用户名: 密码: 验证码:
吉林省西部地区分散性季冻土的分散机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以吉林省西部地区分散性冻土为研究对象,结合国家自然科学基金项目“东北季冻区路基土水分迁移的微观机理研究”,通过对不同季节、不同深度的土样的室内常规物理试验、化学试验、微观结构测试及分散性鉴定试验研究,分析了土的物化性质和分散性在土体剖面上的分布特征及其随季节的变化。另外对土样进行了室内水分迁移模拟试验,通过对冻融前后土的含水率、含盐量、微观结构、分散性的对比分析,研究了多个冻融循环过程中的水分迁移特征及迁移的机理,盐分随水分的运移特征及微观结构、分散性的变化,总结出了冻融循环过程中的盐分迁移和微结构变化对分散性的影响机理。在以上试验数据的基础上,利用灰色关联分析法,对土的物理化学参数与分散性参数—分散度之间的关联度进行了计算,探讨了物理化学性质对分散性的影响大小,确定了影响分散性的主要参数,研究了吉林省西部地区分散性冻土的分散机理,并结合当地的地形地貌、气候、水文特征,分析其成因。最后,采用分散度和已确定的对分散性最具影响意义的5个参数:交换性钠百分比、阳离子交换容量、pH值、有机质含量、粘粒含量,建立了BP神经网络分散性模型,并通过4组土样的试验值和模型计算值的对比对模型进行了验证,对吉林省西部地区水利工程建设和土质改良具有一定的理论指导意义。
The dispersive soil refers to a kind of cohesive soil, which has a tendency to disperse in low-salinity water(or pure water)due to its more mutual repulsion of ions than mutual attraction. Dispersive soil will disperse into the original particle in low-salinity water and it is susceptible to be carried away by flowing water. The erosion phenomenon is serious than fine sand or silt, which is the important reason for erosion and piping failure of dams, channel slope, roads and slope. The western region of Jilin Province lies in the south of Songnen Plain, and it is one of the concentrated distribution area of soda saline soil. To improve grain production capacity, three large water conservancies of inducing Nenjiang to Baicheng, Da’an irrigation and Hadashan hydro project have been built to irrigate and treat alkaline wasteland. However, there have emerged serious erosion damage and collapse phenomenon in the project construction process. Through the investigation and experiments found that the soil in this area belong to dispersive soil, and rich in sodium ions which increases the thickness of particle surface diffusion layer, so that soil particles dispersed in water. Therefore, researching on the dispersive soil, mastering its dispersion characteristics have some theoretical significance to the water conservancies construction and soil improvement in the western Jilin Province.
     Associated with the project of“study on the microscopic mechanism of moisture migration in roadbed of seasonal frozen area in northeast China”sponsored by the national natural scientific fund, the basic physical and chemical properties, microstructure and dispersion of dispersive seasonal frozen soil of different seasons and different depths were studied firstly. Then analyze the distribution characteristics of physicochemical properties and dispersion in the soil profile and their changes with seasons. In addition, used freeze-thaw method to simulate water migration, and through comparing the water content, salt content, microstructure, dispersion of soil before and after freezing, researched on the water and salt migration characteristics and the changes of microstructure and dispersion in the freeze-thaw process, summarized the impact of salt migration and the change of microstructure on the dispersion in process of freezing and thawing. Based on the above test data, adopted gray relational analysis method to calculate the correlation between physicochemical parameters and the dispersion parameter-the dispersive percent, determine the impact degree of physical and chemical parameters on the dispersion and the main parameters which impact dispersion, discussed the dispersion mechanism of dispersive seasonal frozen soil in the western region of Jilin Province, combined with the local topography, climate, hydrological characteristics, analyzed the causes of dispersive soil. Finally, used the dispersion percent and five parameters that impact on the dispersion significantly (exchangeable sodium percentage, cation exchange capacity, pH, organic matter content, clay content) to establish the BP neural network model of dispersion, and validated the model by the comparing the calculated values to experimental value of 4 groups of soil samples. Through the study, the following conclusions were obtained:
     1. It makes a test on the properties such as granulometric composition, mineral composition, soluble salts, cation exchange capacity and micro-structure of soil samples from the western of Jilin Province, which shows that: it is dominated by silt in western of Jilin Province and clay content is higher. As the dispersion of the soil is strong, silt and clay content has not changed much with and without the dispersant in analytic tests of a particle deposition of still water, so the role of dispersant is not obvious. Mineral composition dominated by primary minerals and clay mineral include Eamon mixed-layer minerals, illite and kaolinite, and none montmorillonite. There is much more capillary pore at the main than coarse pores. The percentage of micro-porosity (<0.001mm) content is more as well. The total amount of soluble salt in the soil is greater than 0.3%, and soluble salt is mainly dominted by Na+and HCO3?. The pH value is greater than 7, and is alkaline. So the soil in this area belongs to weak carbonic acid (soda alkaline saline soil). This area is part of continental monsoon climate, so salty content of soil in the variation with depth is closely related with the seasonal changes. It is always high temperature and rainfall in summer, due to rainfall leaching the salt content in surface soil (generally 30cm or less) increased with depth and then decreases as the depth increases;For dry and windy in autumn, salt influenced by eaporation with will migrate to the surface with water, resulting in the decrease of salt content with the increase of depth; In winter, because of the exist of soil temperature gradient, moisture will migrate from unfrozen soil to the permafrost and salt also will move up; Permafrost gradually melt and moisture evaporate strongly until spring , which make salt remained in the surface soil. So their contents should be larger than any other seasons.
