用户名: 密码: 验证码:
温室环境系统智能集成建模与智能集成节能优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室节能控制的首要问题是如何建立温室的综合能耗模型。温室的培育对象——农作物,是有生命的,其生理响应和生态过程难于检测,温室环境影响植物的生长过程,反过来,植物的生理作用,如蒸腾作用、光合作用、呼吸作用等又影响温室环境,因此,对温室进行环境控制难度较大。温室生产过程运行机理复杂,非线性、时变性、强耦合性、多干扰性、不确定性、不精确性、时滞性严重,而温室中的能量关系更加复杂,为此,要找到一种更为有效的建模方法,用于温室节能目标与设备运行状态之间关系的描述,从而为节能优化控制创造条件,为实现面向节能减排降耗的温室环境系统的优化控制奠定精确的模型基础。
     本研究用智能集成建模的方式建立温室的能耗模型,并以此智能集成模型作为控制对象,实现温室的节能优化控制。对温室环境优化控制策略进行探讨和研究,通过控制温室环境因子(温度、湿度和CO_2浓度)以使植物良好生长,同时尽可能降低能耗,以达到增产、节能、减排、降耗、增加种植者收益的目的。
     为实现上述目标,本文进行了如下几个方面的研究和探索:
     1.建模方法方面:
     提出了基于条件熵的GM(1,1)和GM(1,N)智能集成灰色预测建模,可有效应对农作物难以检测的生理响应和生态过程等植物特有特性。
     建立了温室环境系统的过程神经元网络模型,实现了对温室环境系统所有历史数据和实时数据的综合应用。由于受到输入的同步瞬时限制,传统人工神经网络难以表达时间序列中实际存在的时间累积效应,并且传统人工神经网络难以解决较大样本的学习和泛化问题,因此,传统人工神经网络在解决复杂非线性时间序列预测问题时还存在一定的局限性。本文采用过程神经元网络,网络的输入输出是过程或时变函数,放宽了传统神经元网络模型对输入的同步瞬时限制,解决了传统神经网络存在的上述问题。
     提出了基于信息熵的智能集成模型参数优化辨识方法,充分利用温室数据中更有价值的信息。在辨识机理分析模型的参数时,不是采用某种单一的辨识算法,而是将几种模型参数辨识算法有机集成起来,充分利用尽可能多的数据信息,发挥各类优化算法的长处,避免短处,使机理分析模型的参数尽可能最优。
     建立了温室系统基于灰色预测补偿的机理模型,对温室环境系统的不确定性、不精确性、多干扰性、农作物生理响应和生态过程难以检测的特性等进行了有效补偿。
     提出了基于信息熵的智能集成建模思想,利用信息熵对以上各类模型进行智能集成,充分利用每种模型中更有价值的信息。该集成算法能充分利用所采用的各种单独智能优化算法的所有有价值信息,能充分利用温室系统的所有历史数据所包涵的有价值信息。实现了将温室环境系统所有历史数据包含和隐藏的一切历史信息以及当前信息全部应用,让其在建模和控制中全部发挥出价值。
     提出了基于免疫优化算法的自校正广义方差最小二乘辨识、神经网络、最小二乘支持向量机的智能集成建模方法,在全封闭温室中央空调系统的建模中实现了效果良好的应用。
     将上述建模方法其应用到玻璃温室及全封闭温室中央空调系统的建模和能耗预测中,为实现节能优化控制奠定有效的准确的模型基础。
     上述建模方法能有效应对温室对象的特殊性:农作物是有生命的,其生理响应和生态过程难于检测;温室环境影响植物的生长,而植物的生理作用如蒸腾作用、光合作用、呼吸作用等又反过来影响温室环境。这种特殊性导致温室环境控制难度大,现有建模方法控制效果不理想,本文提出的建模思想和建模方法效果满意。智能集成建模的精度指标为:模型绝对误差均值0.166330255、相对误差均值-0.12%、RMSE平均为0.453116572、RE平均为3.72%、模型预测数据与温室对象实测数据相关系数为0.9331535~0.97287241、决定系数为0.870858467~0.952664962,这些指标表明提出的温室智能集成建模方法是有效的和准确的。
     2.优化控制策略方面:
     提出了基于TOPSIS策略的智能集成节能优化控制策略,该策略不是仅仅把能耗最低作为唯一评价指标,不是以牺牲温室环境因子为代价而实现节能,而是对温室系统各种优化控制策略下的能耗情况、最适合作物生长的环境情况、算法的迭代次数、算法的收敛速度、算法的执行时间进行综合考虑,在充分满足多个评价指标的情况下实现节能,避免出现顾此失彼的情况,以便得到综合效益最好的节能优化控制策略。
     将遗传算法、粒子群算法、标准模拟退火算法、改进模拟退火算法一、改进模拟退火算法二分别应用于玻璃温室的节能优化控制,并用TOPSIS策略实现了这五种优化控制算法的智能集成节能优化控制。
     将遗传算法、模拟退火算法、改进模拟退火算法一分别应用于全封闭温室的智能节能优化控制,并用TOPSIS策略实现了这三种优化控制算法的智能集成节能优化控制。
     分别采用捕食搜索算法、禁忌搜索算法、改进模拟退火算法一、标准粒子群算法、改进粒子群算法对多台冷水机组的负荷优化分配问题进行了研究。
     将上述控制策略应用到了玻璃温室和全封闭温室的节能减排优化控制中,节能效果满意:单一智能优化控制策略节能率为最小10.80%、最大35.75%、平均20.93%;智能集成优化控制策略的节能率为最小37.32%%、最大44.19%、平均40.67%。
     3.优化算法方面:
     用上述多种标准智能优化算法实现了温室环境系统的建模和优化控制;
     对标准模拟退换算法进行了改进,提出了改进模拟退火算法一:变异操作变搜索空间单循环SA算法;
     提出了改进模拟退火算法二:混沌遍历搜索特殊算法确定初始温度增设方差判定准则作为停止条件的SA算法;
     对标准粒子群优化算法进行了改进。
     将上述多种智能优化算法及其改进算法在温室环境系统智能集成建模和智能集成节能减排优化控制中应用。
     4.其他方面:
     将统计学理论与方法应用在建模和控制领域,并对预测值与实测值进行统计学分析。对所建立的各种智能集成模型的有效性和准确性进行了统计学分析。分析数据均表明:模型准确,精度较高。
     对每种智能集成优化控制策略的控制效果进行了节能分析,也进行了减排分析。对温室常规的燃煤加热方式与地源热泵加热方式进行了经济性分析和减排分析。
The primary problem of energy conservation control in greenhouse is how tobuild a greenhouse energy model. Crops, the protagonist of greenhouse,are alive,and it is difficult to detect its physiological processes and ecological processes.Environment affects the growth of greenhouse plants, and the physiological role ofplants,such as transpiration, photosynthesis, respiration, etc., affects thegreenhouse environment smultaneously. So,it is difficult to control the greenhouseenvironment. Greenhouse production process is complicated,with nonlinear,time-varying, strong coupling, multi-interference, uncertainty, imprecision, serioustime lag, and the energy transfer relationship in each part of the greenhouse ismore complex. To solve this problem, it is nessary to find a more effective methodfor modeling, used for energy conservation of the greenhouse.
