用户名: 密码: 验证码:
水环多联式热泵空调系统运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多联式空调系统(Variable Refrigerant Flow Air Conditioning System,VRF)有着诸多公认的优点,但同时也为其自身局限性所困,很难满足严寒地区或大型、高层建筑的需求。水环热泵空调系统(Water Loop Heat Pump AirConditioning System,WLHP)是一种以回收建筑内部余热为主要特征的系统,但其存在噪声污染严重和不能按质用能等缺点。本文对传统VRF系统及WLHP系统存在的问题进行了详细分析,为解决这些问题,将两种系统的思想精髓相结合,首次提出了水环多联式热泵空调系统(Water Loop Variable Refrigerant FlowHeat Pump Air Conditioning System,WLVRF)的概念。这种新型复合式空调系统集成了VRF和WLHP的优点,同时去除了各自的缺点。为改善WLVRF系统的能源利用结构,文章提出将可再生低位热源引入系统,给出了几种WLVRF系统的衍生形式以供工程选择使用。在这些低位热源中,以空气源分布最广,使用条件最容易满足。因而,本文以空气源WLVRF系统(以ASHP作为主要加热设备)为例,对该系统的运行工况、节能性、适用性、经济性及如何进行系统方案设计和运行控制等问题进行了研究。
     为研究WLVRF的运行特性,本文建立了其主要设备的数学模型。利用既有文献中的实验数据对模型进行了误差验证。为实现WLVRF系统与建筑的耦合,选择了一个样本建筑,建立了建筑的负荷计算模型。利用系统设备数学模型模拟了空气源热泵(Air Source Heat Pump,ASHP)及水冷多联式空调(Water SourceVariable Refrigerant Flow Air Conditioning System,WSVRF)在WLVRF系统中的运行工况。ASHP在WLVRF系统内工作时,其出水温度远低于传统ASHP直接供热的情况,因而可以在更低的室外气温条件下安全、高效运行。对这种低温工况下ASHP的主要参数进行了仿真计算,得出ASHP的能效比随低温工况变化的关系,证明了WLVRF空调系统可以为ASHP机组提供较传统ASHP系统更加优越的运行条件,也为整个WLVRF系统的能效计算奠定了基础。
     对WLVRF系统中WSVRF机组的冬季工况进行了仿真,并将其与传统的空气源多联式空调系统(Air Source Variable Refrigerant Flow Air ConditioningSystem,ASVRF)的冬季工况相比较。 WLVRF系统与传统VRF相比,可以解决VRF机组性能受室外气候条件影响的问题。为更好的阐述WLVRF系统中VRF机组规模缩小给系统带来的利处,本文首次提出了VRF机组负荷重心的概念。研究了系统负荷分布不同、负荷率不同时,机组的容量负荷重心及能效负荷重心的变化情况,给出了一种方便易行,且误差在可接受范围内的负荷重心计算方法。负荷重心的提出及其计算方法的探究,可以为VRF系统设计和经济性分析提供帮助,也可以更好的定义VRF系统规模大小的概念,从而进一步说明WLVRF系统中VRF机组规模缩小给系统带来的好处。
     在对ASHP及WSVRF机组运行特性研究的基础上,将WLVRF系统模型与建筑模型相耦合,对WLVRF系统冬季瞬时能效比的影响因素进行了探讨,分析了冷负荷数,室外气温,环路水温等因素对系统冬季瞬时能效比的影响情况。对于一个既有建筑而言,冷负荷数和室外气温是无法人为控制的量。因而,改善WLVRF冬季瞬时能效比的唯一途径是适当改变环路水温。为此,对不同冷负荷数和室外气温时的最佳环路水温进行了考察。在此基础上,以环路保持最佳水温为控制原则,计算了WLVRF系统在北方几个代表性城市,不同内、外区建筑面积比条件下,采暖季的季节性能系数及一次能源利用率情况,以便作为北方城市大型办公建筑采用WLVRF系统供热是否节能环保的参考依据。
     为改善WLVRF空调系统的运行特性,亦为加速其应用推广,提出了几种有利于降低投资成本、改善系统节能性,且简单易操作的设计和控制方案,并对各方案进行了模拟验证。结果表明,利用ASHP最佳经济平衡点温度设计法可以降低系统的投资成本;利用温度双位控制法替代最佳环路水温法更有利于系统节能运行。而增多ASHP台数和扩大水环路管径的方法,对于提高系统运行的稳定性效果较好,但对系统节能贡献不大。这些结论为WLVRF系统设计和控制方案的选择提供了理论依据。
     最后,建立了WLVRF的费用计算模型,分析了WLVRF系统的经济性,给出了不同城市对应的适合WLVRF系统的ASHP最佳经济平衡点温度,以作为工程设计的参考。按气候分区不同,将WLVRF系统与其它常用空调系统的经济性进行了比较,以使设计者和使用者对WLVRF的经济性有更直观的认识,更加有利于WLVRF系统被快速而又理性地推广应用,使得这种集成了多种系统优点的空调方式早日有效地为暖通事业服务。
Variable refrigerant flow air conditioning system (VRF) is recognized as largeamount of advantages. However, because of its own limitations, it is difficult to meetthe demands for high or large buildings in cold area. Water loop heat pump (WLHP) isan air conditioning system with heat recovery function. But it makes big noise andwastes energy quality. The defects of VRF and WLHP are analyzed here. To solve theproblems, water loop variable refrigerant flow heat pump air conditioning system(WLVRF) is proposed for the first time, which integrated advantages of both VRF andWLHP. The new system combines benefits of the two old systems and overcomes theirshortcomings. To optimize the energy structure, a few kinds of renewable energy isintroduced to WLVRF. Thus, application schemes of WLVRF with different renewableenergy are raised. Among these schemes, WLVRF with air source heat pump is the mostavailable. Therefore, air source WLVRF is studied in detail. To promote the new system,its operating property, energy efficiency, applicability, economy and methods of designand control are investigated.
