrian Stratabound Gold Deposits, Western Qinling Mountains, China. International Geology Review. 2000, 42(11): 1037-1045
    157. Liu Jiajun, Zheng Minghua, Liu Jianming et al. Geochemistry of the La'erma and Qiongmo Au-Se deposits in the western Qinling Mountains, China. Ore Geology Review. 2000, 17: 91-111.
    158. Liu Jiajun, Liu Jianming, Zheng Minghua et al. The Au-Se Paragenesis in Cambrian Stratabound Gold Deposits, Western Qinling Mountains, China. International Geology Review. 2000, 42(11): 1037-1045
    159. Logan G A, Hayes J M, Hleshlma G B, et al. Terminal proterozoic reorganization of biogeochemical cycles. Nature. 1995, 376: 53-56
    160. Marchig V., Gundlach H., Moller P., et al. Some geochemistry indictors for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology. 1982, 50(3): 241-256
    161. McNeal James, M. and Laurie S. Balistrieri. Geochemistry and Occurrence of Selenium: An overview. In: Jacobs, L.W.ed. Selenium in Agriculture and the Environment, American Society of Agronomy, Inc. Soil Science Society of America, SSA Special Publication, USA. 1989: 1-13
    162. Measures C. I., Burton J. D. The vertical distribution and oxidation states of dissolved selenium in the Northeast Atlantic Ocean and their relationship to biological processes. Earth and Planetary Science Letters, 1980, 46: 365-96.
    
    
    163. Merrill, D.T., M.A.Manzione, J.J.Peterson, D.S.Parker, W. Chow and A.O.Hobbs. Field evaluation of arsenic and selenium removal by iron coprecipitation. J. Water Pollu. Control, Fed. 1986, 58: 18-26
    164. Minkin J A, Finkelman R B, Thompson C L et al. Microcharacterization of arsenic-and selenium-bearing pyrite in Upper Freeport coal, Indian Country, Pennsylvania. Scanning Electron Microsc.1984, 4:1515-1524
    165. Murray R W, Buchholtz T, Jones D L, et al. Rare earth element as indicators of different marine depositional environments in chert and shale. GEOLOGY. 1990, 18: 268-271.
    166. Murray R W. Chemical criteria to identify the depositional environment of chert: general principal and applications. Sedimentary Geology. 1994, 90: 213-232
    167. Nriagu, J.O. Occurrence and Distribution of Selenium. In: M.Ihat ed. CRC Press. 1989: 327-340
    168. Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soil by trace elements.. Nature. 1988, 333: 134-139
    169. Ohmoto H. Systematics of sulfur and carbon isotope in hydrothermal ore deposits. Econ Geol. 1972, 67: 551-578
    170. Ohmoto H. and Goldhaber M B. sulfur and carbon isotopes. In: Geochemistry of Hydrothermal deposits(ed H L Barnes), 3rd Edition, John Wiley and Sons, New York. 1997, 517-614
    171. Ohmoto H. and Rye R. O. Isotopes of sulfur and carbon. In: Geochemistry of Hydrothermal Ore Deposits(ed H L Barnes), 2nd Edition, John Wiley and Sons, New York. 1979, 509-567
    172. Pasava J. Anoxic sediments—an important envirnment for PGE, an overview. Ore Geology Reviews. 1993, 8: 425-445
    173. Pasava J, Hladikova J, and Dobes P. Origin of proterozic metal-rich black shales from the Bohemian massif, Czech Republic. Econ. Geol. 1996, 91: 63-79
    174. Presser, T.S. The Kesterson Effect. Environmental Management. 1994, 18(3): 437-454
    175. Presser, T.S. and H.M. Ohlandorf. Biogeochemical cycling of selenium in the San Jaoquin Valley. Califoria Environmental Management. 1987, 11: 821-850
    176. Puchelt H. Barium: Handbook of Geochemistry. Barium: Heideberg, New York: Springer-Verlag. 1972, Vol: Ⅱ/3
    177. Qi Liang, Hu Jing, and Gregoire D C. Determination of trace elements in granite by inductively coupled plasma mass spectrometry. Talanta. 2000, 51: 507-513
    178. Renold J H Verhoogen J. Natural variations in the isotopic constitution of silicon. Geoch. Cosmoch. Acta. 1953,3(5): 224-234.