     In this paper, the intelligent integrated modeling approach is explored to buildenergy consumption model of the greenhouse for energy conservation. Optimalcontrol strategies for greenhouse environment is explored by controlling thegreenhouse environment factors so that plants grows well in the greenhouse andenergy consumption reduces.
     The following aspects in the intelligent integrated modeling and intelligentintegrated optimization control of greenhouse is researched or investigated:
     1. Modeling methods:
     Conditional entropy-based intelligent integration of grey prediction modelingis proposed which can effectively deal with the plant-specific features dfficult tobe detected such as the physiological response and ecological processes of thegreenhouse plants.
     Process neural network model of the greenhouse environment system isestablished,which can use both the real-time data and the historical data of thegreenhouse, overcoming the limitations of traditional neural networks such aslarge sample study and generalization.
     Information entropy-based intelligent integrated optimized model parametersidentification is proposed, making full use of the more valuable information ingreenhouse data.
     Grey prediction compensation-based mechanism model of the greenhouse environment is established to compensate effectively the uncertainty, imprecision,and more disturbing of the greenhouse and the crop physiological responses andecological processes difficult to detected.
     Intelligent integrated modeling ideas based on information entropy isproposed to use more valuable information in each single model approach.
     Self-correcting generalized variance least squares identification model, neuralnetwork model, least squares support vector machines model are established forthe central air conditioning system of closed greenhouse. On the basis of the abovethree models,Intelligent integration model based on immune optimizationalgorithm is established with Satisfactory.
     Modeling idea and modeling methods described above works well with goodresults: mean absolute error is0.166330255, mean relative error is-0.12%,meanRMSE is0.453116572,mean RE is3.72%,the correlation coefficient betweenForecast data of the model and measured data of greenhouse is0.9331535~0.97287241, The coefficient of determination between them is0.870858467~0.952664962. These indicators show that the proposed intelligentintegrated modeling of the greenhouse is effective and accurate.
     2. Optimized control strategy:
     An energy-optimized intelligent integrated control strategy based on TOPSISis proposed, which do not put energy as the only evaluation, but consider a varietyof factors such as energy consumption,environmental conditions,algorithmiterations, etc, meeting the requirements of a number of evaluation fully, to obtainan energy-optimized control strategy with good comprehensive benefits.
     By using the TOPSIS strategies to integrate genetic algorithms, particleswarm optimization, the standard simulated annealing algorithm, an improvedsimulated annealing algorithm, improved simulated annealing algorithm two toachieve the purpose of saving energy,which is used in glass greenhouse for energysaving.
     Integration algorithm by the constitution of genetic algorithms, simulatedannealing algorithm, the improved simulated annealing algorithm based on theTOPSIS strategy is used in closed greenhouse.
     Predatory search algorithm, tabu search algorithm, an improved simulatedannealing algorithm, the standard particle swarm optimization, improved particle swarm optimization is applied to multiple chillers for the purpose of energysaving.
