用户名: 密码: 验证码:
超高效螺旋式厌氧反应器三相流动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境污染和能源紧缺是我国面临的两大难题。将厌氧消化技术用于污水处理,可实现污染治理和能源回收的双重功效。研发超高效螺旋式厌氧反应器(Super-high-rate Spiral Anaerobic Bioreactor, SSAB),有助于提升我国厌氧消化技术水平,推动治污工程发展。本论文采用试验模拟和数学模拟相结合的方法,系统研究了SSAB的能量耗散、床层膨胀、污泥运动和污水流态等三相流动特性,以优化该类反应器的设计和操作,加速该类反应器的工程化应用。主要成果如下:
     (1)研究揭示了SSAB的能量耗散特性。
     ①建立了SSAB能量耗散(能耗)模型:分离单元的能耗模型为ΔE3-5=2.79×10-9ul3;反应单元的能耗模型为:ΔEu2-3=1.1216×10-7ul2Vp+0.02798×10-7ul3Vp (固定态),流化床状态ΔEf2-3=0.5096×10-7ulVp(流化态);布水单元的能耗模型为ΔE1-2=3.06×10-4ul-3。各单元和整体能耗模型的模拟值与实测值吻合较好,可用于指导同类型厌氧反应器能耗状况的优化。
     ②分析了SSAB能耗特征:反应单元在气液固三相时的能耗大于液固两相时的能耗。在低表观液速下,反应单元的能耗大于布水单元;而在高表观液速下,反应单元的能耗小于布水单元。SSAB处于固定床状态、液固两相流化床状态、气液固三相流化床状态以及颗粒结团状态时的反应单元的能耗最大值分别为1.13×10-4W、4.54×10-4W、12.00×10-4 W和91.75×10-4W,布水单元能耗的最大值为18.81×10-4 W,反应器整体能耗的最大值为110.56×10-4 W,其中反应单元占83.0%,布水单元占17.0%,分离单元可忽略不计。反应器整体能耗对各参数的敏感性大小依次为颗粒污泥密度(ρp)、表观液速(ul)、污泥量(Vp)、表观气速(ug)和颗粒污泥直径(dp)。能耗的最大值可作为反应器功率匹配的参考依据;参数灵敏度可作为反应器操作的参考依据。
     (2)研究揭示了SSAB的床层膨胀特性。
     ①建立了SSAB床层膨胀模型:max=(380-186.74ul-0.98ug0.7)/ul(固定态);E=(0.435ul0.29-0.38)/(1-0.435ul0.29)×100%(流化态);床层最大污泥量Vpmax=7850εs;起始流化速度umf=ε03dp2(ρp-ρ1)g/150μ(1-ε0);起始输送速度ust=(1-εs)ut。所建模型模拟值与实测值吻合良好,可用于指导同类型厌氧反应器的设计和操作优化。
     ②分析了SSAB的床层膨胀特征:固定态时,ul≤0.45 mm·s-1,E为0,Vpmax为4867 mL(床层有效体积为7850 mL),τmax逐渐逼近860 s(HRT最大值为2222 s);流化态时,0.45 mm·s-16.88 mm·s-1,颗粒污泥洗出床层。床层处于流化态时,床层E与ul和ug呈正相关,Vpmax和τmax与ul和ug呈负相关,且ul越大,E、Vpmax和τmax越趋于一致,其值分别逼近160%、1860 mL和104 s。E和Vpmax对ul和ug的敏感性较为接近,但τmax对ul的敏感性大于ug。
     (3)研究揭示了SSAB的污泥运动特性。
     ①建立了SSAB污泥运动物理和数学模型。污泥运动可理解为浮升尾流携带颗粒污泥向上转运,返混流携带颗粒污泥向下转运所致的床层各区段的污泥浓度变化。床层上部-中部(ΔV3-ΔV2)和中部-下部(ΔV2-ΔV1)的污泥转运效率比(kt,n/kt,n-1)分别为0.8259和0.7511,污泥转运效率(kt,n-1)分别为0.102-0.315 m3/m3和0.085-0.253 m3/m3。
     ②分析了SSAB污泥运动模型参数的灵敏度。超高效螺旋式厌氧反应器螺旋区浮升尾流的污泥转运效率对工艺和结构参数的灵敏性依次为螺旋升角(a),螺旋区域外管直径(R),污泥的沉降速率(vs)和基质的升流速度(vl),它与这些参数呈正相关。通过减小α和R可以优化反应器构型;通过缩短HRT可以提升容积效能。
     (4)研究揭示了SSAB的污水流态特性。
     ①SSAB的污水流态为:低负荷下的返混程度较小(D/uL<0.2,N→∞),污水流态趋于平推流;中、高负荷下的返混程度介于平推流和全混流之间(0.35     ②SSAB的流态特征为:反应器总死区平均值为27.99%,其中生物死区平均值为6.98%,水力死区平均值为21.01%。水力死区Vh与水力负荷L和产气速率G之间满足关系式Vh=0.7603L+0.1627G—4.0620(相关系数R2=0.968),容积水力负荷对水力死区的影响大于容积产气速率。
     ③SSAB的适宜流态为:N≤3.01,即其流态的等容多釜串联级数不宜超过3.01。为兼顾反应器传质效果和容积效能,反应器设计或操作中,可通过优化反应器构型或优化操作参数来调控N值。
Water pollution and energy shortage are two major environmental problems in China. Application of the anaerobic digestion to the wastewater treatment not only control the pollution but also recycle the energy. In order to enhance the technology of anaerobic digestion and promote the engineering of wastewater treatment, we developed the super-high-rate spiral anaerobic bioreactor (SSAB). In this paper, we investigated the three-phase flow characteristics of SSAB, such as energy dissipation, bed expansion, dynamic behaviors of sludge and flow patterns of wastewater, for the optimization of design and operation and accelerating the engineering applcaction of SSAB. The main results were as follows:
     (1) Revealing the energy dissipation(△E) characteristics in SSAB
     ①We established the△E models in SSAB. The△E model for separation unit was△E3-5= 2.79×10-9u13. The△E models for reaction unit included two different submodels. One was△E2-3=1.1216×10-7u12Vp+0.02798×10-7u13Vp under unfludization state, and the other was△Ef2-3=0.5096×10-7u1Vp under fluidization state. The△E model for water distribution unit was△E1-2=3.06×10-4u13. The predicted values calculated from the△E models in SSAB agreed well with the experimental values. According to the above models, we could optimize and control the△E of the same type of anaerobic bioreactor
     ②We analysed the AE characteristics in SSAB. The AE under gas-liquid-solid three-phase fluidization state was more than△E under liquid-solid two-phase fluidization state for reaction unit. The△E for reaction unit was more than△E for water distribution unit at low superficial liquid velocity. However, the△E for reaction unit was less than△E for water distribution unit at high superficial liquid velocity. The maximum△E values for reaction unit under unfludization state, liquid-solid two-phase fluidization and gas-liquid-solid three-phase fluidization and granular sludge agglomerate state were 1.13×10-4W,4.54×10-4W,12.00×l0-4W and 91.75×l0-4 W, respectively. The maximum△E value for water distribution unit was 18.81×10-4 W. The maximum△E value in SSAB was 110.56×10-4 W, in which the△E for reaction unit accounted for 83.0% and△E for water distribution unit accounted for 17.0%. The△E value for reaction unit was so low as to be neglected. From parametric sensitivity analysis,△E for SSAB was significantly influenced by pp, u1, Vp, ug and dp in turn. The maximum△E value of 110.56×10-4 W was the basic parameter for matching power in SSAB and the parametric sensitivity could provide reference to optimize the operation for SSAB.
     (2) Presenting the bed expansion characteristics for SSAB
     ①The bed expansion models in SSAB were established. The maximum bed contact time between sludge and liquid model (τmax) under unfludization state wasτmax=(380-186.74u1-098ug0.7)/u1. The bed expansion ratio (E) under fludization state was E= (0.435u10.29-0.38)/(1-0.435u10.29)×100%. The maximum bed sludge content (Vpmax) was Vpmax=7850εs. The minimum fluidization velocity (umf) was umf=ε03dp2 (ρp-ρ1)g/150μ(1-ε0). The minimum transportation velocity (umt) was ust=(1-εs)ut. The predicted values calculated from the△E models in SSAB agreed well with the experimental values. Hence, we could use the aboved models to design and optimize the same type of anaerobic bioreactor.
