用户名: 密码: 验证码:
变频热泵房间空调器的工质替代及动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空调器作为一种能够有效改善人们生活及工作环境的产品已经逐渐成为生活的必需
     品。然而,空调的使用量越大,引起的环境问题也就越多,能源消耗量也就越大。因此,
     环保节能型空调将成为新世纪空调发展的方向。基于这种想法,本文主要进行了变频空调
     器的工质替代和动态特性研究。
     首先,以灌注式替代工质选取的热力学原则为依据,经过分析比较后,筛选出无臭
     氧破坏作用的三元混合制冷剂R407C作为变频热泵型房间空调器中R22的灌注式替代工
     质。接着,在标准制冷和标准制热工况下进行了替代试验研究。由于R407C
     中存在温度滑移,因此为了改善绿色空调器的性能,试验中对冷凝器和蒸发器的管路布局
     进行了调整。通过试验确定了R407C的充灌量和毛细管组的最佳匹配,使替代之后空调
     器的性能达到了国家标准的有关规定。国产绿色变频压缩机试验也取得成功。
     第二,为了深入研究变频空调器的动态特性和节能机理,以一台分体变频家用空调
     器为对象建立物理模型和仿真数学模型,同时建立房间负荷计算模型,并采用该机型真实
     的变频控制策略将制冷系统、空调房间和周围环境有机地结合起来,构成了一个完整的空
     调器仿真模型,可以对实际空调器的运行状态和动态性能进行模拟。
     第三,采用稳态模型对变频空调器在各种运行频率,各种工况下的稳态性能进行了计
     算。结果表明:变频空调器的能效比随频率降低不断升高,而制冷量随着运行频率的降低
    而下降,当运行频率低于60Hz之后,制冷量将基本保持不变,能效比则继续增大。结果
     还表明当变频空调器高频运行时,室内空气湿球温度越高则空调器的制冷量与能效比也越
     高;而以低频运行时,只有相对湿度非常高时,室内空气湿球温度才起作用。
     第四,采用动态模型对不同环境温度、不同室内设定温度、不同相对湿度以及不同
     室内热源强度下的启动过程进行了模拟,并仔细地分析了各种因素对启动性能的影响。连
     续运行模拟结果表明变频空调器大部分时间处于低频高效运行,这就是变频空调器节能的
     主要原因。并且室内温度在±1℃的范围内波动,比采用常规空调器时温度波动小。
As efficient equipment tO improve the people's working and living condition, the room air
    conditioners have gradually become the necessities of daily life. However, the more they are used,
    the more environmental problems and energy consumption they will cause.So, the environment-
    protected and energy-saving room air conditioners will be of the fashion in the coming new
    century. Based on this consideration, the article focuses on theoretical and experimental study of
    refrigerant alternating and dynamic performance of frequency conversion heat pump, a kind of
    energy-saving air conditioner.
    First of all, the non-ozone depletion ternary mixture R407C is chosen as the drop-in alternative to
    R22 in a frequency conversion heat pump based on thermodynamic rules of choosing refrigerant
    alternatives. Then, drop-in tests are carried out in the standard cooling mode and heating mode.
    During the tests, the layouts of the condenser and the evaporator are changed to improve the
    performance of the heat pump due to the temperature gliding of R407C. And then the optimum
    refrigerant charge of R407C and the matched structure of capillary tubes are determined, under
    which its performances meet the needs of the related National Standard. Domestic gteen frequency
    conversion heat pump is also of great success.
    Secondly, in order to furthering the study of the dynamic performance and energy saving
    mechanism of frequency conversion air conditioner, a split room air conditioner is used as a
    prototype to set up simulation model, and the dynamic load model of a room is also built up. In
    addition, a kind of real frequency conversion control strategy is used to combine the refrigeration
    system with the air-conditioned room and the ambient which forms a complete air conditioner
    simulation model to simulate the actual operating states and the transient performance of an air
    conditioner.