     The saving rates of single intelligent optimization control strategy when usedin greenhouse is minimum10.80%,maximum35.75%,average20.93%. The savingrates of all these intelligent integrated control strategy above-mentioned are:minimum of37.32%,maximum of44.19%, with an average of40.67%while usedin greenhouse.
     3.Optimization algorithms:
     The above variety of standard intelligent optimization algorithms has used inthe greenhouse for the purpose of energy conservation.
     Two improved simulation algorithm were proposed, standard particle swarmoptimization algorithm was improved.
     The above mentioned intelligent optimization algorithms and improvedalgorithm is used in the greenhouse for energy saving and emission reduction.
     4. Other aspects:
     The statistical theory and methods were used in the field of modeling andcontrol, the forecast data and measured data were statistically analyzed. Emissionswere analyzed for each intelligent integrated optimization control strategy.
     Economic analysis and mitigation analysis had studied for the greenhouseheating means of conventional coal-fired and ground source heat pump.
引文
[1]陈学俊,袁旦庆.能源工程概论[M].西安:西安交通大学出版社,2002.
    [2] http://zhidao.baidu.com/question/422950415.html,2013-1-4.中国燃煤发电占总火力发电的比重.
    [3]北京市发展和改革委员会.节能技术篇[M].北京:中国环境科学出版社,2008.
    [4]白泉.能源节约的经济学[M].北京:光明日报出版社,2009.7.
    [5]冯广和.温室的节能问题[J].农村实用工程技术(温室园艺),2004.5,23-25.
    [6]徐伟.中国建筑能耗现状与节能技术对策[R].中国建筑科学研究院.
    [7]朱文见,杨文丽,张天柱.温室供暖热源、热媒与散热器布置[J].2005.01,24-26.
    [8] House JM,Smith TF.A system approach to optimal control for HVAC and building system[J]. ASHRAETransactions,1995,102:412-423
    [9]李湘洲,赵志江.日本的暖通空调及建筑节能现状[J].节能技术,1995,bl.5:15一18
    [10]张喜明,旷玉辉,于立强.瑞典及我国建筑节能现状与发展[J].建筑热能通风空调,2001,VOI.2:65一67
    [11]梁春生.中央空调变流量控制节能技术[M].北京:电子工业出版社,2005
    [12]黄洁.某大楼冰蓄冷空调系统运行性能分析[J].暖通空调.2004,34(9):79-83
    [13] Mumma Stanley A.Chilled Ceiling condensation control[R].Ashrae IAQ Applications,2003
    [14]王勇.地源热泵及地下蓄能系统的实验研究[J].暖通空调.2003,33(5):21-23
    [15] Salsbury T1. A temperature controller for VAV air-handing units based on simplified physical models[J].HVAC&R Research,1998,3(3):264一279.
    [16] Kasahara M,MatsubaT. Design and tuning of robust PID controller for HVAC systems[J]. ASHRAETransaetions.1999,105(2):154一166.
    [17] QiangBi,Wen-JianCai,Qing-GuoWang,et al. Advanced controller auto-tuning and its application in HVACsystems[J].Control Engineering Practice,2000,8:633一644.
    [18] Zaheer-uddin R V P,Salem A K A. Design of decentralized robust controllers for multizone space heatingsystem. IEEE Transactions on control systems Technology,1993,1(4):246-261
    [19] Christine Haissing. AdaPtive fuzzy temperature control for hydronic heating systems. IEEE ControlSystems Magazine,2000,20(2):39-48
    [20] Ferrano FJ,Wong K V. Predietion of thermal storage loads using a neural network. ASHRAE Transaetions,1990,96(2):723-726
    [21]刘旭.节能环保温室采暖系统设计[D].泰安:山东农业大学硕士学位论文,2005.
    [22]张建一,李莉.制冷空调装置节能原理与技术[M].北京:机械工业出版社,2007.
    [23] http://www.chinaxhjr.org/content.asp?id=590.2013-1-4.联合国(NGO)世界和平基金会世界低碳环保联盟总会.
    [24]国民经济和社会发展第十二个五年规划纲要(全文). http://www.gov.cn/2011lh/content_1825838.htm,2011年03月16日.
    [25]汪小旵.南方现代化温室小气候模拟及其能耗预测研究[D].南京:南京农业大学博士学位论文,2003.
    [26] http://www.sdpc.gov.cn/xwfb/t20120704_489478.htm.中华人民共和国国家发展和改革委员会新闻中心,2012年07月04日.
    [27]邹秋滢.温室小气候模型的建立及其控制策略研究[D].沈阳:沈阳农业大学博士学位论文,2010.
    [28]林东亮.温室环境控制混合系统建模与分析[D].上海大学博士学位论文,2010.
    [29] Chiaoale,J.P.,Kittas,C.,and de Villele,O. Estimation regionale des besoins de chauffage des serres[J], ActaHortic.1981,115:493-502.
    [30] Bakker et al. Greenhouse climate control,an integrated approach[D]. Wageningen Pers, Wageningen,1995.
    [31] Challa H and Van Straten G.Optlmal diurnal climate control in greenhouses as related to greenhousemanagement and crop requirements. The computerized greenhouse:automatic control application of in plantproduction[M]. Academic Press,1993.