     ②We investigated the bed expansion characteristics in SSAB. Under nonfluidization state, u was less than 0.45 mm·s-1; E was 0; Vpmax was 4,867 mL, andτmax approached 860 s [with hydraulic retention time (HRT),2,222]. Under fluidization state, u ranged from 0.45 mm·s-1 to 6.88 mm·s-1, and E Vpmax andτmax were 5.28%-255.69%,1368-4559 mL and 104-732 s (with HRT between 145 s and 2,222 s), respectively. Under transportation state, u was larger than 6.88 mm·s-1 and then washout of granular sludge occurred. Under bed fluidization state, E correlated positively with ug and u1, while Vpmax andτmax correlated negatively with ug and u1, and the values for E, Vpmax and Tmax approached 160%,1,860 mL and 104 s, respectively. For E and Vpmax, the sensitivities of ug and u1were close to each other. But forτmax, the sensitivity of u1was more than that of ug.
     (3) Researching the dynamic behaviors characteristics of sludge in SSAB
     ①We established the physical and mathematical models of sludge dynamic behavior in SSAB. The sludge dynamic behavior could be described as follows:upward transport of sludge resulted from the upgoing wake stream, and downward transport of sludge was caused by the back-mixing stream, which led to the sludge concentration changing along bed height. The ratio of sludge transport efficiency for downflow liquid and upfloat biogas(Kt,n/Kt,n-1) between the upper part and the middle part (△V3-△V2) and the middle part and the lower part (△V2-△V1) in reactor bed were 0.8259 and 0.7511, respectively. The sludge transport efficiencies of upfloat biogas (Kt,n-1) of△V3-△V2 and△V2-△V1, were 0.102-0.315m3/m3 (granular sludge/biogas) and 0.0856-0.2532 m3/m3, respectively.
     ②We analyzed the parametric sensitivity of sludge dynamic behaviors for SSAB. Judged from parametric sensitivity, Kt,n-1 was significantly influenced by spiral angle (a), outer diameters of the spiral zone (R), superficial settling velocity of the sludge (vs) and superficial linear fluid velocity upwards of influent (v1), which correlated positively with vs and v1. Based on the parametric sensitivity analyses, reducing the a and R can optimize the configuration of bioreactor, and shortening the HRT can improve the volume removal efficiency of the bioreactor.
     (4) Studying the flow patterns characteristics in SSAB.
     ①We studied the flow patterns in SSAB. The back-mixing in SSAB was relatively weak at low loading rate and the flow pattern approached to plug flow (D/uL≤0.2, N→∞). The back-mixing at medium and high loading rate were between plug flow and completely mixed flow (0.35≤D/uL≤0.467, 1.82≤N≤2.71). The back-mixing was relatively strong at super-high loading rate and the flow pattern tended to be completely mixed flow (D/uL≥0.2, N→1).
     ②We studied the flow patterns characteristics in SSAB. The mean value of total dead spaces (Vd,%) in SSAB was 27.99%, in which the dead spaces caused by biomass and hydraulic behaviors accounted for 6.98%and 21.01%, respectively. The relationship among Vh, volumetric hydraulic loading rate(L) and volumetric biogas production rate(G)was:Vh=0.7603L+0.1627G-4.0620 (correlation coefficient R2=0.968), and Vh was greatly influenced by G than by L.
     ③We studied the optimum flow patterns in SSAB. When N≤3.01, SSAB had the optimum flow patterns. Considering both mass transfer and volume efficiency,N can be adjusted by optimizing the configuration and operation parameters of bioreactor in design and operation of bioreactor.
引文
Alfons J M Stams. Metabolic interactions between anaerobic bacteria in methanogenic environments[J]. Antonie van leeawenhoek,1994,66: 271-294.
    Anderson G C, Campos C M M, Chernicharo C A L, et al. Evaluation of the inhibitory effects of lithium when used as a tracer for anaerobic digesters[J]. Water Research,1991,25:755-760.
    Ashish S, James G, V. V. Praveen, et al. Axial dispersion model for upflow anaerobic sludge blanket reactors[J]. Biotechnology Progress,1998,14: 645-648.
    Bello-Mendoza R, Sharratt P N. Modelling the effects of imperfect mixing on the performance of anaerobic reactors for sewage sludge treatment [J]. Journal Chemical Technology and Biotechnology,1998,71:121-130.
    Bolle W L, van Breugel J, van Eybergen G, et al. An intergral dynamic model for the UASB reactor[J]. Biotechnology and Bioengineering,1986,28: 1621-1636.
    Bryant M P, Wolin E A, Wolin M J, Wolfe R S. Methanobacillus. omelianskii, a symbiotic association of two species of bacteria[J]. Archives of Microbiology,1967,59:20-31.