    Thirdly, the steady part of the model is used to predict the system performance at various operating
    frequencies and various steady operating states. Results indicate that the lower frequency the air
    codsoor are 4 the higher EER it pe thed at bo the COOhag CaPaCny bo with
    the -- bo then at pe fow than 60ffe the ~ aimOSt - the
    sam' the the as bo boIy ffe at ho edthethe We the ds wetr
    bo pe is the ~the ~~ nd ax is ds the forcontw are at
    W W Whenwt at N W W W W only PIayS a ~
    atvewhighdsoo
    wt the tw modds are ed to for tbe ~ ~ -- at the
    aInW pe be ds at pe the ds bo or the
    COnwt of inW hot sorm. ffe bo of vahaJs bo on the ~
    - -- is ~ revot ffe ds ed orfor ~ be be mwt
    otthe be the tw con- for conto runs at tow -- wh op eq
    nd is the - m or--. An the ds forpe be ds i l
    'C, nd is bo IhanthatofuSbecoInInOn airds.
引文
[1] 三菱重工技报,1997
    [2] Smith N.D., New Chemical Alternatives for CFCs and HCFCs, EPA-600/F-92- 012,Springfield, 1992
    [3] A.Sekiya, S. Misaki, A Continuing Search for New Refrigerants, Chemtech, No.12, 44~48, 1996
    [4] D.B. Bivens, B. H. Minor, Fluoroethers and Other Next Generation Fluids, Int.J. Refrig. , Vol. 21, No. 7,567-576, 1998
    [5] 周益,空调工质R22的替代研究和冷冻冷藏箱节能循环的探讨,西安建筑科技大学硕士学位论文,1996
    [6] 李树林,周益,刘咸定等,R32/R134a的饱和蒸气压和和CSD方程交互作用系数,全国高等学校工程热物理第六届学术会议论文集,1996
    [7] 李树林,刘咸定等,对臭氧层无破坏的空调器工质研究,西安建筑科技大学学报,Vol.27,No.4,1995
    [8] 黄红华,蒋能照,孙庆,张华林,HFC-32/134a在房间空调器中的理论与实验研究,
    [9] 黄红华,蒋能照,于千,王天鸿,R407C在房间空调器中的理论与实验研究,流体机械,Vol.25,No.1,43-47,1997
    [10] 毛润治,张于峰,朱雯婕,混合制冷剂R152a/R125作为家用空调替代工质的可行性研究,流体机械,1999.8
    [11] 赵晓宇,制冷剂替代物的应用机理,清华大学博士学位论文,1998
    [12] H.Jaster and S. Miller, Steady State and Seasonal Efficiency of Air-to-Air Heat Pump with Continuously Speed-modulated Compressors, 1980
    [13] A.W. Liles, Varible Frequency Modulation Versus Line Frequency Operation of a Conventional Heat Pump, 1980
    [14] M.Hori, L. Akamine, T. Sakai, Seasonal Efficiencies of Residual Heat Pump Air Conditioners with Inverter-driven Compressors, ASHRAE Trans. No. HI-85-31-5, 1985
    [15] T. Senshu,etc., Annual Energy-saving Effect of Capacity-modulated Air Conditioner Equipped with Inverter-driven Scroll Compressor, ASHRAE Trans. NO. HI-85-31, 1985
    [16] Department of Energy,Test Procedures for Central Air Conditioners,including Heat Pumps, 1979
    [17] W. A. Miller, Laboratory Examination and Seasonal Analysis of the Dynamic Losses for a Continuously Variable-speed Heat Pump, ASHRAE Trans. No. OT-88-06-3
    [18] 彦启森,赵庆珠,关于房间空调器季节能效比的实验方祛与计算,节能空调器技术高级研讨会,1993
    [19] 刘彤,SEER实验台的建立及房间空调器动态特性的实验研究,清华大学硕士学位论文,1995
    [20] 杨昭,马一太,灿仁,房间空调器季节性能的理论分析及改善方法,制冷学报,1994
