用户名: 密码: 验证码:
胶州湾悬浮颗粒物中脂肪酸的时空分布及其在初级生产者到初级消费者食物传递中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究初级食物供给与初级消费之间数量与质量的关系在海洋浮游生态系统食物网研究中占有基础地位。悬浮颗粒物及浮游动物中脂肪酸的组成和含量可以很好地为食物关系研究提供信息。当悬浮颗粒物在时空上存在数量和质量差异时,这种差异就可能在浮游动物中体现出来,而且通过脂肪酸的信息可以追踪到这种差异。本研究旨在阐明脂肪酸在悬浮颗粒物组成中的生物标记作用和在悬浮颗粒物到浮游动物食物传递过程中的营养指示作用,同时应用这一标记物研究胶州湾海域悬浮颗粒物的大体分布及其与浮游动物间的食物关系。
     文章首先依据2005年3月-2006年2月胶州湾颗粒有机碳及叶绿素a的数据估测碳生物量的转化系数,发现该系数受时空环境差异的影响,平均为56,从而推导出胶州湾浮游植物有机碳浓度,进而探讨浮游植物对颗粒有机碳的贡献。对各参数分析结果显示胶州湾颗粒有机碳、叶绿素a和浮游植物有机碳年平均浓度分别为为0.47 mg.L-1、4.16μg.L-1及0.23 mg.L-1,三者表现出相似的时空变化动态,即湾内沿岸水域较高,湾外较低,夏季较高秋冬季较低。浮游植物对颗粒有机碳的贡献较高,年平均接近37%。
     对悬浮颗粒物的脂肪酸组成分析后发现饱和脂肪酸(SSFA)16:0,14:0,18:0及单不饱和脂肪酸(MUFA)Σ16:1(ω7+ω5+ω9)所占比例较高,多不饱和脂肪酸(PUFA)中EPA和DHA也相对较高。总脂肪酸在水体中的绝对浓度及在颗粒有机碳中的相对含量均存在着时空变异,二者的平均变动范围分别在4.7-60.2μg . L-1及20.1-86.7μg . mg-1之间,夏季高于秋冬季,空间分布上二者均在湾东部相对较高,而在湾外较低。不同脂肪酸组合的时空变化可以反映出悬浮颗粒物组成的时空动态,其中16:1ω7/18:1ω9、Σ16:1/18:1ω9、Σ16:1/Σ18:1、Σ16/Σ18、Σ16/ΣFA及20:5ω3/22:6ω3等脂肪酸组合在研究海域可以较好的指示硅藻组成,而Σ18/ΣFA及22:6ω3/ΣFA可以指示甲藻组成,BSFA/ΣFA、Σ(Br+St)/ΣFA、Br/St (15:0)及Br/St (15:0+17:0)可以较好的指示细菌,SSFA/ΣFA及(24:0+26:0)/ΣFA可以示踪碎屑组分及其中的陆源成份。ω3系列脂肪酸在有机碳中的含量及在总脂肪酸中的比例以及不饱和指数可以表征悬浮颗粒物的食物质量。通过标志脂肪酸对悬浮颗粒物组成的指示发现冬季2月悬浮颗粒物组成中硅藻所占比例较高,多数月份湾内近岸水域尤其是湾东部细菌组成相对较高,而湾口至湾外水域碎屑含量相对较高。
     浮游动物总平均干重生物量为72.6 mg.m-3,平面分布表现为湾内北部及中心区域生物量普遍较高,湾东部水域较低,季节变化表现为总生物量在春季4月及冬季12月形成峰值,总体上在春季5月、夏季7月及秋冬大部分月份相对较低,但不同粒径组成其动态不尽相同。浮游动物的脂肪酸组成与悬浮颗粒物存在一定差别,表现为MUFA比例下降,PUFA比例升高;SSFA中14:0的比例下降,18:0及20:0比例提高,MUFA中20:1ω9比例升高,PUFA中,EPA及DHA所占比例也相对较高。8月份总脂肪酸含量较高,9月与10月相对较小,各粒级内差别不大。
     利用主成份分析发现悬浮颗粒物的组分在浮游动物中能够用相应脂肪酸指标进行示踪,当食物数量充分满足需求时,浮游动物脂肪酸特征与悬浮颗粒物组成一致性较高,同时通过脂肪酸示踪发现当潜在食物数量较丰富时,浮游动物的摄食存在选择性,这种选择可能受食物质量的调控,而当食物数量较低时,其选择性也降低。
     悬浮颗粒物中EPA含量及不饱和指数是相对重要的食物质量指示物,通过对其指示特征的分析发现胶州湾总体上浮游动物的摄食会影响其食物质量组成;但在8月,浮游动物的生物量受悬浮颗粒物质量的调控,而浮游动物生物量对食物数量的摄食压力较小,认为该时期是食物质量限制对浮游动物生物量影响相对重要的时期,可以用特征脂肪酸进行清晰的分析。
Quantity and quality of food on its consumers are crucial in regulation of food webs in marine pelagic systems. Fatty acid profile is able to provide useful information to trace trophic transfer from food seston to zooplankton. If it really exists difference in food quality of seston, the difference can be recognized from the variation of fatty acid compositon in higher trophic level organisms. The aim of the present study was to investigate the distribution of seston fatty acids in a eutrophic bay, Jaiozhou Bay in Northern China, and try to know their transfer up to zooplankton consumers.
     Seston and zooplankton were collected from fourteen sampling stations from 2005 to 2006 in the studied bay. The zooplankton was grouped into two size fractions: 160-500μm and >500μm. Particulate organic carbon, chlorophyll-a, dry biomass of zooplankton, fatty acids of seston and zooplankton were measured.
     Based on the field measurements of Chl-a and POC concentrations, a mean value of 56μg.μg–1 of conversion ratios of Phyto-C to Chl-a was generated with using of the linear regression model II. The contribuition to TOC by phytoplankton can be estimated. The mean concentrations of POC, Chl-a and Phyto-C were 0.47 mg.L-1, 4.16μg.L-1 and 0.23 mg.L-1, respectively. They showed the similar temporal and spatial dynamics and were higher in edge region and in summer, lower in the outer bay and in autumn and winter. The mean distribution of phy-C to POC reached 37%.
     The fatty acid composition of seston from collected samples included SSFA, BSFA, MUFA and PUFA. The SSFA was one dominant group, and mainly composed of 16:0, 14:0 and 18:0. The MUFA and PUFA were mainly composed ofΣ16:1(ω7+ω5+ω9) and EPA+DHA, respectively. The total concentration of fatty acids in water and in POC ranged temporally 4.7-60.2μg . L-1 and 20.1-86.7μg . mg-1, and higher in summer than in autumn and winter. They were, spatially, higher in the northeast zone of the bay than in the outer bay. In Jiaozhou Bay, 16:1ω7/18:1ω9,Σ16:1/18:1ω9,Σ16:1/Σ18:1,Σ16/Σ18,Σ16/ΣFA and 20:5ω3/22:6ω3 are the specific fatty acids for the biomarkers of diatom, theΣ18/ΣFA and 22:6ω3/ΣFA are for flagellate, BSFA/ΣFA,Σ(Br+St)/ΣFA, Br/St (15:0) and Br/St (15:0+17:0) for bacteria and SSFA/ΣFA and (24:0+26:0)/ΣFA for detritus and the terrestrial resource. The contents and percents ofω3-fatty acids and the unsaturation index are good at indicating the food quality. By using these fatty acid biomarkers, diatom was recognized to be dominant in seston in Feb. 2005, bacteria was relatively high in near-shore region especial in east region, and the detritus higher in bay mouth and the outer bay.
     The biomass of total zooplankton (>160μm) was higher in the north and central regions and in April and December than in east region and in May, July and months of autumn and winter, spatially and temporally, and with a mean value of 72.6 mg.m-3, but distinct spatial and temporal dynamics with size classses of zooplankton was observed. Fatty acid profile of zooplankton was obviously different from that of seston. Among total fatty acid of zooplankton, the percent of MUFA decreased while that of PUFA increased;14:0 decreased in SSFA while 18:0 and 20:0 increase, 20:1ω9 increased in MUFA , EPA and DHA increase significantly in PUFA. The content of fatty acids in zooplankton was higher in August than in September and October.