    Buijs C, Heertjes P M, Van Der Meer R R. Distribution and behavior of sludge in upflow reactors for anaerobic treatment of wastewater[J]. Biotechnology and Bioengineering,1982,24(9):1975-1989.
    Burrows L J, Stokes A J, West J R, Evaluation of different analytical methods for tracer studies in aeration lanes of activated sludge plants [J]. Water Research,1998,33:367-374.
    Burrows L J, West J R, Forster C F, et al. Mixing studies in an Orbal activated sludge system[J]. Water SA,2001,27:79-83.
    Cascaval D. Galaction A. Turnea M. Comparative analysis of mixing distribution in aerobic stirred bioreactor for simulated yeasts and fungus broths[J]. Journal of Industrial Microbiology & Biotechnology.2007, 34:35-47.
    Chang H T. Rittmann B E. Pedicting bed dynamics in three-phase fluidized-bed biofilm reactors[J]. Water Science Technology.1994.29: 231-241.
    Chern H H. Fan L S, Muroyama K. Hydrodynamics of concurrent gas-liquid-solid semifluidization with a liquid as the continuous phase[J]. AlChE J.1984.30(2):288-294.
    Chen X G, Zheng P. Guo Y J, et al. Flow patterns of super-high-rate spiral anaerobic bioreactor[J]. Bioresource Technology,2010,101:7731-7735
    Devinny J S, Ramesh J. A phenomenological review of biofilter models[J]. Chemical Engineering Journal.2005.113(2-3):187-196.
    Diez Blanco V, Garcia Encina P A. FDZ-Polanco F. Effects of biofilm growth. gas and liquid velocities on the expansion of an anaerobic fluidized bed reactor (AFBR) [J]. Water Research,1995,29:1649-1654.
    Fan L S. Gas-Liquid-Solid Fluidization Engineering[M]. Singapore: Butterworths,1989.
    Frostell B. Anaerobic treatment in a sludge bed system compared with a filter system[J]. Water Pollution Control Federation.1981.53(2):216-222.
    Gabriele D, Gert W. Metabolism of homoacetogens[J]. Antonie van leeawenhoek.1994,66:209-221.
    Ghosh S. Ombregt J P, Pipyn P. Methane production from industrial wastes by two phase anaerobic digestion[J]. Water Research,1985.19(9): 1083-1088.
    Goula A M., Kostoglou M, Thodoris D, et al. A CFD methodology for the design of sedimentation tanks in potable water treatment[J]. Chemical Engineering Journal,2007,1(140):110-121.
    Grobicki A, Stuckey D C. Hydrodynamic Characteristics of the Anaerobic Baffled Reactor[J]. Water Research,1992,26(3):371-378
    Heertjes P M and Kuijvenhoven L J. Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater[J]. Biotechnology and Bioengineering.1982,24:443-459.
    Hermanowicz S W, Cheng Y W. Biological fluidized bed reactor: Hydrodynamics, biomass distribution and performance[J]. Water Science Technology.1990,22:193-202.
    Huang J S, Wu C S. Specific energy dissipation rate for fluidized-bed bioreactors[J]. Biotechnology and Bioengineering,1996,50:643-654.
    Hulshoff Pol L. Lettinga G. New technologies for anaerobic treatment[J]. Water Science and Technology,1986,18(12):41-53.
    Isabel C, Maria J B, Flavio S. et al. Hydrodynamic behavior of a full-scale anaerobic contact reactor using residence time distribution technique[J]. Journal Chemical Technology and Biotechnology,2009,84:716-724.
    Iza J. Garcia P A, Sanz I, et al.厌氧流化床(AFBR):性能与水力学行为[N].第五届国际厌氧消化讨论会论文集,意大利,博洛尼亚,1988.
    Jonatan A, Lovisa B. Evaluation of straw as a biofilm carrier in the methanogenic stage of two-stage anaerobic digestion of crop residues[J]. Bioresource Technology,2002,85:51-56.
    Kalyuzhnyi S V, Fedorovich V, Lens P. Novel dispersed plug flow model for UASB reactors focusing on sludge dynamics[C]. The Proceedings of the 9th World Congress "Anaerobic Digestion 2001", Belgium,2001, IWA Press:123-128.
    Karim K. Klasson T. Hoffmann R, et al. Anaerobic digestion of animal waste: effect of mixing[J]. Bioresource Technology,2005 96:1607-1612.