    [21] ANSI/ASHRAE, Methods of Testing for Seasonal Efficiency of Unitary Airconditioners and heat pumps, 1983
    [22] ARI Standard 210/240, Unitary Air-conditioners and Air-source Heat Pump Efficiency, 1989
    [23] 石文星,颜岩,彦启森,变频空调器季节能效比的实验与计算方法初探,全国暖通空调制冷学术年会,300-303,1998
    [24] J. Rosell, R. Marganr, J.T. Macmullan, The Performance of Heat Pump in Service-A Simulation Study, Energy Research, No. 6, E1982
    [25] V. Havelsky, The Prediction of the coefficient of the performance of vapor compressor heat pump system, Heat Recovery System, 117-121, 1986
    [26] R. R. Crawford, D. B. Shirey, Dynamic Modeling of a Residential Heat Pump from actual system performance data, ASHRAE Trans. Vol. 93, No. 2, 1987
    [27] J. S. Van der meer, Simulation of a Evaporator, Ph. D thesis, Delft University of Technology, 1981
    [28] E. Groff, A Computer Simulation Model for Air Source Heat Pump System Seasonal Performance Studies, Presented at the 3Heat Pump Technology Conf., Oklahoma State Univ., 1977
    [29] T. Saito, N. Fujii, Dynamic Characteristic of the Vapor Compression Refrigeration Equipment, 冷冻, Vol. 46, No. 529, 9-27, 1971
    [30] G. A. Hughmark, Hold-up in Gas-Liquid Flow, Chemical Engineering Progress,Vol. 58, No. 4, 62-65, 1962
    [31] C. K. Rice, The Effect of Void Fraction Correlation and Heat Flux Assumption on Refrigerant Charge Inventory Predictions, ASHRAE Trans., Vol. 93, Part 1,341-367, 1987
    [32] P. Domanski, D. Didion, Mathematical Model of a Air-to-Air Heat Pump with aCapillary Tube, Int. J. Refrig. Vol.7, No.4, 249-255,1984
    [33] J. Chi, D. Didion, A Simulation Model of Transient Performance of a Heat Pump, Int. J. Refrig. Vol.5, No.3, 176-184, 1982
    [34] J. W. Macarther, E. W. Grald, Prediction of Cyclic Heat Pump Performance with Fully Distributed Model and Fully Comparison with Experimental Data, ASHRAE Trans., Vol. 93, Part 2, 1159-1178, 1987
    [35] J. W. Macarther, E. W. Grald, Unsteady Compressible Two-phase Model for Predicting Cyclic Heat Pump Performance and Comparison with Experimental Data, Int. J. Refrig. Vol. 12, No. 1, 29-41, 1989
    [36] Mashen Farzad, Dennis L.O'Neal, The Effect of Void Fraction Model on Estimation of Air Conditioner System Performance Variables Under a Range of Refrigerant Charging Conditions, Int. J. Refrig., Vol. 17, No. 2,85-93,1994
    [37] M. Dhar, W. Soedel Transient Analysis of a Vapor Compression Refrigeration System: Part 1--The Mathematical Model. Xvth Int. Cong of Refrig., Venice, 1035-1048,1979
    [38] M. Dhar, W. Soedel Transient Analysis of a Vapor Compression Refrigeration System: Part 2--Computer Simulations and Results. Xvth Int. Cong of Refrig., Venice, 1049-1066,1979
    [39] T. J. Bechkey, Modeling and Verification of a Vapor Compression Heat Pump, Pro. Iir Commissions, 175-183, Purdue August, 1986