     To study the operating property of WLVRF, mathematical modals of its mainequipments are established. Based on experimental data in reference,the accuracy ofthe modals are verified. The modal of air conditioning load for a building is also set upto couple with WLVRF system. The heating conditions of air source heat pump (ASHP)and water source variable refrigerant flow air conditioning system (WSVRF) inWLVRF are simulated based on the mathematical modals. When ASHP works in aWLVRF system, its outlet water temperature is much lower than when it works in atraditional ASHP system. So ASHP works more safely and efficiently in WLVRF. Themain parameters of ASHP in the low-temperature condition are calculated, andparametric curves are drawn. This provides a basic to the calculation of energyefficiency for the whole WLVRF system. The fact is proved that WLVRF offers a betterworking condition to ASHP than traditional ASHP system. The result lays a foundationfor the calculation of energy efficiency on WLVRF.
     The working conditions of WSVRF unit in WLVRF are simulated and comparedwith the working conditions of air source variable refrigerant flow air conditioningsystem (ASVRF) in winter. Seen from the result, VRF units in WLVRF are lesssensitive than ASVRF to outdoor climate. To elaborate the benefit on the deflation ofVRF units in WLVRF system, the concept of VRF loading center is proposed. Thevariation of heating capacity loading center and energy efficiency loading center withdifferent load distribution and loading rate is researched. A simple calculation method ofloading center with acceptable accuracy is given. The concept and calculation method of loading center can provide assistance in the design and economic analysis of VRFsystem. Loading center explains the scale of VRF well, and shows the profit of smallerscale for VRF unit in WLVRF system.
     Based on the research for the operating property of ASHP and WSVRF unit, theinfluencing factors to instantaneous energy efficiency of WLVRF in winter areinvestigated by coupling WLVRF system with the building. The influencing factors areincluding cooling load ratio, outdoor temperature and loop water temperature. It isanalyzed that how these factors influence the instantaneous energy efficiency ofWLVRF system. For a certain building, the cooling load ratio and outdoor temperaturecan never be controlled. Thus, the only way to improve the energy efficiency is to adjustwater temperature. That’s why the optimal water temperature is studied. With watertemperature maintaining the optimal value, the energy efficiency and primary energyratio for WLVRF of buildings with different inner area ratios in representative cities arecalculated. The results are given in a table. It can be regard as a standard to expect ifWLVRF is energy saving or not.
     To improve the characteristics and promote the use of WLVRF system, optimaldesign schemes and control methods are researched. Simulation results show that themeans to decide capacity of ASHP basing on the optimal economic balance point canreduce the initial investment; moreover, two position control method on watertemperature can slash energy consumption of the system. It stabilizes the workingcondition obviously but saves almost no energy by increasing the number of ASHP unitsand expanding diameter of water loop. So the first two methods should be selected tocreate a low energy consumption WLVRF system.