    Kato M T, Field J A, Kleerebezem R, Lettinga G. Treatment of low strength soluble wastewater in UASB reactors[J]. Journal of Fermentation and Bioengineering,1994,77(6):679-686.
    Khan A R, Richardson J F. Fluid-particle interactions and flow characteristics of fluidized beds and settling suspensions of spherical particles[J]. Chemical Engineering Communications,1989,78:111-130.
    Khan A R, Richardson J F. The resistance to motion of a solid sphere m a fluid[J]. Chemical Engineering Communications,1987,62:135-150.
    Kjellstrand R, Mattsson A, Niklasson C, et al. Short circuiting in a denitrifying activated sludge tank[J]. Water Science Technology,2005, 52:79-87.
    Khursheed K, Gregory J T, Muthanna H A. Gas-lift digester configuration effects on mixing effectiveness[J]. Water Research,2007,41: 3051-3060.
    Lee, J C, Buckley P S. Biological Fluidized bed Treatment of water and wastewater[M]. Eillis Horwood, England:P F Cooper and B Atkinson, 1981.
    Lettinga G. Advanced anaerobic wastewater treatment in the near future. Aquatech 1996[P]. IAWQNVA Conference on Advanced Wastewater Treatment, Amsterdam, Netherlands,1996a:24-32.
    Lettinga G. Anaerobic digestion and wastewater treatment systems[J]. Antonie van Leeuwenhoek,1995,67:3-28.
    Lettinga G. Sustainable integrated biological wastewater treatment[J]. Water Science and Technology,1996b,33(3):85-98.
    Lettinga G, Hulshoff P L W. UASB-process design for various types of wastewaters[J]. Water Science and Technology,1991,24(8):87-107.
    Levenspiel O. Chemical Reaction Engineering(3rd end)[M]. New York:John Wiley and Sons,1999.
    Liu X L, Ren N Q, Wan C L. Hydrodynamic characteristics of a four-compartment periodic anaerobic baffled reactor[J]. Journal of Environmental Sciences,2007,19:1159-1165.
    McCarty P L. Historical trends in the anaerobic treatment of dillute wastewater[J]. In:Proc. of Seminar Workshop. Anaerobic treatment of sewage,1985:3-16.
    McCarty P L, Smith D P. Anaerobic wastewater treatment [J]. Environmental Science and Technology,1986,20(12):200-206.
    Merchuk J C, Berzin I. Distribution of energy dissipation in airlift reactors[J]. Chemical Engineering Science,1995,50(14):2225-2233.
    Michail B. Metabolism of methanogens[J]. Antonie van leeawenhoek,1994, 66:187-208.
    Monteith H D and Stephenson J P. Mixing efficiencies in full-scale anaerobic digesters by tracer methods[J]. Journal-Water Pollution Control Federation,1981,53:78-84.
    Mulcahy L T, Shieh W K Fluidization and reactor biomass characteristics of the denitrification fluidized bed biofilm reactor[J]. Water Research,1987, 21:451-458.
    Narayanan C M, Narayan V. Multiparameter models for performance analysis of UASB reactors[J]. Chemical Technolology and Biotechnology,2008, 83(8):1170-1176.
    Nardi I R. M Zaiat, Foresti E. Influence of the tracer characteristics on hydrodynamic models of packed-bed bioreactors[J]. Bioprocess Engineering,1999,21:469-476.
    Ngian K F, Martin W B. Bed expansion characteristics of liquid fluidized particles with attached microbial growth[J]. Biotechnology and Bioengineering,1980,22:1843-1856.
    Oh D I, Song J, Hwang S J, et al. Effects of adsorptive properties of biofilter packing materials on toluene removal[J]. Journal of Hazardous Materials 2009,170(1):144-150.
    Olivet D, Valls J, Gordillo M A, et al. Application of residence time distribution technique to the study of the hydrodynamic behaviour of a full-scalewastewater treatment plan plug-flow bioreactor[J]. Journal Chemical Technology and Biotechnology,2005.80:425-432.
    Pereboom J H F, Vereijken T L F M. Methanogenic granule development in full scale internal circulation reactors[J]. Water Science and Technology, 1994.30(8):9-21.
    Perez M, Romero L L, Nebot E, et al. Colonisation of a porous sintered-glass support in anaerobic thermophilic bioreactors[J]. Bioresource Technology.1997.59:177-183.