    [40] N. Rajendran, M. Pate, A Computer Model of Start-up Transients in a Vapor Compression Refrigeration System, Proc. of Progress in the Design and Construction of Refrigeration System, 201-211, International Institute of Refrigeration, Prudue Univer. USA 1986
    [41] U. Bonne, A. Patani, R. D. Jacobson, D. A. Mueller, Ellectric-driven Heat Pump Systems Simulations and Controls II , Vol.86, Part 1,687-705, ASHRAE Trans. 1980
    [42] 葛云亭,房间空调器系统仿真模型研究,清华大学博士学位论文,1997,4
    [43] J. V. C. Vargas, etc, Simulation in Transient Regime of a Heat Pump with closed-loop and on-off control, Int. J. Refrig. 18 (4) :235-243, 1995
    [44] S. M. Jeter, etc, Analysis and Simulation of Variable Speed Drive Heat Pumps, ASME,AES1. 1,1986
    [45] 刘顺波,房间空调器动态特性与智慧化控制研究,西安交通大学博士学位论文,1999. 4
    [46] 周兴禧,变频空调系统特性的仿真研究,流体机械。Vol.28,No.2,43-47,2000
    [47] 周兴禧,变频空调器基于系统的变工况模糊控制仿真研究流体机械。Vol.28,No.7,42-46,2000
    [48] 刘志刚,刘咸定等,CFCs替代工质筛选的热力学原则,全国高等学校工程热物理第四届学术会议论文集,1992
    [49] 朱明善,CFC与HCFC制冷剂替代工作的现状与进展,57-61,CFCs动态,1997
    [50] 刘咸定等,论证R32/R134a的制冷性能,工程热物理学报,Np.3,1994
    [51] CFCs, The Day After, Report on the IIR International Conf., 冷冻 Vol. 69, No. 806,48-52, 1994
    [52] 刘志刚,刘咸定,赵冠春等,工质热物理性质计算机程序的编制及应用,科学出版社,1992
    [53] NIST 1992, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database, Version 3X, Gaithersburg, MD: National Institute of Standards and Technology
    [54] 苏长荪主编,高等工程热力学,高等教育出版社,1987.10
    [55] ASHRAE HANDBOOK,FUNDAMENTAL,1997
    [56] 吴业正,小型制冷装置设计指导,1999
    [57] 大西睛夫,新冷媒用冷冻,Trans.of the JAR,Vol.13,No.2,121-131,1996
    [58] Shigeharu TAIRA,etc,HFCs混合冷冻媒性能评价,冷冻,Vol.71,No.821,43~48,
    [59] 蒋能照主编,空调用热泵技术及应用,机械工业出版社,1997.9
    [60] 赵蕾,R407C替代房间空调器中R22的实验研究,西安建筑科技大学学报,Vol.31,No.2,1999.6
    [61] 赵蕾,严双志,李树林,刘咸定,R407C替代变频玲暖空调器中R22的试验研究,全国暖通空调制冷2000年学术年会论文集,327-331,2000.10
    [62] 角南元司,润滑油适合性,冷冻,Vol.68,No.786,111-121
    [63] 欧风编著,合理润滑油技术手册,机械工业出版社,1991
    [64] 赵原晓,国产空调压缩机采用替代工质的研究,西安建筑科技大学硕士学位论文,1998.4
    [65] S. J. Randles, M.G. Penman,Handling and Disposal of Polyol Ester Refrigeration Lubricants, ASHRAE Trans., Vol. 101, 947-957, 1995
    [66] Mootoshi Sunami, Katsuya Takigawa, New Immiscible Refrigeration Lubricant for HFCs, ASHRAE Trans.,Vol. 101, 940-946, 1995
    [67] Kazuhin ENDOH等.温度勾配热交换器设非共沸混合冷媒冻特性.Trans.of the JAR,No.2,207~216,1996
    [68] Hideon MORI等.非共沸混合冷媒HFC—32/HFC—125/HFC—134HFC—32/HFC—134a水平蒸发管内热傅(?)(?)力损失.Trans.of the JSARE,No.1,39~45,1997
    [69] 大金企业标准
    [70] D. B. Bivens, C. C. Allgood, HCFC-22 Alternative for Air Conditioners and Heat Pump, ASHRAE Trans., Vol. 100, Part 2,566-572, 1994
    [71] M. W. Spatz, J. Zheng, R22 Alternative Refrigerants: Performance in Unitary Equipment, ASHRAE Trans. Vol. 99, 779-785,1993