    [32] Van Henten,EJ.Greenhouse climate management:An optimal control approach[D]. Wageningen AgriculturalUniversity,Wageningen,1994.
    [33] De Zwart,F,A model to evaluate the performance of heating devices in horticulture[D].WageningenAgricultural University,Wageningen,1996.
    [34] Bailey,B.J. The calculation of glasshouse fuel requirement using degree-day data corrected for solar heatgain[C]. Note DN:6/798/04013,Nat.Inst.Agrie.Eng.Siloe,1977.
    [35] Hurt, R.G. and Sheard,G.F. Fuel saving in greenhouses:The biological effect.Guide No.22[M].GrowerBooks,London,1981.
    [36] Breuer, J.J.G.,Shotr T.H. Greenhouse energy demand comparisons for the Netherlands and Ohio[M].U.S.A.ACta.HortiC.1985.
    [37] O.Jolliet, L.Danloy, J.B.Gay, G.L.Munday and A.Reist, HORTICERN:an improved static model for Predictingthe energy consumption of a greenhouse[M]. Agric. and For. Meteorol.1991.
    [38]蔡龙俊,鲁雅萍.农业温室供热系统的研究与设计[J].建筑热能通风空调,2001,20(2):23-25.
    [39]尹劲松.智能温室环境控制系统的设计与试验研究[D].重庆:西南农业大学硕士学位论文,2004.
    [40] N. Bennis, J. Duplaix, G. En′ea, M. Haloua, H. Youlal ENSET, Greenhouse climate modelling and robustcontrol[J]. Computers and Electronics in Agriculture,61(2008)96-107.
    [41] J.P. Coelho, P.B. de Moura Oliveira, J. Boaventura Cunha, Greenhouse air temperature predictive controlusing the particle swarm optimisation algorithm[J]. Computers and Electronics in Agriculture.49(2005)330-344.
    [42] Z.S. Chalabi, B.J. Bailey, D.J. Wilkinson, A real-time optimal control algorithm for greenhouse heating[J].Computers and Electronics in Agriculture,15(1996)1-13.
    [43] X. Blasco, M. Mart′nez, J.M. Herrero, C. Ramos, J.Sanchis, Model-based predictive control of greenhouseclimate for reducing energy and water consumption[J].Computers and Electronics in Agriculture.55(2007)49-70.
    [44] D.L. Critten,1, B.J. Bailey, A review of greenhouse engineering developments during the1990s[J],Agricultural and Forest Meteorology.112(2002)1-22.
    [45] Hans-Juergen Tantau, Energy saving potential of greenhouse climate control [J], Mathematics and Computersin Simulation.48(1998)93-101.
    [46] S. Pi n′on, E.F. Camacho, B. Kuchen, M. Pe na,Constrained predictive control of a greenhouse[J], Computersand Electronics in Agriculture.49(2005)317-329.
    [47] Qiuying Zou; Jianwei Ji; Suyan Zhang; Minhui Shi; Yan Luo. Model predictive control based on particleswarm optimization of greenhouse climate for saving energy consumption[C]. World Automation Congress(WAC),2010. Page(s):123–128.
    [48]张军.一种基于最小二乘法的经典辩识的新方法[J].信息技术,2001,11.19-21.
    [49] Sim Dong-Joon, et al. Application of vector optimization employing modi ied genetic algorithm topermanentmagnetmotor design [J]. IEEE Trans on Magn,1997,33(2).
    [50] Wu Qing, Shen Xueqin, Yang Qin gxin, et al. Using wavelet neural networks for the optimal design of electromagnetic devices [J]. IEEE Trans on Magn,1997,33(2).
    [51] Megahed A I, Malik O P. An artificial neural network based digital differential protection scheme forsynchronous generator stator winding proection [J]. IEEE Trans on Power Delivery,1999,14(1).
    [52] Lin C E, Ling J M, Huan g C L. An expert system for transformer fault diagnosis using dissolved gasanalysis [J].IEEE Trans on Power Delivery,1993,8(1).
    [53]王雅琳,桂卫华,阳春华等.自适应监督式分布神经网络及其工业应用[J].控制与决策,2001,16(5):549-556.
    [54]王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究[D].长沙:中南大学,2001.
    [55]王亦文,桂卫华,王雅琳.基于最优组合算法的烧结终点集成预测模型[J].中国有色金属学报,2002,12(1):191-195.
    [56] A.J. Udinkt enC ate,Modelling and Simulation in Greenhouse Climate Control, Acta Hort,Vol.174,pp.461-467,1985.
    [57] B.Nielsen and H.Madsen, Identification of a Linear Continuous Time Stochastic Model of the Heat Dynamicsof a Greenhouse, J.agric.Engng Res. Vol.71,pp.249-Z56,1998.
    [58] P.C. Young and M.J.Lees, Simplicity Out of Complexity in Glasshouse Climate Modeling, Acta Hort.Vol.406,pp.15-27,1996.
    [59] Peter Young and Arun Chotai,Data-Based Mechanistic Modeling, Forecasting, and Control, IEEE ControlSystems Magazine, Vo1.9(10),pp.14-27,2001.