    179. Rona P A. Criteria for recognition of hydrothermal mineral deposits in ocean crust. Econ. Geol. 1978, 73(2): 135-160
    180. Rona P A, Bostrom K, Epstein S. Hydrothermal quartz vug from the Mid-Atlantic Ridge. Geology. 1980, 8: 569-572
    181. Ryden, J.C., J.K.Syers and T.W.Tillman. Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric oxide gel.J. Soil Sci.1987, 38: 211-217
    182. Sarquis, M. and C.D.Mickey. Selenium. Part 1: Its chemistry and occurrence. J. Chen. Educ. 1980, 57: 886-889
    
    
    183. Schlager S O, Arthur M A, Jenkyns H C, et al. The Cenomanian-Turonian oceanic anoxic event, Ⅰ. Stratigraphy and distribution of organic carbon-rich beds and the marine ~(13)C excursion. In: Brooks J, Fleet A J, eds. Marine petroleum Source Rocks. Geol Soc Spec pub. 1987, 371-399
    184. Scholle P A, Arthur M A. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Bull Am Ass Petrol Geol. 1980, 64: 67-87
    185. Severson, R.C., Scott, E., Fisher, J.R. and Gough, L. P. edited. Proceeding of the 1990Billings land reclamation symposium on selenium in arid and semiarid environments, Western United States. U.S. Geological Survey, Circular. 1991: 1046
    186. Shimizu H, Masuda A. Cerium in chert as an indication of marine environment of its formation. Nature. 1977, 266(5600): 346-348
    187. Shrift, A. A selenium cycle in nature. Nature. 1964, 201: 1304-1305
    188. Sindeeva N D. Mineralogy and Types of Deposits of Selenium and Tellurium. New york: Interscience Publishers, 1964
    189. Simon G, and Essene E J. Phase relation among selenides, sulfides, tellurides, and oxides: Ⅰ. 1996. Thermodynamic data and calculated equilibria. Econ. Geol. 91 : 1183-1208
    190. Simon G, Kesler S E, and Essence E J. Phase relation among selenides, sulfides, tellurides, and oxides: Ⅱ. 1997. Application to selenide-bearing ore deposits. Econ. Geol. 92: 468-484
    191. Swaine, D.J. The trace element content of soils. Tech. Commun. Commonw. Bur. Soi Sci. 1955, 48: 1-157
    192. Thompson M., Rouch C., Graddock W. New occurrence of native selenium. Amer. Miner. 1956, 41(1-2): 156-157
    193. Vokal—Borek, H. Selenium. Univ. of Stockholm Inst. Of Physics Rep. 79-16. Stockholm, Sweden, 1979
    194. Vondamm K L. Chemistry of submarine hydrothermal solution at Guaymas basin, Gulf of Califormia. Geochemica et Cosmochemica Acta. 1985, 49: 2221-2237
    195. Vodamm K L. Chemistry of submarine hydrothermal solution 21°, East pacific rise. Geochemica et Cosmochemica Acta. 1985, 49: 2197-2220
    196. Wapies D W, Cunningham R. Shipboard organic geochemistry, Leg DSDP. In: Poag W de Graciausky P C, et al eds. Initial Reports Deep Sea Drilling Project. 1985, 80: 949-968
    197. Watananbe T, Shunzo Y, Akiva K. Metamorphosed bedded manganese deposits of the Noda-Tamagawa Mine. Volcanism and Ore Genesis. 1970
    198. World Health Organization. Environmental health criteria 58: Selenium, 1987
    199. Yamamoto K. Geochemical characteristics and deposition environment of cherts and associated rocks in the Franciscan and Shimena terranes. Sediment Geology. 1987, 52: 65-108
    200. Yongzhang zhou. Geology and geochemistry of Hetai gold field, Southern China. Guangzhou: South China University of Technology Press. 1993, 53-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700