     According to the principal component analysis (PCA), using fatty acid trophic markers such asΣ16:1/Σ18:1, BSFA/ΣFA and SSFA/ΣFA, it is able to trace the compositions of seston up into herbivorous zooplankton. The fatty acid compositions of consumers are similar to the marked compositions of seston when total food resource significantly exceeded the requirement of the zooplankton consumers. Feeding selectivity of zooplankton controlled by the food quality can be identified from the correlation of zooplankton to their food quality when food quantity is well above the saturation level. However, when the food quantity decreased, the food selectivity of zooplankton was limited.
     The content of EPA and unsaturation index of seston were two good food quality markers, the consumption of zooplankton can exert a high pressure on the food quality in all in Jiaozhou Bay. In August, however, the zooplankton biomass was controlled by the seston quality while the grazing pressure by zooplankton decreased. We suggest that food quality constraints are important in August in Jiaozhou Bay, and the fatty acid composition in this period provides useful information for investigating the seston food quality constraints on biomass of zooplankton consumers.
引文
陈碧鹃,陈聚法等. (2000).胶州湾北部沿岸浮游植物生态特征的研究.海洋水产研究,21(2):34~40
    郭玉洁,杨则禹. (1992).浮游生物:浮游植物.见:刘瑞玉主编.胶州湾生态学和生物资源.北京:科学出版社,136-169
    刘东艳,孙军等. (2002a).胶州湾北部水域浮游植物研究I -种类组成和数量变化.青岛海洋大学学报:自然科学版,32(1):67~72
    刘东艳,孙军等. (2002b).胶州湾北部水域浮游植物研究II -环境因子对浮游植物群落结构变化的影响.青岛海洋大学学报:自然科学版,32(3):415~421
    刘东艳,孙军等. (2003a). 2001年夏季胶州湾浮游植物群落结构的特征.青岛海洋大学学报:自然科学版,33(3):366~374
    刘东艳,孙军等.(2003b).胶州湾浮游植物水花期群落结构特征.应用生态学报,14(11):1963~1966
    刘瑞玉. (1992).自然环境特点.见:刘瑞玉主编.胶州湾生态学和生物资源.北京:科学出版社,2-3
    钱树本.(1983).胶州湾的浮游植物.山东海洋学院学报.11(2):39~56
    沈志良. (2002).胶州湾营养盐结构的长期变化及其对生态环境的影响.海洋与湖沼,33:322-331
    沈志良,陆家平,刘兴俊. (1994).胶州湾水域的营养盐.海洋科学集刊,35:115-129
    孙松,张永山,吴玉霖,张光涛,张芳,蒲新明.(2005).胶州湾初级生产力周年变化. 海洋与湖沼,36:481-486
    王文海,王润玉,张书欣. (1982).胶州湾的泥沙来源及其自然沉积速率.海岸工程,1:83-90
    翁学传,朱兰部,王一飞.物理海洋性-水文要素的结构和变化.见:刘瑞玉主编. 胶州湾生态学和生物资源.北京:科学出版社,20-39
    肖贻昌,高尚武,张河清.(1992).浮游生物:浮游动物.见:刘瑞玉主编.胶州湾生态学和生物资源,科学出版社,北京,170-202.
    周克.胶州湾浮游动物的物种组成与优势种时空分布特征.硕士学位论文,中国科学院海洋研究所,2005
    DeMott, W.R. and Müller-Navarra, D.C. (1997). The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshwater Biology, 38, 649–664.
    Grisley, M.S., Boyle, P.R. (1985). A new application of serological techniques to gut content analysis. Journal of experimental marine biology and ecology, 90: 1-9.
    Hopkins T.L, Lancraft, T.M., Torres, J.J. and Donnelly, J. (1993). Community structure and trophic ecology of zooplankton in the Scotia Sea marginal ice zone in winter (1988). Deep-sea Research I., 40: 81-105
    Irigoien, X., Hend, R.N., Harris, R.P., Cummings, D. and Harbour, D. (2000). Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnology and Oceanography, 45: 44-54.
    Kayama, M., Araki, S. and Sato, S. (1989). Lipids of marine plants. In“Marine biogenic lipids, fats and oils”, Vol. II (R. G. Ackman, ed.), pp. 348, CRC Press, Boca Raton, Florida.
    Müller -Navarra D.C. (1995b) Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv für Hydrobiologie, 132, 297–307.
    Müller-Navarra D.C., Brett M.T., Liston A.M. & Goldman C.R. (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403: 74–77.
    Müller-Navarra, D.C., Brett, M.T., Park, S., Chandra, S., Ballantyne, A.P., Zorita, E. and Goldman, C.R. (2004). Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature, 427: 69-72.
    Napolitano, G.E., Pollero, R.J., Gayoso, A.M., MacDonald, B.A. and Thompson, R.J. (1997). Fatty acids as trophic markers of phytoplankton blooms in the Bahía Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology, 25: 739-755.
    Park, S., Brett, M.T., Müller-Navarra, D.C. and Goldman, C.R. (2002). Essential fattyacid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Freshwater Biology, 47: 1377-1390.
    Peterson, B.J.and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18: 293–320
    Pimm, S. L., J. H. Lawton, and J. E. Cohen. 1991. Food web patterns and their consequences. Nature 350:669-674.
    Pohl, P. and Zurheide, F. (1979). Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In“Marine algae in pharmaceutical
    science”, Vol. 1 (H. A. Hoppe, T. Levring and Y. Tanaka, eds.), pp. 473-523. Walter de Gruyter, Berlin.
    Reuss, N. and Poulsen, L. K. (2002). Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom off West Greenland. Marine Biology, 141: 423-434.
    Sterner, R.W. and Schulz, K. (1998). Zooplankton nutrition: recent progress and a reality check. Aquatic Ecology, 32: 261–279.
    Tolosa, I., Vescovali, I., Leblond, N., Marty, J.C., Mora, S. and Prieur, E. (2004). Distribution of pigment and fatty acid biomarkers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea). Marine chemistry, 88:103-125.
    蔡阿根,李文权,陈清花,王宪.(1998).厦门西港和九龙江口颗粒有机碳的研究.海洋科学,5:46-50
    刘子琳,潘建明,陈忠元.(2004).南大洋浮游植物现存量对颗粒有机碳的贡献.海洋科学,28(5):44-49
    孙军,刘东艳,钱树本.(1999).浮游植物生物量研究I-浮游植物生物量细胞体积转换法.海洋学报,21(1):114~121
    孙松,张永山,吴玉霖,张光涛,张芳,蒲新明.(2005).胶州湾初级生产力周年变化. 海洋与湖沼,36:481-486
    沈志良. (2002).胶州湾营养盐结构的长期变化及其对生态环境的影响.海洋与湖沼,33:322-331
    沈志良,陆家平,刘兴俊. (1994).胶州湾水域的营养盐.海洋科学集刊,35:115-129
    翁学传,朱兰部,王一飞.物理海洋性-水文要素的结构和变化.见:刘瑞玉主编. 胶州湾生态学和生物资源.北京:科学出版社,20-39
    吴玉霖,孙松,张永山.(2005).环境长期变化对胶州湾浮游植物群落结构的影响. 海洋与湖沼,36:487-498
    姚云. (2004).胶州湾富营养化特征和机制研究.硕士学位论文,中国科学院海洋研究所
    Atkinson, A. (1996). Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Marine Ecology Progress Series, 130: 85-96.
    Banse, K. (1977). Determining the Carbon-to-Chlorophyll ratio of natural phytoplankton. Marine Biology, 41: 199-212.
    Baruch, D.W. (1996a). Conversion of model I regression to model II regression and application to ANCOVA, Part I. http://homepages.caverock.net.nz/~dwbaruch/part1/index.html
    Baruch, D.W. (1996b). Conversion of model I regression to model II regression and application to ANCOVA, Part II.http://homepages.caverock.net.nz/~dwbaruch/part2/index.html
    Behrenfeld, M.J., Boss, E., Siegel, D.A. and Shea, D.M. (2005). Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles, 19, GB1006, doi:10.1029/2004GB002299.