    [60] F.F. Baptista,J.Litago,L.M.Navas and J.F. Meneses,Validation and Comparison of a Physical and StatisticalDynamic Climatic Model for a Mediterranean Greenhouse in Portugal, Acta Hort.Vol.(559),pp.479-485,2001.
    [61] T.Boulard, B.Draoui and F.Neirac,Calibration and Validation of a Greenhouse Climate Control Model ActaHort.Vo1.406,pp.49-61,1996.
    [62] N.Sigrimis and N.Rerras, A Linear Model for Greenhouse Control, Transactions of the ASAE, Vol.39(1),pp.253-261,1996.
    [63] C.M. Wells, P. C. Austin, T. Hesketh and C.J. Studman, Modelling and Control for New Zealand Greenhouse,Vol.174, pp.549-554,1985.
    [64]李树海,华北型连栋温室热环境模型,中国农业大学硕士学位论文,1-79,2003.
    [65]王定成,方廷健,高理富等,支持向量机回归在线建模及应用,控制与决策,Vol.18(1),pp.89-91,95,2003.
    [66] Nerderfoff E.M., Carbon dioxide balance. In: Greenhouse Climate Control: an Integrated Approach, pp151-155,WageningenPress,Wageningen,Netherland.
    [67]王绍金,J.Deltour and J.Nijskens.温室环境动态模型精确分析解初探,浙江农业大学学报,Vo1.20(2):218-220,1994.
    [68]郭慧卿,李振海,张振武,崔引安,日光温室温度环境动态模拟Ⅰ.数学模型的建立与程序验证,沈阳农业大学学报,Vo1.25(4):438-443,1994.
    [69]王万良,李敏,李勤学,李章维,吴启迪,温室环境的模糊逻辑网络建模与智能控制,机电工程Vo1.17(2):63-66,2000.
    [70]张亚红,陈端生,日光温室空气湿度环境及除湿技术研究-Ⅱ强制通风的降湿效果及效应,Vol.21(2):56-60,2000.
    [71]吴文勇,杨培岭,刘洪禄,日光温室土壤-植物-环境系统水热耦合运移动态模拟,灌溉排水学报,Vol.22(3):49-53,2003.
    [72]邓璐娟.智能温室的模型和控制策略研究[D].上海:上海大学,2003.
    [73] L.D.Albright,R.S. Gates,K.G.Arvanitis and A.E. Drysdale,Environment Control for Plants on Earth and inSpace. IEEE Control Systems Magazine Vol.9(10):28-47,2001.
    [74] Nerderfoff E.M.,Carbon dioxide balance.In:Greenhouse Climate Control:an Integrated Approach,pp151-155,Wageningen Press,Wageningen,N etherland.
    [75] Lu L, Cai W. A universal engineering model for cooling towers[C].The International Compressor EngineeringConference and Refrigeration and Air Conditioning Conference,2002.
    [76] Stoecker WF. Procedures for simulating the performance of components and systems for energycalculations[J]. New York: ASHRAE;1975.
    [77] Lu L;Cai W. A new approach to set point control in chilled water loops[C].The International CompressorEngineering Conference and Refrigeration and Air Conditioning Conference,2002
    [78] ASHRAE. ASHRAE handbook-systems and equipment[M]. American Society of Heating, Refrigerating andAir-Conditioning Engineers Inc,2000.
    [79] Dexter A.L, Haves P. A robust self-tuning predictive controller for HVAC applications[J]. ASHRAETransactions,1989
    [80] Lu L, Cai W. A universal engineering model for cooling towers[C]. The International Compressor EngineeringConference and Refrigeration and Air Conditioning Conference, Purdue University, USA, July2002
    [81] Kreider JF, Rabl A. Heating and cooling of buildings design and efficiency[M]. McGraw-Hill, Inc,1994.
    [82] Farris D.R.McDonald T.E.Adaptive operation control-an algorithm for direct digital control[J].ASHRAETransactions,1980
    [83] Wang Y, Cai W, Soh YC, Li S, Xie L. An engineering model of coils and heat exchangers for HVAC systemsimulation and optimization[C].2nd WSEAS International Conference on Simulation, Modeling andOptimization, Greece,2002.
    [84] Li X.M,Wepfer W.J.Recursive estimation methods applied to a single-zone HVAC system. ASHRAETransactions,1987.
    [85]李明海.中央空调水系统的优化控制与节能技术研究[D].西安:西安建筑科技大学,2011.
    [86] Chen Y.H, Lee K.M. Adaptive robust control scheme applied to a single-zone HVAC system[J].ASHRAETransactions,1990.
    [87] Dasaratha V S, Richard C,S, Eric B B. Process modeling using stacked neural networks[J]. AIChE Journal,1996,42(9):2529-2539.
    [88] Buckley J J, Hayashi Y. Fuzzy neural networks: A survey Fuzzy Sets and Systems[J],1994,66:1-13.
    [89] ChoS B, Kim J H. Combining multiple neural networks by fuzzy integral for recognition[J]. IEEE Eran. SMC,1995,25(2):380-384.
    [90] Detlef N, Kruse R. Neuro-fuzzy systems for function approximation[J]. Fuzzy Sets and Systems,1999,101:261-271.