     Finally, the economy of WLVRF system is analyzed by establishing acomputational modal of the costs for WLVRF system. The optimal economic balancepoints of ASHP for WLVRF in cities are calculated. It can be used as a basis forengineering design. The economic comparison of WLVRF system with other commonair conditioning systems is carried out in different climate zone. The economiccomparison gives designers and users a visual impression on the economy of WLVRFsystem. It is helpful to promote the application of WLVRF system quickly and rationally.The ultimate goal is to make the WLVRF system with great advantages to contribute toHVAC career as early as possible.
引文
[1]马最良,姚杨,姜益强.水环热泵空调系统设计[M].北京:化学工业出版社,2011:1-2.
    [2]王志刚,徐秋生,俞炳丰.变频控制多联式空调系统[M].北京:化学工业出版社,2006:50-51.
    [3] Cooper W S. Operative Experience with Water Loop Heat Pump. ASHRAETransaction [C]. ASHRAE Transaction,1994,100,Part1:1569-1576.
    [4] Chen L G D. Progress in Study on Constructal Theory and Its Applications [J].Science China,2012,55:802-820.
    [5] Yuan S,Grabon M. Energy Analysis and Optimization of a Water-loop HeatPump System[J]. Journal of Thermal Science and Engineering Applications.2010,2:021005-1.
    [6] Cane R L,Clemes S B, Forgas D A. Validation of Water-loop Heat PumpsSystem Modeling[C]. ASHRAE Transaction.1993,99,Part2:3-12.
    [7] Kush E A,Brunner C A. Field Test Results Applied to Optimizing Water-loopHeat Pump Design and Performance[C]. ASHRAE Transaction.1991,97,Part2:727-735.
    [8] Howell R H,Zai J H. Analysis of Heat Recovery in Water-loop Heat PumpSystem[C]. ASHRAE Transactions.1990,96,Part1:1039-1047.
    [9] Cane R L D. Validation of Water-loop Heat Pump System Modeling[C]. ASHRAETransactions.1993,99,Part1:3-12.
    [10] Henderson H I,Khattar M K,Carlson A W. The Implication of The MeasuredPerformance of Variable Flow Pumping Systems in Geothermal and Water-loopHeat Pump Application[C]. ASHRAE Transaction.2000,106,Part1:533-542.
    [11] Chapon C,Delandre M. Air Conditioning by Heat Pump on a Water-loop.ASHRAE Transaction[C].1991,97,Part1:283-286.
    [12]徐柱天译.水循环热回收热泵空调系统[J].暖通空调.1989,19(1):45-49.
    [13] Pletsch J A. Water-loop Heat Pump Systems Assessment[C]. ASHRAETransactions.1990,96,Part1:220-230.
    [14] Howell R H,Zaidi J H. Heat Recovery in Buildings Using Water-loop Heat PumpSystem[C]. ASHRAE Transactions.1991,97,Part1:776-789.
    [15]王玉平,刘永平.水环热泵系统在超高层酒店公寓中的应用[J].暖通空调.2011,41(11):67-70.
    [16]唐丹,苏艳辉.广州纺织博览中心水环热泵中央空调系统设计与分析[J].制冷.2011,30(1):51-54.
    [17]狄世彬,李永,韩旭.水环热泵空调系统在底下工程中的应用[J].解放军理工大学学报(自然科学版).2011,12(2):139-143.
    [18]宋应乾,龙惟定,吴玉涛.水环热泵应用于大型商业裙房的模拟与分析[J].暖通空调.2010,40(10):62-66.
    [19]刘天伟,杜垲.水环热泵空调系统应用于综合办公建筑的节能性研究[J].暖通空调.2010,40(3):63-67.
    [20]刘大伟,龚延风.水环热泵空调系统变流量节能控制探讨[J].暖通空调.2009,39(7):152-156.
    [21]邓玉艳,丁力行.新型水环热泵低温新风处理设备的研究[J].制冷与空调.2008,8(5):39-42.
    [22]刘天伟,杜垲.水环热泵空调系统最佳循环水温研究[J].建筑热能通风空调.2009,28(4):41-44.