    Chang, J., Shiah, F.K., Gong, G.C. and Chiang, K.P. (2003). Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep-Sea Research II, 50: 1237-1247.
    Cloern, J.E., Cole, B.E., Wong, R.L.J. and Alpine, A.E. (1985). Temporal dynamics of estuarine phytoplankton: a case study of San Francisco Bay. Hydrobiologia, 129: 153-176.
    Cullen, J.J. (1982). The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisherishs and Aquatic Sciences, 39: 791-803.
    Eppley, R.W., Harrison, W.G., Chisolm, S.W. and Stewart, E. (1977). Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. Journal of Marine Research, 35: 671-696.
    Falster, D.S., Warton, D.I. and Wright, I.J. (2003a). User’s guide to (S)MATR: Standardized Major Axis Tests & Routines. Version 1.0. http://www.bio.mq.edu.au/ecology/SMATR/
    Falster, D.S., Warton, D.I. and Wright, I.J. (2003b). (S)MATR. Version 1.0. http://www.bio.mq.edu.au/ecology/SMATR/
    Fasham, M.J.R., Holligan, P.M. and Pugh, P.R. (1983). The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea, April, 1979. Progress in Oceanography, 12: 87-145.
    Furuya, K. (1990). Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: vertical profiles of phytoplankton biomass and its relationship with chlorophyll a and particulate organic carbon. Marine Biology, 107: 529-539.
    Geider, R.J. (1987). Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytologist, 106: 1-34.
    Geider, R.J. (1993). Quantitative phytoplankton physiology: implications for primary production and phytoplankton growth. ICES Marine Science Symposia, 197: 52-62.
    Geider, R.J., MacIntyre, H.L. and Kana, T.M. (1997). Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series, 148: 187-200.
    Gieskes, W.W.C. and Kraay, G.W. (1989). Estimating the carbon-specific growth rate of the major algal species groups in eastern Indonesian waters by 14C labeling of taxon-specific carotenoids. Deep-Sea Research, 36: 1127-1139.
    Hewes, C.D., Sakshaug, E., Holm-Hansen, O. and Reid, F.M.H., (1990). Microbial autotrophic and heterotrophic eucaryotes in Antarctic Waters: relationships between biomass and CHL, ATP, and POC. Marine Ecology Progress Series, 63: 27-35.
    Holligan, P.M., Harris, R.P., Newell, R.C., Harbour, D.S., Head, R.N., Linley, E.A.S., Lucas, M.I., Tranter, P.R.G. and Weekley, C.M. (1984). Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Marine Ecology Progress Series, 14: 111-127.
    Holm-Hansen, O., 1970. Determination of microbial biomass in deep ocean water. In Hood, D.W. (ed.), Organic Matter in Natural Waters. Vol. 1. Univ. Alaska Inst. Mar. Sci. Occ. Pub., pp. 287-300.
    Hung, T.C., Lin, S.H. and Chuang, A. (1980). Relationship among particulate organic carbon, chlorophyll a and primary productivity in the seawater along the northern coast of Taiwan. Acta Oceanography Taiwanica, 11: 70-88.
    Laws, E.A. and Archie, J.W. (1981). Appropriate use of regression analysis in marine biology. Marine Biology, 65: 13-16.
    Legendre, L. and Michaud, J. (1999). Chlorophyll a to estimate the particulate organic carbon available as food to large zooplankton in the euphotic zone of oceans. Journal of Plankton Research, 21: 2067-2083.
    MacIntyre, H.L., Kana, T.M., Anning, T. and Geider, R.J. (2002). Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgaeand cyanobacteria. Journal of Phycology, 38: 17-38.
    Maksymowska, D., Richard, P., Piekarek-Jankowska, H. and Riera, P. (2000). Chemical and Isotopic Composition of the Organic Matter Sources in the Gulf of Gdansk (Southern Baltic Sea). Estuarine, Coastal and Shelf Science, 51: 585-598.
    Malone, T.C., Pike, S.E. and Conley, D.J. (1993). Transient variations in phytoplankton productivity at the JGOFS Bermuda time series station. Deep-Sea Reserach I, 40: 903-924.
    Suzumura, M., Kokubun, H. and Arata, N. (2004). Distribution and characteristics of suspended particulate matter in a heavily eutrophic estuary, Tokyo Bay, Japan. Marine Pollution Bulletin, 49: 496-503
    Menzel, D.W. and Ryther, J.H. (1964). The composition of particulate organic matter in the Western North Atlantic. Limnology and Oceanography, 9: 176-186.
    Montagnes, D.J.S., Berges, J.A., Harrison, P.J. and Taylor, F.J.R., 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography, 39: 1044-1060.
    Mopper, K. and Degens, E.T. (1979). Organic Carbon in the Ocean: Nature and Cycling. In Bolin, B., Degens, E.T., Kempe, S. and Ketner, P. (eds), Scientific Committee On Problems of the Environment (SCOPE) 13 - The Global Carbon Cycle. Wiley, U.K.
    Mullin, M.M., Sloan, P.R. and Eppley, R.W. (1966). Relationship between carbon content, cell volume and area in phytoplankton. Limnology and Oceanography, 11: 307-311.
    Parsons, T.R. (1975). Particulate organic carbon in the sea. In Riley, J.P. and Skirrow, G. (eds), Chemical Oceanography. 2nd ed., Vol. 2. Academic Press, London, New York, San Francisco, pp. 365-383.
    Pingree, R.D., Holligan, P.M., Mardell, G.T. and Harris, R.P. (1982). Vertical distribution of plankton in the Skagerrak in relation to doming of the seasonal thermocline. Continental Shelf Research, 1: 209-219.
    Redalje D.G. and Laws E.A. (1981). A new method for estimating phytoplankton growth rates and carbon biomass. Marine Biology, 62: 73-79.
    Ricker, W.E., (1973). Linear regressions in fishery research. Journal of the FisheriesResearch Board Canada, 30: 409–434.
    Ryther, J.H. and Yentsch, C.S. (1957). The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnology and Oceanography, 2: 281-286.
    Schaefer, C.T. and Lewin, J. (1984). Persistent blooms of surf diatoms along the Pacific coast, USA. Marine Biology, 83: 205-217.
    Socal, G., Boldrin, A., Bianchi, F., Civitarese, G., Lazzari, A., Rabitti, De S., Totti, C. and Turchetto, M.M. (1999). Nutrient, particulate matter and phytoplankton variability in the photic layer of the Otranto strait. Journal of Marine Systems, 20: 381-398.
    Steele, J.H. and Baird, I.E. (1962). Further relations between primary production, chlorophyll and particulate carbon. Limnology and Oceanography, 7: 42-47.
    Strathmann, R.R. (1967). Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography, 12: 411-418.
    Strickland, J.D.H. and Parsons, T.R. (1972). A practical handbook of seawater analysis. 2nd ed., Vol. 167. Bulletin of the Fisheries Research Board Canada, pp. 1-310.
    Suzumura, M., Kokubun, H. and Arata, N. (2004). Distribution and characteristics of suspended particulate matter in a heavily eutrophic estuary, Tokyo Bay, Japan. Marine Pollution Bulletin, 49: 496-503.
    Taguchi, S. (1976). Relationships between photosynthesis and cell size of marine diatoms. Journal of Phycology, 12: 185-189.
    Taylor, A.H., Geider, R.J. and Gilbert, F.J.H. (1997). Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll-a ratios: results of a modeling study. Marine Ecology Progress Series, 152: 51-66.
    Verlencar, X.N. and Qasim, S.Z. (1985). Particulate organic matter in the coastal and estuarine waters of Goa and its relationship with phytoplankton production. Estuarine, Coastal and Shelf Science, 21: 235-243.
    Welschmeyer, N.A. and Lorenzen, C.J. (1984). Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates. Limnology and Oceanography, 29: 135-145.