    [91] Fortnamm N F. Application of neural networks in rolling mill autornation[J]. Iron and SteelEngineer,1995,72(2):33-36.
    [92] Chen X F, Gui W H, Wang Y L, et al. A prediction model of silfur based on intelligent intefrated strategy[C].The15th World Congress of International Federation of Automatic Control, Barcelona, Spain,July,2002.
    [93] Cho S Z, Cho Y J, Yoon S C. Reliable rill force prediction on cold mill using multiple neural networks[J].IEEE Tran. Neural Networks,1997,8(4):874-880.
    [94]张湜,陈士贤,张中秋.化工过程半经验模型的求取及回归方法和ANN方法的联合应用[J].石油化工自动化,1999,(5):26-29.
    [95]张军,张侃谕,周强.基于改进模拟退火算法的多台冷水机组负荷优化分配[J].农业机械学报,2012,43(3):187-192.
    [96]戴剑锋.基于模型的温室加温控制目标设定系统的研究[D].南京:南京农业大学,2006.
    [97]张军,张侃谕.温室温度控制系统不确定性与干扰的灰色预测补偿算法[J].农业工程学报,2013,29(10):225-233
    [98]陈彦敏.基于联合条件熵的文本特征提取算法的研究及其应用[D].上海:华东师范大学,2013
    [99]何新贵,许少华.过程神经元网络及其在时变信息处理中的应用[J].智能系统学报,2006,1(1),1-8
    [100]陈教料.温室小气候的建模及其智能控制研究[D].杭州:浙江工业大学,2004
    [101] Putter, E.; Gouws, J., An automatic controller for a greenhouse using a supervisory expertsystem,Electrotechnical Conference, MELECON '96.,8th Mediterranean,Volume2,13-16May1996Page(s):1160-1163vol.2
    [102]余泳昌,薛文芳,马建民.改进型PID控制算法在现代温室环境参数控制中的应用[J].河南农业大学学报,1999,33(2):183-185.
    [103]朱伟兴,毛罕罕,李萍萍等.遗传优化模糊控制器在温室控制系统中的应用[J].农业机械学报,2002,33(3):76-79.
    [104] Ding Wei-long; Xiong Fan-lun; Cheng Zhi-jun,Study and implementation of the expert system forgreenhouse tomato planting, Information Technology and Applications,2005. ICITA2005. ThirdInternational Conference on,Volume1,4-7July2005Page(s):325-329vol.1
    [105]严海.VENLO型温室建模与智能控制研究[D].杭州:浙江工业大学,2009
    [106]李秀梅,赵春江,乔晓军等.基于改进遗传算法的温湿度模糊神经网络控制器[J].农业工程学报,2004,20(1):259-262.
    [107]余倩倩.温室环境小气候模型的构建及智能控制算法的研究[D].南京:南京农业大学,2010.
    [108] Zhang Jun,Zhang Kanyu.Predatory Search Strategy for Load Distribution of Multiple Chiller Water Units forthe Purpose of Energy Saving[J]. Advanced Materials Research.2012, Vols.383-390,3586-3592.Manufacturing Science and Technology. Trans Tech Publications, Switzerland.
    [109] David Freedman; Robert Pisani, Roger Purves. Statistics [M]. Norton&Company.1998.
    [110] Zhangjun,Zhang Kanyu.An Improved Particle Swarm Optimization Approach for Temperature Control inHVAC for the Purpose of Energy Saving[J]. Trans Tech Publications, Switzerland, Advanced MaterialsResearch. Manufacturing Science and Technology.2012, Vols.383-390,4768-4774.
    [111]人大经济论坛:计量经济学与统计版。http://bbs.pinggu.org/forum.php?mod=viewthread&tid=679709&page=1
    [112] Zhang Jun,Zhang Kanyu.A Particle Swarm Optimization Approach for Optimal Design of PID Controller forTemperature Control in HVAC[C]. IEEE Computer Society:3rd International Conference on MeasuringTechnology and Mechatronics Automation,2011, v1, p230-233,2011.
    [113] Zhang Jun,Zhang Kanyu.Application of tabu search heuristic algorithms for the purpose of energy saving inoptimal load distribution strategy for multiple chiller water units[C]. Proceedings of the2010IEEEInternational Conference on Progress in Informatics and Computing,2010,Volume1,Pages:303-307.
    [114]张洁.空气源热泵热水器的季节性能优化与制冷剂流量特性研究[D].上海:上海交通大学,2006.
    [115] Zhang Jun,Zhang Kan-yu.Optimal load distribution strategy for multiple chiller water units based on adaptivegenetic algorithms[C]. Proceedings-20102nd WRI Global Congress on Intelligent Systems. Volume:2,Pages:5-8.
    [116] T.Saito,T.Yshii.Regional reports—Asia and Pacific[J].7th International Energy Ageney Conference on HeatPump Technologies,2002,42(1):38一46.
    [117] John Plunkett,ete.Energy Effieiency and Renewable Energy Resource Development Potential in New YorkState[J].Summary Report Prepared for New York State Energy Research and DevelopmentAuthority,2003,(8).
    [118]林立瓦,张军,张侃谕.基于ENC28J60的中央空调节能控制器以太网接口设计[J].仪表技术2010,07,P54-56.