    [23]卢琼华,徐菱虹,胡平放.水环热泵空调系统的适用性研究[J].流体机械.2008,36(3):63-66.
    [24]叶学敏,李征涛,郭传欣等.多联机性能测试环境实验室的研制[J].制冷空调与电力机械.2008,124(9):19-21.
    [25]黄海滨,李征涛,李蒙蒙等. VRF机组性能测试室的研制与实验环境研究[J].制冷技术.2010,38(7):48-51.
    [26]张超甫,宋泽协,李红旗.变频多联式空调系统运行特性实验研究[J].应用能源技术.2010,154(10):43-47.
    [27]石文星,赵伟,王宝龙.论多联式空调(热泵)系统的季节性能评价方法[J].制冷学报.2008,29(3):10-17.
    [28]冯玉伟,张旭,黄晓庆.数码涡旋多联式空调系统冬季除霜的运行特性实验[J].能源技术.2008,29(4):222-225.
    [29]冯玉伟,张旭,黄晓庆.数码涡旋多联式空调系统冬季以空气源热泵制热运行的实验研究[J].暖通空调.2008,38(11):143-146.
    [30]张旭,杨刚,杨洁.数码涡旋多联式空调系统夏季运行特点及能耗特性的实验研究[J].制冷学报.2008,29(2):14-19.
    [31]张东亮,张旭,冯玉伟.数码涡旋多联式空调系统制冷运行部分负荷特性实验[J].太阳能学报.2010,31(10):1275-1280.
    [32]张东亮,张旭.数码涡旋多联式空调系统制热运行特性试验研究[J].流体机械.2010,38(7):53-58.
    [33]陈文俊.数码涡旋多联式空调机组设计探讨[J].顺德职业技术学院学报.2008,6(3):16-19.
    [34]张剑,王树刚,张腾飞等.多联式空调机组室外机与环境换热的数值模拟研究[J].暖通空调.2010,40(11):104-107.
    [35]周俊杰.某超高层建筑多联式空调室外机布置气流组织模拟分析[J].制冷空调与电力机械.2011,137(3):49-51.
    [36]石文星,周德海,赵伟.关于多联机统一称谓的思考[J].暖通空调.2009,39(12):42-48.
    [37] Persson J G,Sj stedt C J,Chen D J. Automotive Fuel Cell System Simulation,Component and Compressor Modeling[J]. VDI Berichte.2006,1932:217-235.
    [38] Xue X,Feng X M. Modeling and Simulation of an Air-cooling Condenser underTransient Conditions. Procedia Engineering[J].2012,31:817-822.
    [39] Liu J H,Li Q G,Wang F Z. A New Model of Screw Compressor forRefrigeration System Simulation[J]. International Journal of Refrigeration.2012,Available online.
    [40] Schein C,Radermacher R. Scroll Compressor Simulation Model[J]. Journal ofEngineering for Gas Turbines and Power.2001,123:217-225.
    [41] Li Y M,Wu J Y. Modeling and Energy Simulation of The Variable RefrigerantFlow Air Conditioning System with Water-cooled Condenser under CoolingConditions[J]. Energy and Buildings.2009,41(9):949-957.
    [42] Wang E Y,Fung A,Qi C Y. Performance Prediction of a Hybrid Solar Ground-source Heat Pump System[J]. Energy and Buildings.2012,47(4):600-611.
    [43] Saito K,Jeong J. Development of General Purpose Energy System Simulator[J].Energy Procedia.2011,14(2):1595-1600.
    [44] Zhang S,Zheng M Y,Wang X. Simulation Study of a Ground Source HeatPump Heating System with Air Seasonal Heat Storage in Severe Cold Area[J].Procedia Engineering.2012,29:3783-3787.
    [45] Mithraratne P,Wijeysundera N E. An Experimental and Numerical Study ofHunting in Thermostatic-expansion-valve-controlled Evaporators[J]. InternationalJournal of Refrigeration.2002,25(7):992-997.
    [46]王培勇,袁修干.轿车空调制冷系统的计算机模拟[J].北京航空航天大学学报.1997,23(5):590-595.
    [47]史琳,薛志方.热泵空调系统仿真和控制研究述评[J].暖通空调.2007,37(8):50-60.