    Wienke, S.M. and Cloern, J.E. (1987). The phytoplankton component of seston in SanFrancisco Bay. Journal of Sea Research, 21: 25-33.
    Yamaguchi, H., Montani, S., Tsutsumi, H., Hamada, K. and Ueda, N. (2003). Estimation of particulate organic carbon flux in relation to photosynthetic production in a shallow coastal area in the Seto Inland Sea. Marine Pollution Bulletin, 47: 18-24.
    Yang, S.L., Meng, Y., Zhang, J., Xue, Y.Z., Chen, H.T., Wei, H., Liu, Z., Wu, R.M., Wang, L.X., Yang, H., Wang, L. and Zhang, W.X. (2003). Suspended Particulate Matter in the Jiaozhou Bay: Properties and Variations in Response to Hydrodynamics and Pollution. Chinese Science Bulletin, 48: 2493-2498.
    蔡阿根,李文权,陈清花,王宪.(1998).厦门西港和九龙江口颗粒有机碳的研究.海洋科学,5:46-50
    郭玉洁,杨则禹.(1992).浮游生物:浮游植物.见:刘瑞玉主编.胶州湾生态学生物资源.北京:科学出版社,136-169
    黄邦钦,刘媛,陈纪新,王大志,洪华生,吕瑞华,黄凌风,林以安,魏皓. (2006).
    东海、黄海浮游植物生物量的粒级结构及时空分布.海洋学报, 28(2):156-164
    李超伦,张芳,申欣,杨波,沈志良,孙松. (2005).胶州湾叶绿素的浓度、分布特征及其周年变化.海洋与湖沼,36(6):499-505
    李冠国,黄世玫.(1956).育岛近海浮游矽藻季节变化研究的初步报告.山东大学学报,2(4):119~143
    刘东艳,孙军,陈洪涛,张利永. (2003a). 2001年夏季胶州湾浮游植物群落结构的特征.青岛海洋大学学报:自然科学版,33(3):366~374
    刘东艳,孙军,钱树本.(2002b).胶州湾浮游植物研究II -环境因子对浮游植物群落结构变化的影响.青岛海洋大学学报:自然科学版,32(3):415~421
    刘东艳,孙军,唐优才,钱树本.(2002a).胶州湾北部水域浮游植物研究I 种类组成和数量变化.青岛海洋大学学报:自然科学版,32(1):67~72
    刘东艳,孙军,张利永.(2003b).胶州湾浮游植物水花期群落结构特征.应用生态学报,14(11):1963~1966
    潘友联,郭玉洁,曾呈奎. (1995).胶州湾口内海水中叶绿素浓度的周年变化和垂直分布.海洋与湖沼,26(1):21~27
    钱树本.(1983).胶州湾的浮游植物.山东海洋学院学报.11(2):39~56
    沈志良,(2002).胶州湾营养结构的长期变化及其对生态环境的影响.海洋与湖沼,33(3):322-331
    孙军,刘东艳.浮游植物生物量研究:II.胶州湾网采浮游植物细胞体积转换生物量. 海洋学报,22(1):102-109
    孙松,刘桂梅,张永山等,(2002). 90年代胶州湾浮游植物种类组成和数量分布特征.海洋与湖沼-浮游动物专辑,37-44
    吴玉霖,孙松,张永山,张芳.(2004).胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼,35(6):518-523
    吴玉霖,张永山. (1995).胶州湾叶绿素a和初级生产力的分布特征.见:董金海,焦念志主编.胶州湾生态学研究,.科学出版社,北京,137-149
    Brett, M.T. and Müller-Navarra, D.C. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38: 483-499.
    Chang, J., Shiah, F.K., Gong, G.C. and Chiang, K.P. (2003). Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep-Sea Research II, 50: 1237-1247.
    Gaedke U. (1992). The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology and Oceanography, 37: 1202–1220.
    Gosselain, V., Hamilton, P.B. and Descy, J.P. (2000). Estimating phytoplankton carbon from microscopic counts: an application for riverine systems. Hydrobiologia, 438: 75–90.
    Lampert, W. (1987). Feeding and nutrition in Daphnia. In: Peters R.H. and De Bernardi R. (eds), Daphnia. Vol. 45, pp. 143–192. Istituto Italiano di Idrobiologia, Verbania, Pallanza.
    Parsons, T. R. (1975). Particulate organic carbon in the sea. In: Riley, J. P. and Skirrow, G. (eds), Chemical Oceanography, 2nd ed., vol. II, 365-383. Academic Press, London, New York, San Francisco.
    Redalje D.G. (1981). A new method for estimating phytoplankton growth rates and carbon biomass. Marine Biology. 62(1): 73– 79.
    Taylor, A.H., Geider, R.J. and Gilbert, F.J.H. (1997). Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll-a ratios: results of a modeling study. Marine Ecology Progress Series, 152: 51-66.
    Wienke, S.M. and Cloern, J.E. (1987). The phytoplankton component of seston in San Francisco Bay. Journal of Sea Research, 21: 25-33.
    崔淑芬,李文权,陈清花,郑爱榕,廖启斌.(1999)大亚湾颗粒有机物的来源.海洋通报, 18:44-51
    Batten, S., Fileman, E.S., and Halvorsen, E. (2001). The contribution of microzooplankton to the mesozooplankton diet in an upwelling filament off the northwest coast of Spain. Progress in Oceanography, 51: 385-398.
    Cook, H.W. (1996). Fatty acid desaturation and chain elongation in eukaryotes. In “Biochemistry of lipids, lipoproteins and membranes”(D. E. Vance and J. E. Vance, eds.), pp. 129-152, Elsevier Science, Amsterdam.
    Dalsgaard, J., John, M.S., Kattner, G., Müller-Navarra, D.C. and Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46: 225-340.
    Delbeke, K., Teklemariam, T., Delacruz, E. and Sorgeloos, P.. (1995). Reducing variability in pollution data: the use of lipid classes for normalization of pollution data in marine biota. Int. J. Environ. Anal. Chem. 58, 147-162.
    Desvilettes, C.H., Bourdier, G., Amblard, C.H. and Barth, B. (1997). Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology, 38: 629-637.
    Galois, R., Richard, P. and Fricourt, B. (1996). Seasonal Variations in Suspended Particulate Matter in the arennes-Oléron Bay, France, using Lipids as Biomarkers. Estuarine, Coastal and Shelf Science, 43: 335-357.
    Gurr, M.I. and Harwood, J.L. (1991).“Lipid Biochemistry, an introduction”. Chapman and Hall, London.
    Harwood, J. L. and Jones, A. L. (1989). Lipid metabolism in algae. Advances in Botanical Research 16, l-53.
    Irigoien, X., Head, R., Klenke, U., Meyer-Harms, B., Harbour, D., Niehoff, B., Hirche, H.-J., and Harris, R. (1998). A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Marine Ecology Progress Series, 172: 127-137.
    Kaitaranta, J. K., Linko, R. R. and Vuorela, R. (1986). Lipids and Fatty acids in plankton from the Finnish coastal waters of the Baltic Rutta. Comparative Biochemistry and Physiology, B85, 427-433.
    Kattner, G., Gercken, G. and Eberlein, K. (1983). Development of lipids during a spring plankton bloom in the northern North Sea. I. Particulate fatty acids. Marine chemistry, 14: 159-162.
    Kayama, M., Araki, S. and Sato, S. (1989). Lipids of marine plants. In“Marine biogenic lipids, fats and oils”, Vol. II (R. G. Ackman, ed.), pp. 348, CRC Press, Boca Raton, Florida.
    Kogteva, G.S. and Bezuglov, V.V.. (1998). Unsaturated fatty acids as endogenous bioregulators. Biochemistry (Moscow) 63: 6-15.
    Lechevalier H. and Lechevalier, M.P. (1988). Chemotaxonomic use of lipids-an overview. In: Ratledge, C. and Wilkinson, S.G., eds.“Microbial lipids”. Academic press, New York. pp:869-902.
    Mayzaud, P., Chanut, J. P. and Ackman, R. G. (1989). Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Marine Ecology Progress Series, 56: 189-204.