    [119]林利瓦,徐小勇,张军,张侃谕.中央空调变流量PLC控制系统设计[J],自动化仪表2009,09,P56-58,61.
    [120]张军.最小二乘法在经典阶跃响应辩识中的应用[J],《包头钢铁学院学报》,2000,19(4),2000年12月.
    [121] Miura.N, Wang.K.Performance of a heat pumpusing direct expansion solar collectors[J]. Solar Energy,1999,65(3):189-196.
    [122] BARTEK ROSZAK,MIREILLE E.BROUCKE, Reachability of a Set of Facets for Linear Affine SystemsWith n-1Inputs[J].IEEE Transactions on Automatic Control,2007,52,(2):359-364.
    [123] Xu Guoying, Zhang Xiaosong,Deng Shiming. A simulation study on the OPerating Performance of a solar一air source heat pump water heater[J]. Applied Therma Engineering,2006,26(12):1257一1265.
    [124] BELKACEM SAIT,HASSANE ALLA,Modelling by Hybrid Petri nets in dynamic electricalsystems[J].WSEAS Transactions on Systems,2006,5(11):2606-2611.
    [125] Schaft A. V. D., Schumacher H.. An Introduction to Hybrid Dynamcal Systems[M].London:Springer-Verlag,2000
    [126] M. Tchamitchian, R. Martin-Clouaire. SERRISTE: A daily set point determination software for glasshousetomato production[J]. Computers and Electronics in Agriculture.2006(50):25–47.
    [127]王耀林.国内外设施农业现状及发展趋势[J].中国农业科学,2001,34(增刊):96-100.
    [128]张军.一种基于最小二乘法的经典辩识的新方法[J],《信息技术》,2001,11.
    [129]李萍萍,毛罕平.温室环境控制系统及技术效果分析[J],江苏理工大学学报,1998,19(4)
    [130]伍德林,毛罕平,李萍萍.基于经济最优目标的温室环境控制策略[J].农业机械学报,2007,38(2):115-119.
    [131]唐储文.基于PC/104嵌入式系统大型温室多模态专家控制系统的开发与应用[D].上海:上海大学,2003.
    [132]荷兰Priva温室计算机控制系统的用户使用手册
    [133]以色列Eldar温室计算机控制系统的用户使用手册
    [134]申茂向,何革华,张平.荷兰设施农业的考察与中国工厂化农业建设的思考[J].农业工程学报,2000,16(5):1~7
    [135]周长吉,冯广和.引进温室带给中国设施园艺现代化的思考[J],沈阳农业大学学报,2002-02,31(1):23~25
    [136]黄丹枫等.现代化温室生产效益评析[J],沈阳农业大学学报,2000,31(1):18~22
    [137]蔡象元等,现代蔬菜温室设施和管理,上海科学技术出版社,2000
    [138]谈佚晔等.温室环境集散控制系统中现场控制器的设计与开发[J],自动化仪表,2000.5
    [139]赵斌,王克奇等.我国温室环境的模糊控制技术应用现状[J].自动化仪表,2008,29(5):1-4
    [140]何世钧,张路,张弛等.智能温室自动控制系统的设计与应用[J].河南农业大学学报,2000,34(4):399-401.
    [141]王振宇,成立.基于模糊控制的温室调节装置的研究[J].浙江大学学报:农业与生命科学版,2006,32(2):195-199.
    [142]李秀华.温室环境下多变量模糊控制系统[J].辽宁工程技术大学学报,2006,25(4):582-584.
    [143]宫赤坤,陈翠英,毛罕罕.温室环境多变量模糊控制及其仿真[J].农业机械学报,2000,31(6):52-54.
    [144]陈健,姜宇,杨国辉.基于分级模糊模型的温室环境控制方法[J].林业科学,2006,42(5):104-109.
    [145]杜辉.模糊自适应Smith预估器在温室控制中的应用研究[J].计算机仿真,2006,23(6):150-154.
    [146]杨卫中,王一鸣,李海健.温室温度模糊控制参数在线自整定算法[J].农业机械学报,2005,36(9):79-82
    [147]李锡文,杨明金,杨仁全.现代温室环境智能控制的发展现状及展望[J].农机化研究,2008(4):9-13
    [148]郑文刚,赵春江,王纪华.温室智能控制的研究进展[J].农业网络信息,2004(2):8-11
    [149]杜尚丰,李迎霞,马承伟,等.中国温室环境控制硬件系统研究进展[J].农业工程学报,2004,20(1):7-12.
    [150]陶然,王树文,薛满圆,等.智能化温室环境控制系统的研究[J].农机化研究,2004(2):53-55.
    [151]吕艳,陈神.科技部。十五。工厂化高效农业示范工程项目专家访谈--。温室环境智能控制关键技术研究与开发。项目负责人[J].农村实用工程技术温室园艺,2005(5):12-16.
    [152]李俊,杜尚丰.智能温室控制器的开发[J].微计算机信息(嵌入式与SCO),2006,26(5):65-66;211.
    [153]李宏俊,黄鑫,卢开砚.以单片机为核心的温室智能控制系统[J].电子元气件应用,2007,9(5):20-23
    [154]张晓文,杨仁全,周增产,等.温室环境智能控制系统的研究与开发[J].农机化研究,2005(1):147-149;152.