    [48]周光辉,张岑,王雷岗等.制冷系统模拟仿真技术的应用与发展[J].制冷技术.2009,37(3):51-54.
    [49]陆强,杨美传,蒲思培.列车空调制冷系统的仿真与分析[J].制冷与空调.2011,25(5):471-474.
    [50]林恩新,丁国良,赵丹等.适用于制冷系统动态仿真的全封闭式压缩机准动态模型[J].制冷学报.2012,33(1):28-31.
    [51]汤佳丽,刘金祥,刘洋等.制冷系统稳态仿真算法简化研究[J].建筑热能通风空调.2009,28(1):36-39.
    [52]葛云亭.房间空调器系统仿真模型研究[D].北京:清华大学,1997:39-40.
    [53]吴业正,王瑞祥.双制冷循环电冰箱的计算机仿真[J].制冷学报.1996,17(3):19-25.
    [54]周永明,陈之久.用于控制的制冷系统稳态建模与仿真[J].上海交通大学学报.1999,33(3):255-258.
    [55] Chen H J,Shi W X,Shao S Q. Study on Compressor Model for Simulation ofInverter Air Conditioner by Graphic Method[C]. Proceedings of the3rdIntCompressor technique Conference.2001:100-106.
    [56] Shao S Q,Shi W X,Li X T. Performance Representation of Variable-speedCompressor for Inverter Air Conditioners Based on Experimental Data[J].International Journal of Refrigeration.2004,27(8):805-815.
    [57]丁国良.制冷压缩机热力计算的复合模糊模型[J].上海交通大学学报.2000,34(9):1298-1300.
    [58]丁强,王小华.变频空调压缩机频率控制算法的设计与研究[J].制冷与空调.2006,3:49-52.
    [59] Ding G L,Li H, Zhang C L. Study on Thermodynamic Model of a Compressorwith Artificial Neural Networks[J]. Chinese Journal of Mechanical Engineering.1999,12(1):23-26.
    [60]丁国良,张春路,王昔林等.基于RBF网络的制冷压缩机热力性能计算[J].上海交通大学学报.2001,35(8):1172-1174.
    [61]李文华,尹晓燕.基于径向基函数网络的压缩机性能模拟[J].机械与电子.2008,10:53-55.
    [62] Tian C Q, Li X T. Transient Behavior Evaluation of an Automotive AirConditioning System with a Variable Displacement Compressor[J]. AppliedThermal Engineering.2005,25(13):1922-1948.
    [63] Rajat S. Dynamic Modeling and Control of Single and Multi-evaporatorSubcritical Vapor Compression Systems[D]. Bombay: Indian Institute ofTechnology.1999.
    [64]程莹莹,王浩,张杰等.仿真技术在空气蒸发器设计中的应用[J].制冷.2011,30(3):18-23.
    [65]董华,万清,周恩泽等.太阳能热泵机组内蒸发器的模型与仿真研究[J].青岛理工大学学报.2010,31(4):73-78.
    [66]刘金平,袁玉玲.管排数对翅片管蒸发器换热性能影响的仿真计算[J].低温与超导.2010,38(11):63-69.
    [67]李娟,金苏敏.带有组合式热管蒸发器的生活浊水余热热泵热水器的稳态仿真研究[J].流体机械.2010,38(8):73-78.
    [68]郭晓强,楚广明.冰蓄冷系统制冰工况下蒸发器的仿真模拟[J].制冷与空调.2010,24(3):98-100.
    [69] Vargas J V C,Paris J A R. Simulation in Transient Regime of a Heat Pump withClosed-loop and on-off Control[J]. International Journal of Refrigeration.1995,18(4):235-243.
    [70] Wang H,Touber S. Distributed and non-steady-state Modeling of an Air Cooler[J].International Journal of Refrigeration.1991,14:98-111.
    [71] Bendapudi S,Braun J E. A review of Literature on Dynamic Models of VaporCompression Equipment[C]. ASHRAE Report.2002:4063-5.
    [72] He X D,Liu S, Haruhiko A. Modeling of Vapor Compression Cycles forAdvanced Controls in HVAC Systems[C]. Proceedings of the AmericanConference.1995:3765-3769.
    [73] Jensen J M,Tummescheit H. Moving Boundary Models for Dynamic Simulationsof Two-phase Flows[C]. Proceedings of the2ndInternational Modeling Conference.2002:235-244.