    Mayzaud, P., Claustre, H. and Augier, P. (1990). Effect of variable nutrient supply on fatty acid composition of phytoplankton growth in an enclosed experimental ecosystem. Marine Ecology Progress Series, 60: 123-140.
    Miyazaki, T. (1983). Compositional changes of fatty acids in particulate matter and water temperature, and their implications to the seasonal succession of phytoplankton in a hypereutrophic lake, Lake Kasumigaura, Japan. Archiv für Hydrobiologie, 99: 1-14.
    Morris, R. J. (1984). Studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. II. Changes in the component fatty acids and sterols. Journal of Experimental Marine Biology and Ecology, 75: 59-70.
    Napolitano, G.E. (1999). Fatty acids as trophic and chemical markers in freshwater ecosystems. In: Arts, M.T. and Wainman, B.C. (eds.). Lipids in freshwater ecosystems. pp. 21-44. Springer, New York.
    Napolitano, G.E., Pollero, R.J., Gayoso, A.M., MacDonald, B.A. and Thompson, R.J. (1997). Fatty acids as trophic markers of phytoplankton blooms in the Bahía Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology, 25: 739-755.
    Parrish, C.C. (1988). Dissolved and particulate marine lipid classes: a review. Marine Chemistry, 23:17-40.
    Parrish, C.C. (1999). Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In Arts, M.T. and Wainman, B.C. (eds.). Lipids in freshwater ecosystems. pp. 4-20. Springer, New York.
    Parrish, C. C., McKenzie, C. H., MacDonald, B. A. and Hatfield, E. A. (1995). Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Marine Ecology Progress Series, 129: 151-164.
    Parrish, C.C., Thompson, R.J. and Deibel, D. (2005). Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Marine Ecology Progress Series, 286: 57-68.
    Pohl, P. and Zurheide, F. (1979). Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In“Marine algae in pharmaceutical science”, Vol. 1 (H. A. Hoppe, T. Levring and Y. Tanaka, eds.), pp. 473-523. Walter de Gruyter, Berlin.
    Pohl, P. and Zurheide, F. (1982). Fat production in freshwater and marine algae. In “Marine algae in pharmaceutical science”, Vol. 2 (H. A. Hoppe and T. Levring. eds.), pp. 65-80. Walter de Gruyter and Co., Berlin.
    Sargent, J.R. (1976). The structure, metabolism and function of lipids in marine organisms. In: Malins, D.C. and Sargent, J.R. (eds.). Biochemical and biophysical perspectives in marine biology, Vol. 3, pp. 149-212, Academic Press, London.
    Sargent, J.R. and Henderson, R.J. (1995). Marine (n-3) polyunsaturated fatty acids. In “Developments in oils and fats”(R. J. Hamilton, ed.), pp. 32-65. Blackie Academic and Professional, London.
    Sargent, J.R., Parkes, R.J., Mueller-Harvey, I. and Henderson, R. J. (1987). Lipid biomarkers in marine ecology. In: Sleigh, M. A. (ed.), Microbes in the sea. pp. 119-138, Wiley, New York.
    Sargent, J.R. and Whittle, K.J. (1981). Lipids and hydrocarbons in the marine food web. In“Analysis of marine ecosystems”(Longhurst, A. R. ed.), pp. 491-533. Academic Press. London.
    Skerratt, J.H., Nichols, P.D., McMeekin, T.A., and Burton, H. (1995). Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipids. Marine Chemistry, 51: 93-113.
    Stoecker, D.K., and Capuzzo, J.M. (1990). Predation on protozoa:its importance to zooplankton. Journal of Plankton Research, 12:891-908.
    Tolosa, I., Vescovali, I., Leblond, N., Marty, J.C., Mora, S. and Prieur, E. (2004). Distribution of pigment and fatty acid biomarkers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea). Marine chemistry, 88:103-125.
    Vance, D.E. and Vance, J. E. (1996).“Biochemistry of lipids, lipoproteins and membranes”. Elsevier Science, Amsterdam.
    Veefkind R.J. (2003). Carbon Isotope Ratios and Composition of Fatty Acids: Tags and Trophic Markers in Pelagic Organisms. PhD Thesis, University of Victoria, Canada. Wainman, B.C., Smith, R.E.H., Rai, H. and Furgal, J.A. (1999). Irradiance and lipid production in natural algal populations. In Arts, M. T. and Wainman, B. C. (eds.). Lipids in freshwater ecosystems. pp. 45-70. Springer, New York.
    Wood, B. J. B. (1988). Lipids of algae and protozoa. In“Microbial lipids”, Vol. 1 (Ratledge, C. and Wilkinson, S. G. eds.), pp. 807-867, Academic Press, London.
    赵三军,肖天,李洪波,徐剑虹.(2005).胶州湾异养细菌及大肠杆菌的分布及对陆源污染的指示.海洋与湖沼,36:541-547
    Ackman, R.G., Tocher, C.S. and Mclachlan, J. (1968). Marine phytoplankton fatty acids. Journal of the Fisheries Research Board of Canada, 25:1603-1620.
    Ahlgren, G., Gustafsson, I.B. and Boberg, M. (1992). Fatty acid content and chemical composition of freshwater microalgae. Journal of Phycology, 28: 37-50.
    Alonso, D.L., Molina Grima, E., Sánchez Pérez, J. A., García Sánchez, J. L. and García Camacho, F. (1992). Fatty acid variation among different isolates of Isochrysis galbana. Phytochemistry, 31: 3901-3904.
    Brett, M.T. and Müller-Navarra, D.C. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38: 483-499.
    Budge, S.M. and Parrish, C.C. (1998). Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochemistry, 29: 1547-1559.
    Budge, S.M., Parrish, C.C. and Mckenzie, C.H. (2001). Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry, 76: 285-303.
    Claustre, H., Marty, J.C., Cassiani, L. and Dagaut, J. (1988). Fatty acid dynamics in phytoplankton and microzooplankton communities during a spring bloom in the coastal Ligurian Sea: Ecological implications. Marine Microbial Food Webs, 3: 51-66.
    Conte, M.H., Volkman, J.K. and Eglinton, G. (1994). Lipid biomarkers of the Haptophyta. In: Green, J.C. and Leadbeater, B. S. C. (eds.), The Haptophyte Algae. pp. 351-377. Clarendon Press, Oxford.
    Dalsgaard, J., John, M.S., Kattner, G., Müller-Navarra, D.C. and Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46: 225-340.
    DeMott, W.R. and Müller-Navarra, D.C. (1997). The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, acyanobacterium and lipid emulsions. Freshwater Biology, 38: 649–664.
    Dunstan, G.A., Volkman, J.K., Barrett, S.M., Leroi, J.-M. and Jeffrey, S. W. (1994). Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry, 35: 155-161.
    Falk-Petersen, S., Sargent, J.R., Henderson, J., Hegseth, E.N., Hop, H. and Okolodkov, Y.B. (1998). Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea. Polar Biology, 20: 41-47.
    Fraser, A.J., Sargent, J.R., Gamble, J.C. and Seaton, D.D. (1989). Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Marine Chemistry, 27:1-18
    Gearing, J.N. and Pocklington, R. (1990). Organic geochemical studies in the St. Lawrence Estuary. In: Ei-Sabh, M.I. and Silverberg, N. (eds.). Coastal and Estuarine Studies, Vol, 39, pp,170-201. Spinger-Verlag, New York.
    Haddad, R.I., Martens, C.S. and Farrington, J. (1992). Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Organic Geochemistry, 19, 206-216.
    Harvey, H.R. (1994). Fatty acids and sterols as source markers of organic matter in sediments of the North Carolina continental slope. Deep-Sea Reseurch-II, 41, 783-796.
    Kaina, M., Arts, M.T. and Mazumder, A. (2004). Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography, 49: 1784-1793.
    Kaitaranta, J.K., Linko, R.R. and Vuorela, R. (1986). Lipids and Fatty acids in plankton from the Finnish coastal waters of the Baltic Rutta. Comparative Biochemistry and Physiology, B85, 427-433.