     2. Through the dispersion identification tests of soil in different parts found that the soils in Xianghai and Xinglin are non-dispersed soil, and the soils in zhenlai demonstration area, Sanzhigou, Da’an, Nilin and Momoge are dispersive soil, while their dispersion distribution in the soil profile are the same as the soluble salts change with depth. In spring and autumn, due to the strongly evaporation effect, salt content of the soil at surface is high, so that dispersion decreases with the depth increases. As the salt content of soil in spring is more than that in autumn, the dispersion of soil in spring is also higher than that in autumn. In the summer, due to leaching effects, the dispersion in the range of 0-30cm depth increase with the depth increase, and decrease with the increase of depth below 30cm. This also explains the soluble sodium ions in the soil of this area are the main reasons for the dispersion.
     3. The test results of capillary water rise in direct method show that there is almost no capillary water arising of Da’an and Sanzhigou soil samples, that is mainly due to the less coarse pores, high content of micro-void in the soil and the large amounts of exchangeable sodium ions of soil which form thick combination water film around the soil particles, and the water combination film overlap expand to full pore the last, block the channels of capillary water arising, result in very low arising height of capillary water. Furthermore, due to the strong dispersion of two sets of soil samples, the soil particle surface energy is quite high, and most of the water strongly bound by particles, so that capillary resistance is considerably, which making it difficult for water migration.
     The rule of moisture changing with height is not obvious in the water migration test of freeze-thaw method. There is only small amount of increase with height at the temperature changing boundary, which is the film water migration caused by temperature gradient, not the rise of capillary water. Part of the salt crystallize in freezing process resulting in solute potential gradient between the surface and certain depths below it, so the salt in soil layers below migrate to the frozen layer with apparently. The salt content increases with the soil column height. This is the reason for the significant salinity increase of soda-alkali soil at surface in process of freezing and thawing.
     The dispersion of soil samples increase significantly after freezing and thawing, partly because the sodium ions migrate with water in the freezing process causing the content increase of exchangeable sodium ion surrounding soil particles, increasing the thickness of diffusion layer, reducing the attractiveness of soil particles; on the other hand, the frost heaving generated in the freezing process increase the distance between the particles and undermine the link force between the particles, thereby increase the dispersion of soil.
     4. The analysis on the relationship between physicochemical parameters and dispersion by gray relational analysis method indicate that the order of correlation between seven parameters and the dispersion percent is: cation exchangeable capacity> exchange sodium ion percentage> organic matter content > clay content> pH> specific surface area> structural damage rate. The linear fitting of the physicochemical parameters and the dispersion found that exchangeable sodium ion percentage, cation exchange capacity, clay content, organic matter content and pH are significantly linear positive correlation with the dispersion percent, and the correlation between specific surface area, structural damage rate and dispersion percent is not obvious. Therefore, the parameters that impact on the dispersion greatest are the exchangeable sodium ion percentage, cation exchange capacity and organic matter content, followed by are pH and clay content, while the specific surface area and structural damage rate have little effect on the dispersion.