    [74] Mac J,Arther J W,Grald, E W. Unsteady Compressible Two-phase Flow Modelfor Predicting Cyclic Heat Pump Performance and a Comparison withExperimental Data[J]. International Journal of Refrigeration.1989,12:29-41.
    [75]葛云亭,彦启森.蒸发器动态参数数学模型的建立与理论计算[J].制冷学报.1995,16(8):9-17.
    [76] Nanayakkara V K,Ikegami Y. Evolutionary Design of Dynamic Neural Networksfor Evaporator Control[J]. International Journal of Refrigeration.2002,25(6):813-814.
    [77] Harms T M,Braun J E,Eckhard A G,et al. The Impact of ModelingComplexity and Two-phase Flow Parameters on The Accuracy of SystemModeling for Unitary Air Conditioners[J]. HVAC&R Research Journal,2004,10(1):5-20.
    [78]郎铁军,马国远,马立章.基于MATLAB的全封闭涡旋压缩机性能的仿真[J].流体机械.2010,39(5):18-23.
    [79]韦彬贵.基于模糊控制策略的动态自适应制冷系统[J].南宁职业技术学院学报.2011,16(1):93-96.
    [80]崔燚,庞丽萍,王浚.大型飞机高空环境模拟系统仿真优化研究[J].低温工程.2008,163(3):38-41.
    [81]陈雨,许志浩,马国川.地源热泵仿真的几点探讨[J].制冷与空调.2010,24(1):83-86.
    [82] Chen W,Zhou X X,Deng S M. Development of Control Method and DynamicModel for Multi-evaporator Air Conditioners (MEAC)[J]. Energy Conversion andManagement.2005,46(3):451-465.
    [83] Mullen C E,Bridges B D,Porter K J,et al. Development and Validation of aRoom Air-conditioning Simulation Model[J]. ASHRAE Transctions.1998,104(2):389-397.
    [84] Koury R,Machado L,Ismail K. Numerical Simulation of a Variable SpeedRefrigeration System[J]. International Journal of refrigeration.2001,24(2):192-200.
    [85] Fischer S K,Rice C K,Jackson W L. The Oak Ridge Heat Pump DesignModel: Mark Ⅲ Version Program Documentation[C]. Oak Ridge NationalLaboratory.1988:TM-10192.
    [86] Bryan P R,Andrew G A. Control-oriented Modeling of Trans-critical VaporCompression Systems[J]. Transactions of the ASME.2004,126(1):54-56.
    [87] Jung D S,Lee Y H,Park B J,et al. A Study on the Performance of Multi-stageCondensation Heat Pumps[J]. International Journal of Refrigeration.2000,23:528-539.
    [88] Jung D S,Kim H J,Kim O J. A study on the Performance of Multi-stage HeatPumps Using Mixtures[J]. International Journal of Refrigeration.1999,22:402-413.
    [89] Fu L,Ding G L,Su Z J,et al. Steady-state Simulation of Screw LiquidChillers[J]. Applied Thermal engineering.2002,22:1731-1784.
    [90] Ertunc H M,Hosoz M. Artificial Neural Network Analysis of a RefrigerationSystem with an Evaporative Condenser[J]. Engineering.2005,26(5):627-635.
    [91] Lee G,Kim M S,Cho Y M. An Experimental Study of the Capacity Control ofMulti-type Heat Pump System Using Predictive Control Logic[C].7thInt. EnergyAgency Heat Pump Conference.2002:73-77.
    [92] Rajat S,Andrew G A. Dynamic Modeling and Control of Multi-evaporator Air-conditioning Systems[J]. ASHRAE Transactions.2004,110(1):109-119.
    [93] Park Y C,Kim Y C,Min M K. Performance Analysis on a Multi-type InverterAir Conditioner for Residential Use[J]. ASHRAE Transactions.1991,97(2):127-131.
    [94] Chen W,Zhou X,Seng S. Development of Control Method and Dynamic Modelfor Multi-evaporator Air Conditioners (MEAC)[J]. Energy Conversion andmanagement.2005,46:451-465.
    [95] Shi W X,Shao S Q,Li X T,et al. A network Model to Simulate Performance ofVariable Speed Refrigerant Volume Refrigeration System[J]. ASHRAETransactions.2003,109(2):61-68.