    Kattner, G., Gercken, G. and Eberlein, K. (1983). Development of lipids during a spring plankton bloom in the northern North Sea. I. Particulate fatty acids. Marine Chemistry, 14:149-162
    Léveillé, J.C., Amblard, C. and Bourdier, G. (1997). Fatty acids as specific algal markers in a natural lacustrian phytoplankton. Journal of plankton research, 19: 469-490.
    Mansour, M.P., Volkman, J.K., Jackson, A.E. and Blackburn, S.I. (1999). The fatty acid and sterol composition of five marine dinoflagellates. Journal of Phycology, 35: 710-720.
    Mayzaud, P., Claustre, H. and Augier, P. (1990). Effect of variable nutrient supply on fatty acid composition of phytoplankton growth in an enclosed experimental ecosystem. Marine Ecology Progress Series, 60: 123-140.
    Meziane, T., Bodineau, L., Retiere, C. and Thoumelin, G. (1997). The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. Journal of Sea Research, 38: 47-58.
    Miyazaki, T. (1983). Compositional changes of fatty acids in particulate matter and water temperature, and their implications to the seasonal succession of phytoplankton in a hypereutrophic lake, Lake Kasumigaura, Japan. Archiv für Hydrobiologie, 99: 1-14.
    Müller-Navarra, D.C. (1995) Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv für Hydrobiologie, 132: 297–307.
    Müller-Navarra, D.C., Brett, M.T., Liston, A.M., and Goldman, C.R. (2000). A highly- unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403: 74-77.
    Müller-Navarra, D.C., Brett, M.T., Park, S., Chandra, S., Ballantyne, A.P., Zorita, E. and Goldman, C.R. (2004). Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature, 427: 69-72.
    Napolitano, G.E. (1999). Fatty acids as trophic and chemical markers in freshwater ecosystems. In Arts, M. T. and Wainman, B. C. (eds.).“Lipids in freshwater ecosystems”. Springer, New York.
    Napolitano, G.E. and Ackman, R.G. (1992). Anatomical distributions and temporal variations of lipid classes in scallops Placopecten magellanicus (Gmelin) from Georges Bank (Nova Scotia). Comparative Biochemistry and Physiology, 103B, 645-650.
    Napolitano, G.E., Ackman, R.G. and Ratnayake, W.M.N. (1990). Fatty acid compositionof three cultured algal species (Isochrysis galbana, Chaetoceros gracilis and Chaetoceros) used as food for bivalve larve. World Aquaculture Society, 21:122-130
    Napolitano, G.E., Pollero, R.J., Gayoso, A.M., MacDonald, B.A. and Thompson, R.J. (1997). Fatty acids as trophic markers of phytoplankton blooms in the Bahía Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology, 25: 739-755.
    Najdek, M., Debobbis, D., Miokovic, D. and Ivancic, I. (2002). Fatty acid and phytoplankton compositions of different types and mucilaginous aggregates in the northern Adriatic. Journal of Plankton Research, 24:494-441.
    Nichols, P.D., Jones, G.J., de Leeuw, J.W. and Johns, R.B. (1984). The fatty acid and sterol composition of two marine dinoflagellates. Phytochemistry, 23:1043-1047.
    Parrish, C.C. (1988). Dissolved and particulate marine lipid classes: a review. Marine Chemistry, 23:17-40.
    Parrish, C.C. and Wangersky, P.J. (1990). Growth and lipid class composition of the marine diatom, Chaeterceros gracilis, in laboratory and mass culture turbidostats. Journal of Plankton Research 12, 101 l-1021.
    Pedersen, L., Jensen, H.M., Burmeister, A.D. and Hansen, B. W. (1999). The significance of food web structure for the condition and tracer lipid content of juvenile snail fish (Pisces: Liparis spp.) along 65-72°N off West Greenland. Journal of Plankton Research, 21: 1593-1611.
    Pohl, P. and Zurheide, F. (1979). Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In Hoppe, H. A., Levring, T. and Tanaka, Y. (eds.), Marine algae in pharmaceutical science, Vol. 1, pp. 473-523. Walter de Gruyter, Berlin.
    Reuss, N. and Poulsen, L.K. (2002). Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom off West Greenland. Marine Biology, 141: 423-434.
    Sargent, J. R., Parkes, R. J., Mueller-Harvey, I, and Henderson, R. J. (1988). Lipid biomarkers in marine ecology. In: Sleigh, M. A. (ed.), Microbes in the sea. pp.119-138.Ellis Horwood, Ltd. Chichester, U.K.
    Servel, M.-O., Claire, C., Derrien, A., Coffard, L. and De Roeck-Holtzhauer, Y. (1994). Fatty acid composition of some marine microalgae. Phytochemistry, 36: 691-693.
    Skerratt, J.H., Nichols, P.D., McMeekin, T.A., and Burton, H. (1995). Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipids. Marine Chemistry, 51: 93-113.
    Tolosa, I., Vescovali, I., Leblond, N., Marty, J.C., Mora, S. and Prieur, E. (2004). Distribution of pigment and fatty acid biomarkers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea). Marine chemistry, 88:103-125.
    Veefkind R.J. (2003). Carbon Isotope Ratios and Composition of Fatty Acids: Tags and Trophic Markers in Pelagic Organisms. PhD Thesis, University of Victoria, Canada. Viso, A.C. and Marty, J.C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry, 34; 1521-l 533.
    Volkman, J. K., Eglinton, G. and Corner, E. D. S. (1980). Sterols and fatty acids of the marine diatom Biddulphia sinensis. Phytochemistry, 19: 1809-1813.
    Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. and Garland, C. D. (1989). Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128: 219-240.
    Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. and Bavor, H. J. J. (1980). Microbial lipids of an intertidal sediment I. Fatty acids and hydrocarbons. Geochirnica et Cosmochimica Acta, 44, 1133-l 143.
    Von Elert, E. and Stampfl, P. (2000). Food quality for Eudiaptomus gracilis: the importance of particular highly unsaturated fatty acids . Freshwater Biology, 45: 189-200.
    Wakeham. S. G. and Beier, J. A. (1991). Fatty acid and sterol biomarkers as indicators of particulate matter source and alteration processes in the Black Sea. Deep-Sea Research, 38, S943-S968.
    Wood, B. J. B. (1988). Lipids of algae and protozoa. In: Ratledge, C. and Wilkinson, S. G. (eds.), Microbial lipids, Vol. 1 pp. 807-867, Academic Press, New York.高尚武,王克.(1995).胶州湾的浮游动物数量和分布.见:董金海,焦念志主编.胶州湾生态学研究,.科学出版社,北京,151-158.
    李超伦,王荣,张芳,王新刚.黄、东海浮游桡足类摄食研究Ⅱ摄食率及摄食压力.海洋与湖沼,浮游动物研究专辑:2002, 111-119.
    刘光兴,张志南. (2000).胶州湾北部浮游动物的生物量和生产力.青岛海洋大学学报, 30:58-64
    沈国英,施并章. (2002).海洋生态学(第二版).科学出版社,北京.
    肖贻昌,高尚武,张河清.(1992).浮游生物:浮游动物.见:刘瑞玉主编.胶州湾生态学和生物资源,科学出版社,北京,170-202.
    张武昌,王克,肖天.(2002).浮游动物生物量和能量研究中的一些转换系数.海洋科学,26(1):34-36
    左涛,王荣,王克,高尚武.南黄海鳀鱼产卵场浮游动物群落结构分析.海洋与湖沼,浮游动物专辑: 2002, 120-128.
    左涛,王荣. (2003).海洋浮游动物生物量测定方法概述.生态学杂志,22(3):79-83
    Brett, M.T. (1993). Comment on“Possibility of N or P limitation for planktonic cladocerans: An experimental test”(Urabe and Watanabe) and“Nutrient element limitation of zooplankton production”(Hessen). Limnology and Oceanography, 38: 1333–1337.
    Brett, M.T. and Müller-Navarra, D.C. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38: 483-499.
    Lampert W. (1987). Feeding and nutrition in Daphnia. In: Peters R.H. and De Bernardi R. (eds), Daphnia. Vol. 45, pp. 143–192. Istituto Italiano di Idrobiologia, Verbania, Pallanza.