     5. Based on the above analysis, the dispersion mechanism of dispersive soil in the western region of Jilin Province which obtained the following aspects:①montmorillonite unit cell is composed of two silicon-oxygen tetrahedron chip with aluminum oxygen octahedral. And the two adjacent cell layers of oxygen connected to the connectivity are very weak, there is a good cleavage. The water molecules and exchangeable cations can enter each filmso that crystals have a greater volume change with strong expansion. Montmorillonite which is almost no connectivity after absorbing water can be dispersed into some very small scale-like particles. The area of soil contains a certain amount of illite and mixed layer minerals imon. And the groundwater in the area is rich in sodium. So the illite crystal replaces with the role of adsorption of sodium ion, which has a strong dispersion.②Large amounts of exchangeable sodium ions in the soil which is increasing the surface of soil particles double layer thickness, increasing the distance between particles and weakening the link between the particle force, that is why the soil in this region has dispersion.③The pH of the soil is greater than 7, or even greater than 9 which is alkaline .Because the pore solution pH, and illite, montmorillonite presence other large power difference between the pH value which can form a thick diffusion layer. Thus the soil losses the cohesion which caused by particles scattered and high pH value of soil in the study area provided the dispersion of environmental conditions.④While the region contains a certain amount of soil organic matter and clay with cementation playing a certain role, this effect is not sufficient to inhibit the spread of soil.⑤The area is frost area. Salt (mainly sodium bicarbonate) with the upward migration of water in the process of freezing and thawing, so exchangeable sodium in the soil ions is increasing which reinforcing the dispersion of the soil; In addition, frost effect can increase the distance between the particles, reduce the link between the particle. Then the soil is looser and more susceptible to erosion damaged.
     6. Choose the dispersion of soil parameters - dispersion and 5 affect the dispersion of the important parameters to quantify the extent, and establish three layer BP neural network model. The parameters contain the percentage of exchangeable sodium, cation exchange capacity, pH, organic matter content and clay content. With 30 groups of soil samples as training samples in the western region of Jilin Province, the BP neural network model is trained, and then use another 4 groups of soil samples to verify the model. The test results from the model, and the error between the actual value and model output is relatively small. The relationship is more accurate by establishing the model which is between the exchangeable sodium percentage, cation exchange capacity, pH, organic matter content, clay content and the dispersion. Also show that five parameters are the root cause of the dispersion, you can use this model predicts the dispersion of soil.
引文
[1]水利部长江水利委员会水文局.SL251,水利水电工程天然建筑材料勘察规程[S].北京中国水利水电出版社,2000.
    [2]王观平,张来文,阎仰中,等.分散性土与水利工程[M].北京:中国水利水电出版社,1999:21-22.
    [3]詹姆斯.L.谢拉德,雷伊.S.德克尔,诺曼.L.赖克尔.分散性粘土坝中的管涌[J].广西科技译文,1976,1.
    [4]ASTM D4221-99.Standard test method for dispersive characteristics of clay soil by double hydrometer[S].
    [5]ASTM D4647-93.Standard test method for identification and classification of dispersive clay soils by the pinhole test[S].
    [6]ASTM D6572-00.Standard test methods for determining dispersive characteristics of clayey soils by the crumb test[S].
    [7]Ingles.O.G.Soil chemistry relevant to engineering behavoir of soils[M].American Elsevier, NewYork,1968.
    [8]Sherard J.L, Decker R.S and Ryken R.L. Piping in earth dams of dispersive clay[J]. Proceeding of the ASCE Speciality Conference of Earth and Earth-supported Structure.Purdue University,1972:589-626.
    [9]王春裕,武志杰,石元亮,等.中国东北地区的盐渍土资源[J].土壤通报, 2004,35(5):643-647.
    [10]雒鹏飞,高勇,宋凤斌,等.吉林省西部盐碱土资源开发利用中的若干问题[J].吉林农业大学学报,2004,26(6):659-663.
    [11]张殿发,王世杰.土地盐碱化过程中的冻融作用机制[J].水土保持通报,2000,20(6):14-17.
    [12]孙晓明,刘春河,洪晓晖.对南部引嫩工程分散性粘土坝的分析[J].黑龙江水专学报,2006,33(3):12-15.
    [13]F.Gutiérrez,G.Desir,M.Gutiérrez.Causes of the catastrophic failure of an earth dam built on gypsiferous alluvium and dispersive clays[J].Environmental Geology , 2003,43(7):842-851.
    [14]Sherard J.L,Dunnigan L.P,Decker R.S,etc.Pinhole test for identifying dispersive soils[A].Conference on Embankment Dams[C].ASCE,New York,USA,1992:279- 296.
    [15]Sherard J.L,Decker R.S and Ryken R.L. Piping in earth dams of dispersive clay[J]. Proceeding of the ASCE speciality conference of earth and Earth-supported structure. Purdue University,1972:589-626.
    [16]Sherard J.L, Dunnigan L.P, Decker R.S. Some engineering problems with dispersive clays[C]. Geotechnical Special Publication,1992,32:313-323.
    [17]Sherard J L,et al.Pinhole test for identifying dispersive soils.In:Proc ASCE,GT1. 1976:69-85.
    [18]Sherard J L,et al.Identification and nature of dispersive soils.In:Proc ASCE,GT4. 1976.
    [19]Sherard J L,et al.Identification and nature of dispersive soils.In:Proc ASCE,GT6. 1978.