    Pierre B. Christian F, Rene M. Mixing and phase hold-ups variations due to gas production in anaerobic fluidized-bed digesters:influence on reactor performance[J]. Biotechnology and Bioengineering,1998,60(1):36-43.
    Pierre B, Christian F, Rene M. Liquid mixing and phase hold-ups in gas producing fluidized bed bioreactors[J]. Chemical Engineering Science, 1998.53(4):617-627.
    Rebac S. van Lier JB. Lens P. et al. Psych rophilic anaerobic treatment of low strength wastewaters [J]. Water Science and Technology,1999.39(5): 203-210.
    Rusten B. Moving bed biofilm reactors and chemical precip itation for high efficiency treatment of wastewater from small communities[J]. Wat Sci Tech,1997.35 (6):71-79
    Salter H E, Boyle L, Ouki S K, et al. Tracer study and profiling of a tertiary lagoon in the United Kingdom:Ⅱ [J]. Water Research,1999,33(18): 3782-3788.
    Schroepfer G L, Fullen W J, Johnson A S, et al. The anaerobic contact process as applied to packinghouse wastes [J]. Sewage and Industrial Wastes, 1955,27 (4):460-486.
    Sean C, Gavin C, Vincent O'Flaherty. Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18℃[J]. Water Research,2006,40:1009-1017.
    Seguret F, Racault Y. Hydrodynamic behaviour of a full-scale submerged bibfilter and its possible influence on performances[J]. Water Science Technology,1998,38:249-256.
    Setiadi T. Predicting the bed expansion of an anaerobic fluidised-bed bioreactor [J]. Water Science Technology,1995,31:181-191.
    Shieh W K, Sutton P M, Kos P. Predicting reactor biomass concentration in a fluidized-bed system[J]. Journal-Water Pollution Control Federation, 1981,53:1574-1584.
    Shreeshivadasan C, Thomas W, Paul J S. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics[J]. Water Research,2006,40:507-516.
    Switzenbaum M S, Jewell W J. Anaerobic attached-film expanded-bed reactor treatment[J]. Water Environment Federation,1980,7(52):1953-1965.
    Taichi Y, Keita T, Toichiro K, et al. Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology [J]. Journal of Bioscience and Bioengineering,2006, 6(102):497-503.
    Thiele J H, Wu W M, Jain M K, et al. Ecoengineering high rate anaerobic digestion system. Analysis of improved syntrophic biomethanation catalysts[J]. Biotechnology and Bioengineering,1990,35(10):990-999.
    Thiele J H, Zeikus J G. Anion-exchange substrate shuttle process:A new approach to two-stage biomethanation of organic and toxic wastes[J]. Biotechnology and Bioengineering,1988.31(6):521-535.
    Thomas C R, Yates J G. Expansion index for biological fluidised beds[J]. Chemical Engineering Research and Design,1985,63:67-70.
    Tomlinson E J, Chambers B. The effect of longitudinal mixing on the settleability of activated sludge:Technical Report TR 122[R]. England: Stevenage.1979.
    Trinet F. Helm R. Amar D, et al. () Study of biofilm and fluidization of bioparticles in a three-phase liquid-fluidized-bed-reactor[J]. Water Science Technology,1991,23:1347-1354.
    Trulear M G, Characklis, W G. Dynamics of biofilm processes[J]. Journal Water Pollution Control Federation,1982.54:1288-1301.
    Van Lier J B, Nico Groeneveld, Gatze Lettinga. Development of thermophilic methanogenic sludge in compartmentalized upflow reactors[J]. Biotechnology and Bioengineering,1996,50:115-124.
    Wang B Z, Wang L, Yang L Y. Case studies on pond eco-sys-tems for wastewater treatment and utilization in China[A]. Global Water and Wastewater Technology[C]. London:World Markets Research Center, 1999:64-71.
    Wanner O. Gujer W. A multispecies biofilm model[J]. Biotechnology and Bioengineering,1986,28:314-328.
    Webb O F. Davison B H. Scott T C. Modeling scale-up effects on a small pilot scale fluidized bed reactor for fuel ethanol production[J]. Applied Biochemistry and Biotechnology,1996,57/58:639-647.
    Wen C Y. Fan L T. Models for Flow Systems and Chemical Reactors [M]. New York:Marcel Dekker,1975.