    [72] J. H. Robinson, Dennis L. O'Neal, The Impact of Charge on the Cooling Perfomance of an Air-to-Air Heat Pump for R22 and Three Binary Blends of R32 and R134a, ASHRAE Trans., Vol. 100, Part 2, 529-537, 1994
    [73] Vince C. Mei, F. C. Chen, D. T. Chen, E.-P. Huangfu, Performance Tests of R22 and R32/R125/R134a Mixture for Baseline Air Conditioning and Liquid Over-feeding Operations, ASHRAE Trans., Vol. 101, 1072-1077, 1995
    [74] K. S. Sanvordenker, Experimental Evaluation of an.R32/R134a Blend as a Near Drop-in Substitute for R22, ASBRAE Trans., Vol.99, 773-778, 1993
    [75] J. W. Macarther, Transient Heat Pump Behavior, a Theoretical Investigation,Int. J. Refrig., Vol.7, No. 2, 1984
    [76] 陈芝久,林伟汉,杭玲,小型制冷压缩机制冷剂流道的数学模型研究,流体工程,1988,No.4
    [77] 吴业正,往复式压缩机数学模型及应用,西安交通大学出版社,1989
    [78] 周子成,制冷活塞式压缩机工作过程的计算机模拟,制冷学报,1981
    [79] T. Yanagisawa, T. Shimizu, Leakage Losses with a Rolling Piston Type Rotary Compressor, 1. Radial Clearance on the rolling Piston, Int. J. Refrig., Vol. 8,No. 2, 1985
    [80] 何晓明,采用毛细管节流变频空调器的计算模拟及充灌量确定原则研究,西安交通大学硕士学位论文,1998
    [81] Ctaudio Melo et al, Dynamic Behavior of a Vapor Compression Refrigerator—a Theoretical and Experimental Analysis, IIR Meeting, Prudue, 1988. 2
    [82] L. J. M. Kuijpers, R J. P. Janssen, J. A. De Wit, Experimental Verification of Liquid Hold up Predictions in Small Refrigeration Heat Exchangers, Proc.XVII IIR Cong., Vol. B, 307-315, Veinna, 1987
    [83] M. J. P. Janssen, L. J. M. Kuijpers, J. A. De Wit, Refrigerant Charge in SmallAppliances: Influence of the Capillary/Suction Line Heat Exchanger, Proc.XVII IIR Cong.,Vol. B, 555-563, Veinna, 1987
    [84] M. J. P. Janssen, L. J. M. Kuijpers, J. A. De Wit, Theoretical and Experimental Investigation of a Dynamic Model for Small Refrigerating System. Proc. IIR Meeting at Purdue, 245-257,1988
    [85] 丁国良,小型制冷装置——电冰箱的动态仿真及优化,上海交通大学博士学位论文,1997
    [86] L. Cooper, C. K. Chu, W. R. Brisken, Simple Selection Method for Capillary Derived from Physical Flow Condition, Refrigeration Engineering, 1957
    [87] R. Y. Li, S. Lin, Z. Y. Chen, Z. H. Chen, A Correlation for Metastable Flow of R12 through Capillary tubes, ASHRAE Trans.,Vol. 96, Part 1, 550-554, 1990
    [88] R. Y. Li, S. Lin, Z. Y. Chen, Z. H. Chen, Metastable Flow of R12 through Capillary tubes, Int. J. Refrig., Vol. 13, 1990
    [89] R. Y. Li, S. Lin, Z. H. Chen, Numerical Modeling of Thermodynamic nonequilibrium flow of refrigerant throughCapillary tubes, ASHRAE Trans., Vol. 96,Part 1, 542-549, 1990
    [90] 张祉佑,制冷原理与设备,机械工业出版社,1987
    [91] 周强泰编著,两厢流动和热交换,水利电力出版社,1990
    [92] T. N. Tandon, H. K. Varma, An Experimental study of Flow Pattern During Condensation Inside a Horizontal Tube, ASHRAE Trans.,Vol. 89, Part 2, 471-482, 1983