    Müller-Navarra, D.C. (1995). Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv für Hydrobiologie, 132: 297–307.
    Porter, K.G. (1973). Selective grazing and differential digestion of algae by zooplankton. Nature, 244:179-180.
    Schneider G. (1989). Carbon and nitrogen content of marine zooplankton dry material: a short review [J]. Plankton Newsletter, 12(1): 41-44.
    Sterner, R.W., and Hessen, D.O. (1994). Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Reviwe Ecology and Systematics, 25: 1–29.
    Sterner, R.W. and Schulz, K.L. (1998). Zooplankton nutrition: Recent progress and a reality check. Aquatic Ecology, 32: 261-279.
    Sargent, J. R. (1976). The structure, metabolism and function of lipids in marine organisms. In:”Malins, D.C. and Sargent, J.R. (eds.). Biochemical and biophysical perspectives in marine biology. Vol. 3, pp. 150-212, Academic Press, London.
    Sargent, J. R. and Henderson, R. J. (1986). Lipids. In: Corner, E.D.S. and O’Hara, S.C.M. (eds.). The biological chemistry of marine copepods. Vol. 1, pp. 59-108. Clarendon Press, Oxford.
    Ackman, R.G. and McLachlan, J. (1977). Fatty acids in some Nova Scotian marine seaweeds: a survey for octadecapentaenoic and other biochemically novel fatty acids. Proceedings of the Nova Scotian Institute of Science, 28: 47-64.
    Albers, C.S., Kattner, G. and Hagen, W. (1996). The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Marine Chemistry, 55: 347-358.
    Brett, M.T., and Müller-Navarra, D.C.(1997). The role of essential fatty acids in aquatic food web processes. Freshwater Biology, 38: 483-499.
    Clarke, A., Holmes, L.J. and Hopkins, C.C.E. (1987). Lipid in an Arctic food chain: Calanus, Bolinopsis, Beroe. Sarsia, 72: 41-48.
    Cook, H. W. (1996). Fatty acid desaturation and chain elongation in eukaryotes. In “Biochemistry of lipids, lipoproteins and membranes”(D. E. Vance and J. E. Vance, eds.), pp. 129-152, Elsevier Science, Amsterdam.
    Gurr, M.I. and Harwood, J.L. (1991).“Lipid Biochemistry, an introduction”. Chapman and Hall, London.
    Kattner, G., Graeve, M. and Hagen, W. (1994). Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Marine Biology, 118: 637-644.
    Kattner, G. and Hagen, W. (1995). Polar herbivorous copepods - different pathways in lipid biosynthesis. ICES Journal qf Marine Science, 52: 329-335.
    Kattner, G., Hirche, H.-J. and Krause, M. (1989). Spatial variability in lipid composition of calanoid copepods from Fram Strait, the Arctic. Marine Biology, 102: 473-480.
    Moreno, V. J., Moreno, J. E. A. and Brenner, R. R. (1979). Fatty acid metabolism in the calanoid copepod Pctracalunus parvus: 1. Polyunsaturated fatty acids. Lipids, 14: 313-317.
    Napolitano, G.E., Pollero, R.J., Gayoso, A.M., MacDonald, B.A. and Thompson, R.J. (1997). Fatty acids as trophic markers of phytoplankton blooms in the Bahía Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada).Biochemical Systematics and Ecology, 25: 739-755.
    Pond, D.W., Allen, C.E., Bell, M.V., Van Dover, C.L., Fallick, A.E., Dixon, D.R. and Sargent, J. R. (2002). Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent worms Ridgeia piscesae and Protis hydrothermica. Marine Ecology Progress Series 225, 219-226.
    Sargent, J.R. (1976). The structure, metabolism and function of lipids in marine organisms. In: Malins, D.C. and Sargent, J.R. (eds.). Biochemical and biophysical perspectives in marine biology, Vol. 3, pp. 149-212, Academic Press, London.
    Sargent, J.R. and Falk-Petersen, S. (1988). The lipid biochemistry of calanoid copepods. Hydrobiologia, 167/168: 101-l 14.
    Sargent, J. R. and Henderson, R. J. (1986). Lipids. In: Corner, E.D.S. and O’Hara, S.C.M. (eds.). The biological chemistry of marine copepods. Vol. 1, pp. 59-108. Clarendon Press, Oxford.
    Sargent, J.R. and Whittle, K.J. (1981). Lipids and hydrocarbons in the marine food web. In: Longhurst, A.R. (ed.). Analysis of marine ecosystems, pp. 491-533. Academic Press.
    Scott, C.L., Kwasniewski, S., Falk-Petersen, S. and Sargent, J.R. (2002). Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. ,finmarchicus from Arctic waters. Marine Ecology Progress Series, 235: 127-134.
    赵三军,肖天,李洪波,徐剑虹.(2005).胶州湾异养细菌及大肠杆菌的分布及对陆源污染的指示.海洋与湖沼,36:541-547
    Ackman, R.G. (2002). The gas chromatograph in practical analysis of common and uncommon fatty acids for the 21st century. Analytica Chimica Acta, 465: 175-192.
    Arts, M.T. and Wainman, B.C. (eds.). (1999). Lipids in freshwater ecosystems. Springer, New York.
    Dalsgaard, J., John, M.S., Kattner, G., Müller-Navarra, D.C. and Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46: 225-340.
    Desvilettes, C., Bourdier, G., Amblard, C. and Barth, B. (1997). Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology, 38, 629-637.
    Fry, B. and Wainright, S.C. (1991). Diatom sources of 13C-rich carbon in marine food webs. Marine Ecology Progress Series, 76:149-157.
    Graeve, M., Hagen, W. and Kattner, G. (1994). Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep-Sea Research, 41: 915-924.
    Graeve, M., Kattner, G. and Hagen, W. (1994a). Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. Journal qf Experimental Marine Biology and Ecology, 182: 97-l 10.
    Grisley, M.S., Boyle, P. R. (1985). A new application of serological techniques to gut content analysis. Journal of experimental marine biology and ecology, 90: 1-9.
    Henderson, R. J. and Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research, 26, 281-347.
    Hopkins T.L, Lancraft, T.M., Torres, J.J. and Donnelly, J. (1993). Community structure and trophic ecology of zooplankton in the Scotia Sea marginal ice zone in winter (1988). Deep-sea Research I., 40: 81-105.
    Irigoien, X., Hend, R.N., Harris, R.P., Cummings, D. and Harbour, D. (2000). Feedingselectivity and egg production of Calanus helgolandicus in the English Channel. Limnology and Oceanography, 45: 44-54.
    Jezyk, P.F. and Penicnak, A.J. (1966). Fatty acid relationships in aquatic food chain. Lipids, 1: 427-429.
    Kattner, G. and Krause, M. (1987). Changes in lipids during the development of Calunus finmarchicus s.1. from copepodid I to adult. Marine Biology, 96: 51l-518.
    Kayama, M., Tsuchiya, Y. and Mead, J.F. (1963). A model experiment of aquatic food chain with special significance in fatty acid conversion. Bulletin of the Japanese Society of Scientific Fisheries, 29: 452-458.
    Kirsch, P. E., Iverson, S. J., Bowen, W. D., Kerr, S. R. and Ackman, R. G. (1998). Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 55, 1378-l 386.
    Lee, R.F., Nevenzel, J.C. and Paffenhiifer, G.A. (1971). Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Marine Biology, 9: 99-108.
    Lovern, J. A. (1935). C. Fat metabolism in fishes. VI. The fats of some plankton crustacea. Biochemical Journal, 29: 847-849.
    Makhutova, O.N., Sushchik, N.N. and Kalacheva, G.S. (2004). The information value of fatty acid composition of triacylglycerols and polar lipids of seston in assaying the food spectrum of microzooplankton in the Bugach Reservoir. Doklady Biological Sciences, 395:143–145.
    Mansour, M.P., Volkman, J.K., Holdsworth, D.G., Jackson, A.E. and Blackburn, S.I. (1999a). Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry, 50: 541-548.