    Wu C S, Huang J S, Chou H. Influence of internal biogas production on hydrodynamic behavior of anaerobic fluidized-bed reactors[J]. Water Rescarch,2006,40:126-136
    Young J C, Dahab M F. Effect of media design on the performance of fixed-bed anaerobic reactors[J]. Water Science Technoloy,1982.15(8): 369-383.
    Yu H B, Rittmann B E. Predicting bed expansion and phase holdups for three-phase fluidized-bed reactors with and without biofilm[J]. Water Research,1997.31(10):2604-2616.
    Zeikus J G. Microbial populations in digesters[M]. Anaerobic Digestion, London:Applied Science Publishers,1979.
    Zeikus J G, Weimer P J, Nelson D R, et al. Bacterial methanogene.sis:acetate as a methane precursor in pure culture[J]. Archives of Microbiology, 1975,104 (1):129-134.
    陈建伟,唐崇俭,郑平,等.实验室模拟高负荷SPAC厌氧反应器运行[J].生物工程学报,2008,24(8):1413-1419.
    陈小光,郑平,方佩珍.废水处理生物流化床反应器内构件研究进展[J].中国沼气,2008,26(6):8-12.
    陈小光,郑平,唐崇俭,等.超高效厌氧生物反应器能耗特征[J].化工学报,2009,60(12):3097-3102.
    崔玉波,宋铁红,尹军.基于膨胀特性的厌氧流化床反应器的设计和运行控制[J].环境污染治理技术与设备,2004,5(4):84-87.
    龚雄军.充分认识积极扩大进口在当前我国经济社会发展中的作用[J].国际技术贸易,2007(4):38-39.
    国家环保局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1997.
    韩其勇.化学反应器的流动模型[M].武汉:武汉大学出版社,1989:59-63.
    季铁军,罗固源,王丹云,等.螺旋升流式反应器系统较长泥龄时运行效果及其流态释因[J].化工学报,2007,58(10):2163—2168.
    金仁村,胡宝兰,郑平,等.厌氧氨氧化反应器性能的稳定性及其判据[J].化工学报,2006,57(5):1166-1170.
    金仁村,郑平,唐崇俭.厌氧氨氧化固定床反应器脱氮性能和过程动力学特性[J].化工学报,2008,59(10):2518-2525.
    胡纪萃,周孟津,左剑恶.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002.
    卢刚,郑平.内循环颗粒污泥床硝化反应器流动模型研究[J].生物工程学报,2003,19(6):754-757.
    罗固源,豆俊峰,吉芳英,等.螺旋升流式反应器脱氮除磷效果及其特性的研究[J].环境科学学报,2004,24(1):15-20.
    戚以政,夏杰,王炳武.生物反应器工程(第二版)[M].北京:化学工业出版社,2009.
    任婷婷.微生物颗粒反应器的水动力学[D].中国科技大学,2008.
    颜智勇,胡勇有,肖继波,等.EGSB反应器的流态模拟研究[J].工业用水与废水,2004,35(2):5-9.
    王凯军,方皓.大型高效厌氧悬浮床反应器流态模型研究[J].环境工程学报,2008,6(2):721-726.
    王卫京,左秀锦,朱波.UASB厌氧反应器内流场数值模拟[J].大连大学学报,2007,28(03):8-10.
    许保玖,龙腾锐.2008.当代给水与废水处理原理[M].北京:高等教育出版社,83-88.
    杨平,郭勇,石炎福.生物流化床多孔生物颗粒沉降性能及床层膨胀特性研究[J].环境科学,化学反应工程与工艺,2003,19(1):89-96.
    郑平,陈建伟,唐崇俭,等.一种螺旋式自循环厌氧生物反应器[P].中国:ZL200720106182.6,2008-01-09.
    郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006:286-287.
    郑平,俞秀娥,冯孝善.厌氧附着膜膨胀床(AAFEB)反应器处理啤酒糖化废水的研究[J].环境科学,1989,10(1):44-48.
    张岩,王永胜,白玉华,等.泳动床/好氧颗粒污泥新技术处理生活污水的特性研究[J].环境科学,2007,28(10):2249-2254.
    张劲军,严大凡.利用能量耗散率计算管流的平均剪切率[J].石油学报,2002,23(5):88-90.
    周琪,胡纪萃,顾厦声.1995.升流式厌氧污泥层反应器水力混合特性研究[J].环境科学学报,15(2):170-177.
    吴持恭.水力学[M].北京:高教出版社,1982:190-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700