    [93] M. M. Rahman, A. M. Fathi, H. M. Soliman, Flow Pattern during Condensation:new Experimental Data,Canadian Journal of Chemical Engineering,Vol. 63,547-552, 1985
    [94] H.M.Soliman, On the Annular-to-Wavy Flow Pattern Transition during Condensation inside Horizontal Tubes, Canadian Journal of Chemical Engineering, Vol. 60,475-481, 1982
    [95] H. M. Soliman, Correlation of Mist-to-Annular Transition during Condensation,Canadian Journal of Chemical Engineering, Vol. 61,178-182, 1983
    [96] S. J. Eckels, Evaporation and Condensation of HFC-134aand CFC-12 in a Smooth Tube and a Micro-fin Tube, ASHRAE Trans.,Vol. 97, part 2, 71-81, 1991
    [97] Samuel M. Sami, P. J. Tulej, B. Song, Study of Heat and Mass Characteristics of Ternary Nonazeotropic Refrigerant Mixtures Inside Air/Refrigerant-Enhanced Surface Tubing, ASHRAE Trans.,Vol. 101, 1402-1412. 1995
    [98] M. M. Shah, A General correlation for Heat Transfer during Film Condensation inside Pipes, Int. J. Heat Mass Transfer, Vol. 22, 547-556, 1979
    [99] D. B. Bivens, A. Yokozeki, Heat Transfer Coefficients and Transport Properties for Alternative Refrigerants, Proc. Of IIR, 299-304, Purdue, 1994
    [100] Kido, Osao, etc., Correlation for Evaporation Heat Transfer of Pure Refrigerant Inside an Internally Grooved Horizontal Tube, Trans. of the JAR, Vol. 11, No.2, 143-153, 1994
    [101] D.B. Bivens, A. Yokozeki, Heat Transfer of Refrigerant Mixtures, Proc. Of IIR Meeting,141-149, Purdue, 1992
    [102] R. K. Shah, R. L. Webb, Compact and Enhanced Heat Exchangers, 1997
    [103] Muller Steinhagen H., K. Heck, A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes, Chem. Eng. Prog.20, 297-308, 1986
    [104] 田中嘉之,HFCs系混合冷媒输送性质物理化学的性质,冷冻,Vol.72,No.835,31-40,1998
    [105] D. Jung, R. Radermacher, Transport Properties and Surface Tension of Pure and Mixed Refrigerants, ASHRAE Trans., Vol.97, Part 1, 90-99, 1991
    [106] 童景山,流体的热物理性质,中国石化出版社,1996
    [107] 杨世峰,混合工质物性模拟研究,西安建筑科技大学硕士学位论文,1999
    [108] 陈民,R134a及R32/R134a水平管内流动凝结与沸腾换热的研究,西安交通大学博士学位论文,1997
    [109] Shi-ping Wang, John C. Chato, Review of Recent Research on Heat Transfer with Mixtures——Part 1: Condensation, ASHRAE Trans., Vol. 101, 1376-1386, 1995
    [110] Shi-ping Wang, John C. Chato, Review of Recent Research on Heat Transfer with Mixtures——Part 2: Boiling and Evaporation, ASHRAE Trans., Vol. 101,1376-1386, 1995
    [111] 陈沛霖,曹叔维,郭建雄编著,空气调节负荷计算理论与方法,同济大学出版社,1987
    [112] 谢经明,空调器智能控制设计探讨,制冷,1997,No.2,32-35
    [113] 闻良生,郑安平,模糊控制技术在变频空调器中的应用,无锡轻工大学学报,1998,No.1,101-105
    [114] GB/T 7725—1996 《房间空气调节器》,中华人民共和国国家标准
    [115] 《世界环境》十年来的回顾,世界环境,1996,No,1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700