    Mansour, M.P., Volkman, J.K., Jackson, A.E. and Blackburn, S.I. (1999b). The fatty acid and sterol composition of five marine dinoflagellates. Journal of Phycology, 35: 710-720.
    Napolitano, G.E., Pollero, R.J., Gayoso, A.M., MacDonald, B.A. and Thompson, R.J. (1997). Fatty acids as trophic markers of phytoplankton blooms in the Bahía Blancaestuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology, 25: 739-755.
    Peterson, B.J.and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18: 293–320
    Pimm, S. L., J. H. Lawton, and J. E. Cohen. 1991. Food web patterns and their consequences. Nature 350:669-674.
    Rossi, S., Sabatés, A., Latasa, M. and Reyes, E. (2006). Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean. Journal of Plankton Research, 28: 551-562.
    Scott, C.L., Falk-Petersen, S., Sargent, J.R., Hop, H., Loenne, O.J. and Poltermann, M. (1999). Lipids and trophic interactions of ice fauna and pelagic zooplankton in the marginal ice zone of the Barents Sea. Polar Biology, 21: 65-70.
    Sargent, J.R., Eilertsen, H.C., Falk-Petersen, S. and Taasen, J.P. (1985). Carbon assimilation and lipid production in phytoplankton in northern Norwegian fjords. Marine Biology, 85: 109-l16.
    Sargent, J. R. and Henderson, R. J. (1986). Lipids. In: Corner, E.D.S. and O’Hara, S.C.M. (eds.). The biological chemistry of marine copepods. Vol. 1, pp. 59-108. Clarendon Press, Oxford.
    St. John, M. A. and Lund, T. (1996). Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced condition of juvenile North Sea cod. Marine Ecology Progress Series, 131: 75-85.
    Veefkind R.J. (2003). Carbon Isotope Ratios and Composition of Fatty Acids: Tags and Trophic Markers in Pelagic Organisms. PhD Thesis, University of Victoria, Canada.
    肖贻昌,高尚武,张河清.(1992).浮游生物:浮游动物.见:刘瑞玉主编.胶州湾生态学和生物资源,科学出版社,北京,170-202.
    Ahlgren G., Lundstedt L., Brett M.T. & Forsberg C. (1990). Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research, 12: 809–818.
    Anderson, T.R. and Hessen, D.O. (2005) Threshold elemental ratios for carbon versus phosphorus limitation in Daphnia. Freshwater Biology, 50: 2063-2075.
    Brett, M.T., and Müller-Navarra, D.C.1997. The role of essential fatty acids in aquatic food web processes. Freshwater Biology, 38: 483-499.
    DeMott W.R. (1998) Utilization of a cyanobacterium and a phosphorus-deficient green alga as complementary resources by daphnids. Ecology, 79, 2463–2481.
    DeMott W.R., Gulati R.D. (1999) Phosphorus limitation in Daphnia: evidence from a long-term study of three hypereutrophic Dutch lake. Limnology and Oceanography, 44, 1557–1564.
    DeMott W.R., Gulati R.D. & Siewertsen K. (1998) Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnology and Oceanography, 43, 1147–1161.
    DeMott W.R. & Mu¨ller-Navarra D.C. (1997). The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshwater Biology, 38: 649–664. Hessen D.O. (1992). Nutrient element limitation of zooplankton production. American Naturalist, 140: 799–814.
    üller-Navarra D.C. (1995a) Biochemical versus mineral limitation in Daphnia. Limnology and Oceanography, 40, 1209–1214.
    Müller -Navarra D.C. (1995b) Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv für Hydrobiologie, 132, 297–307.
    Müller-Navarra D.C., Brett M.T., Liston A.M. & Goldman C.R. (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers andconsumers. Nature, 403: 74–77.
    Müller-Navarra, D.C., Brett, M.T., Park, S., Chandra, S., Ballantyne, A.P., Zorita, E. and Goldman, C.R. (2004). Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature, 427: 69-72.
    Olsen Y. (1999). Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture? In: Arts, M.T. and Wainman, B.C. (eds.). Lipids in freshwater ecosystems. pp. 161–202. Springer, New York.
    Park, S., Brett, M.T., Müller-Navarra, D.C. and Goldman, C.R. (2002). Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Freshwater Biology, 47: 1377-1390.
    Sargent, J.R., Bell, J.G., Bell, M.V., Henderson, R.J. and Tocher, D.R. (1995). Requirement criteria for essential fatty acids. Journal of Applied Ichthyology, 11, 183-198.
    Sommer, U. (1992). Phosphorus-limited Daphnia: Intraspecific facilitation instead of competition. Limnology and Oceanography, 37: 966–973.
    Sterner, R. (1997) Modelling interactions of food quality and quantity in homeostatic consumers. Freshwater Biology, 38: 473-481.
    Sterner R.W. (1993) Daphnia growth on varying quality of Scenedesmus: mineral limitation of zooplankton. Ecology, 74, 2351–2360.
    Sterner R.W. & Hessen D.O. (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25, 1–29.
    Sterner R.W. and Schulz, K.L. (1998). Zooplankton nutrition: Recent progress and a reality check. Aquatic Ecology, 32: 261-279.
    Urabe J., Classen J. & Sterner R.W. (1997). Phosphorus limitation of Daphnia growth: is it real? Limnology and Oceanography, 42: 1436–1443.
    Urabe J. & Watanabe Y. (1992). Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnology and Oceanography, 37: 244–251.
    Wacker, A. and von Elert, E. (2001). Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology, 82: 2507-2520.
    Bianchi, T.S., Findlay, F. and Dawson, R. (1993). Organic matter sources in the water column and sediments of Hudson river estuary: the use of plant pigments as tracers. Estuarine, Coastal and Shelf Science, 36: 359– 376.
    Dalsgaard, J., and St. John, M. (2004). Fatty acid biomarkers: validation of food web and trophic markers using 13C-labelled fatty acids in juvenile sandeel (Ammodytes tobianus). Canadian Journal of Fisheries and Aquatic Sciences, 61: 1671-1680.
    Desvilettes, C., Bourdier, G., Amblard, C. and Barth, B. (1997). Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology, 38: 629-637.
    Gieskes, W.W.C., Kraay, G.W. (1986). Analysis of phytoplankton by HPLC before, during and after the mass occurrence of the microflagellate Corymbellus aureus during the spring bloom in the open northern North Sea in 1983. Marine Biology, 92: 45–52.
    Hayes, J.M., Freeman, K.H., Popp, B.N. and Hoham, C.H. (1990). Compound specific isotope analysis: a novel tool for reconstruction of ancient biochemical processes. Organic Geochemistry, 16: 1115–1128.
    Kirsch, P. E., Iverson, S. J., Bowen, W. D., Kerr, S. R. and Ackman, R. G. (1998). Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 55: 1378-l 386.
    Reuss, N. and Poulsen, L.K. (2002). Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom off West Greenland. Marine Biology, 141: 423-434.
    Rossi, S., Sabatés, A., Latasa, M. and Reyes, E. (2006). Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean. Journal of Plankton Research, 28: 551-562.
    Sargent, J. R. and Whittle, K. J. (1981). Lipids and hydrocarbons in the marine food web. In: Longhurst, A.R. (ed.). Analysis of marine ecosystems, pp. 491-533. Academic Press.
    St. John, M.A. and Lund, T. (1996). Lipid biomarkers: linking the utilization of frontalplankton biomass to enhanced condition of juvenile North Sea cod. Marine Ecology Progress Series, 131: 75-85.
    Tolosa, I., Vescovali, I., LeBlond, N., Marty, J., Mora, S. and Prieur, L. (2004). Distribution of pigments and fatty acid biomarkers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea). Marine Chemistry, 88: 103–125.
    Veefkind R.J. (2003) Carbon Isotope Ratios and Composition of Fatty Acids: Tags and Trophic Markers in Pelagic Organisms. PhD Thesis, University of Victoria, Canada.
    Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L. and Gelin, F. (1998). Microalgal biomarkers: A review of recent research developments. Organic Geochemistry, 29: 1163-l 179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700