    [96] Bryan P R,Andrew G A,Andrew M. Model-driven System Identification ofTrans-critical Vapor Compression Systems[J]. Control Systems Technology IEEETransactions.2005,13(3):444-451.
    [97] Eryan P R,Andrew G A,Rajat S. Reduced Order Modeling of Trans-critical ACSystem Dynamics Using Singular Perturbation[C].2003American Controlconference.2003:2264-2269.
    [98] Rajat S,Andrew G A,Eryan P R. Application of Multi-variable AdaptiveControl to Automotive Air Conditioning Systems[C]. ASME InternationalMechanical Engineering Congress&Exposition.2003:335-339.
    [99]石文星,邵双全,严启森.多联式空调(热泵)系统的作用域[J].制冷学报.2007,28(2):8-12.
    [100]吴时晶.论多联机空调系统设计中的几个问题[J].福建建筑.2006,1:164-165.
    [101]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.多联式空调(热泵)机组能效限定值及能源效率等级(GB21454-2008)[S].北京:中国标准出版社,2008:11-14.
    [102]张志强,姜益强,姚杨等.水环空调系统及其工程应用[J].制冷空调与电力机械.2006,27(4):59-61.
    [103]严启森,石文星,田长青.空气调节用制冷技术[M].北京:中国建筑工业出版社,2010:56-57.
    [104]伏龙,丁国良,张春路等.螺杆冷水机组动态仿真[J].低温工程.2002,130(6):5-10.
    [105]李文林,周瑞秋,赵超人.回转式制冷压缩机[M].北京:机械工业出版社,1992:87-89.
    [106]丁国良,张春路.制冷空调装置仿真与优化.[M].北京:科学出版社,2003:15
    [107]张超甫,李红旗,赵志刚等.多联机系统中电子膨胀阀运行特性研究[J].制冷.2007,26(1):50-53.
    [108]闫昌琪.气液两相流.哈尔滨:哈尔滨工程大学出版社,2010:36-37.
    [109]邵双全.复杂管网制冷系统仿真研究[D].北京:清华大学,2005.
    [110]胡文举.空气源热泵相变蓄能除霜系统动态特性研究[D].哈尔滨:哈尔滨工业大学,2010:47-48.
    [111]孙丽颖.制冷剂自然循环系统的运行特性与应用系统的研究[D].哈尔滨:哈尔滨工业大学,2006:41-42.
    [112]姚杨.空气源热泵冷热水机组冬季结霜工况的模拟与分析[D].哈尔滨:哈尔滨工业大学,2002:37-38.
    [113]王伟.双级耦合热泵供暖系统在寒冷地区应用特性研究[D].哈尔滨:哈尔滨工业大学,2005:85-88.
    [114]石文星.变制冷剂流量空调系统特性及其控制策略研究[D].北京:清华大学,2000:70-72.
    [115]孙婷婷.双级耦合热泵在北方地区高层建筑中应用的模拟分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007:22-23.
    [116]马最良,姚杨,王洋等.混合式热泵系统中空气源热泵的实验研究[J].哈尔滨工业大学学报.2005,37(2):164-166.
    [117]王伟,马最良,姚杨.空气源热泵机组新型低温运行工况稳态特性研究[J].建筑科学.2007,23(10):28-31.
    [118]喻银平,马最良.双级耦合式热泵供热系统在寒冷地区应用的可行性分析[J].电力需求侧管理.2002,4(2):39-42.
    [119]杨昭,赵义,李丽新.五种供热空调系统的技术经济分析及建议[J].制冷学报.2000,4:43-48.
    [120]姜益强,姚杨,马最良.空气源热泵供热最佳经济平衡点的探讨[J].暖通空调.2001,31(3):39-41.
    [121]姜益强,姚杨,马最良.空气源热泵冷热水机组的选择[J].暖通空调.2003,33(6):30-33.
    [122]马最良,姚杨.民用建筑空调设计[M].北京:化学工业出版社,2003:348-349.
    [123]姜益强.空气源热泵冷热水机组供热最佳平衡点的研究[D].哈尔滨:哈尔滨建筑大学硕士学位论文,1997:51-54.
    [124]张秀平,田旭东,钟根仔等.水冷冷水机组能效特性变化规律的研究[J].流体机械.2008,36(10):54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700