    [155]杨明,马祖长,赵广发.基于CAN总线的智能温室控制系统[J].工业控制与应用,2006,25(4):50-51;63.
    [156]杨卫中,王一鸣,李海健.基于现场总线思想的分布式温室智能控制系统[J].农业工程学报,2006,22(9):163-167.
    [157]胡太君,王剑平,应义斌.工业以太网在温室控制中的应用前景[J].农机化研究,2004(1):209-212.
    [158]李迎霞,杜尚丰.中国温室环境智能控制算法研究进展[J].农业工程学报,2004,20(2):267-272.
    [159]王忠义,陈端生,黄岚.温室植物生理指标监测及应用研究[J].农业工程学报,2000,16(2):101-104.
    [160]王忠义,陈端生,黄岚.利用人工神经网络建立植物电信号与环境因子关系[J].农业工程学报,2001,17(3):142-145.
    [161]李慧,张晓文,等.温室环境专家控制系统的设计与实现[J].农机化研究,2006(3):86-89
    [162]于海业,马成林,等.远程控制技术在温室环境控制中的应用现状分析[J].农业机械学报,2003,34(6):160-163
    [163]徐刚,郭世荣等.基于生长模型的温室小型西瓜栽培管理专家系统(ESWCM)的研究和建立[J].农业工程学报.2006,22(4):157-161
    [164]张晓文,杨仁全等.温室环境智能控制系统的研究与开发[J].农机化研究.2005,1:147-149,152
    [165] T.Morimoto, Y.Hashimoto. AI approaches to identification and control of total plant production systems[J].Control Engineering Practice.2000,(8):555-567
    [166][C].SICE-ICASE,2006. International Joint Conference,2006,628-633
    [167] BERGSTRA,JA,MIDDELBURG,CA,Continuity controlled hybrid automata[J].Journalof Logic andAlgebriac Programming,2006,(68):1-2,5-53.
    [168] ALUR, R, GROSU, R, LEE, IS, SOKOLSKY, O, Compositional modeling and refinement for hierarchicalhybrid systems[J].Journal of Logic and Algebraic Programming,2006,68,(1):105-128.
    [169] ZHOU BINGHAI, WANG SHIJIN, TAO LIHUA,Modeling method of hybrid systems using extended Petrinets[J].Journal of Southeast University,2005,21(3):304-309.
    [170] PETRECZKY,M,Reachanbility of linear switched systems:Differential geometric approach[J].Systems andControl letters,2006,55,(2):112-118
    [171] Ibrahim Kaya. IMC based automatic tuning method for PID controllers in a Smith predictorconfiguration[J]. Computer and Chemical Engineering,2004,28:281~290.
    [172] Ibrahim Kaya. Autotuning of a new PI-PD Smith predictor based on time domain specifications[J]. ISATransactions,2003,42:559~575.
    [173] Gurpreet Singha, Parm Pal Singhb,Prit Pal Singh Lubanaa. Formulation and validation of a mathematicalmodel of the microclimate of a greenhouse[J]. Renewable Energy,2006,31:1541~1560.
    [174] Bartzanas T, Tchamitchian M, Kittas C. Influence of the heating method on greenhouse microclimate andenergy consumption[J]. Biosystems Engineering,2005,91(4):487~499.
    [175] B Wayne Bequette. Process control modeling, design, and simulation[M]. New Jersey:Prentice Hall, Inc.,2003.
    [176] Dale E Seborg, Thomas F Edgar, Duncan A Mellichamp. Process dynamics and control, second edition[M].New York: John Wiley&Sons, Inc.,2004
    [177] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Languages, and Computation,2nded[M]. Addison-Wesley,2001.
    [178] A. Back, J. Guckenheimer, and M. Myers. A Dynamical Simulation Facility for Hybrid systems[J],Springer-Verlag,1993736:255-267.
    [179] D. N. Godbole, J. Lygeros, and S. Sastry, Hierarchical Hybrid Control: A Case Study[J], Proceedings of theIEEE Conference on Decision and Control, Lake Buena Vista, FL,1994:1592-1597.
    [180] M. S. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control[D]. Ph.D. Dissertation,Massachusetts Institute of Technology,1995
    [181] A. Ray, A. Surana, and S. Phoha. A Language Measure for Supervisory Control[J]. Applied MathematicsLetters,200316:985-991.
    [182] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete Event Processes[J]. SIAMJ.Control and Optimization,1987,25(1):206-230.
    [183] C. Lagoa, J. Fu, and A. Ray, Robust Optimal Control of Regular Languages[J],Automatica,2005,41(8):1339-1445.
    [184] L. Ljung. System Identification: Theory for the User,2nd ed[M]. Prentice Hall,1999.
    [185] A. Ray, V. Phoha, and S. Phoha, Eds.. Quantitative Measure for Discrete Event Supervisory Control: Theoryand Applications[M].Springer,2005.
    [186] A. Ray, J. Fu, and C. Lagoa. Optimal Supervisory Control of Finite State Automata[J]. International Journalof Control,2004,77(12):1083-1100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700