    [20]Donaldson G.W. Occurrence of dispersive soil piping in central South Africa[J] .A.A. Balkema,1975:229-235.
    [21]Hayden Myron L.,Haliburton T.Allan.Improvements of dispersive clay erosion resistance by chemical treatment[J].Transportation Research Record, 1976,(593):27-33.
    [22]Mc Daniel, Thomas N.,Decker Rey S. Dispersive soil problem at Los Esteros dam[J]. American Society of Civil Engineers, Journal of the Geotechnical Engineering Division,1979,105(9):1017-1030.
    [23]Mc Donald L.A.,Stone P.C., Ingles O.G.. Practical treatments for dams in dispersive soils[J].The International Conference on Soil Mechanics and Foundation Engineering, 1981,2:355-360.
    [24]Gerber F.A., Von Maltitz Harmse H.J. Proposed procedure for identification of dispersive soils by chemical testing[J]. Civil Engineer in South Africa,1984,29(10): 397-399.
    [25]Bergado D T, Kang K Y. Improvement of dispersive soils by mixing with Bangkok clay or bentonite[J]. Symposium on Environmental Geotechnics and Problematic Soils and Rocks(Bangkok),1985:471-494.
    [26]Chorom M.,Rengasamy P,Murray R.S.Clay dispersion as influenced by pH and net particle charge of sodic soils[J].Australian Journal of Soil Research,1994, 32(6):1243-1252.
    [27]Sirisawat Ittiporn.The possibility of improved dispersive clay soil by powder alum[J]. 41st Kasetsart University Annual Conference,2003: 323-329.
    [28]Ouhadi V.R.,Goodarzi A.R.Assessment of the stability of a dispersive soil treated by alum[J].Engineering Geology, 2006, 85(1-2): 91-101.
    [29]Tosun Hasan, Kilbiyik.Muharrem.Internal erosion resulted from dispersive soils in earthfill dams and a case study[J]. Annual Conference on Dam Safety,2006.
    [30]Ismail Fauzilah, Mohamed Zainab, Mukri Mazidah. A study on the mechanism of internal erosion resistance to soil slope instability[J]. Electronic Journal of Geotechnical Engineering, 2008,13 A.
    [31]钱家欢.分散性土作为坝料的一些问题[J].岩土工程学报,1981,3(1):94-100.
    [32]秦曰章.黄河小浪底粘性土分散性能的试验研究[J].人民黄河,1981,(5):8-12.
    [33]秦曰章.用钠量比判别粘性土的分散性[J].人民黄河,1984,(4):28-29.
    [34]洪有伟,盛守田.黑龙江省西部地区分散性土工程特性及处理措施[J].岩土工程学报,1984,6(6):42-52.
    [35]王幼麟,鲜于开耀,刘代清.分散性土的物理化学特征—兼论某水利工程土料的分散性[J].水文地质工程地质,1986,2.
    [36]刘杰,裘孟辛,缪良娟.分散性粘土的机理、鉴定及防护[J].水利水电科学研究院论文集,第27集.
    [37]刘杰,缪良娟.分散性粘性土的抗渗特性[J].岩土工程学报.1987,9(2):90-95.
    [38]吴中伟.针孔试验方法的改进[R].郑州:黄河水利委员会勘测规划设计院科研所, 1989, 12.
    [39]李兴国,许仲生.分散性土的试验鉴别和改良[J].岩土工程学报,1989,11(1):62-66.
    [40]缪良娟.陆浑大坝防渗土料的分散性和抗渗强度的试验研究[J].人民黄河,1990,(5): 25-28.
    [41]王观平.水力劈裂与分散性粘土的管涌[J].黑龙江水利科报,1991,(2):16-20.
    [42]王观平.粘土矿物与分散性粘土[J].黑龙江水专学报,1994,3:21-25.
    [43]郭君.大庆地区安肇新河分散性土性质初探[J].工程勘察,1993,5:15-19.
    [44]陈长玲,许琦,胡丹珠.浅谈大庆地区的分散性土[J].黑龙江水利科技,1994,2:97-98.
    [45]岳宝蓉,金耀华.山西上马水库土坝裂缝原因与防治措施[J].防渗技术,1998,4(3):1-14.
    [46]马秀媛,徐又建.青岛市官路水库分散性粘土工程特性及改性试验研究[J].岩土工程学报,2000,22(7):441-444.
    [47]邓亲云,张健.分散土的判别及应用于心墙堆石坝的工程措施[J].水利技术监督, 2000,(8):23-26.
    [48]杨国玲,沙青,程建国.松嫩分散土赋存的环境因素及成因[J].黑龙江水利科技,2001, 2:129-130.
    [49]樊恒辉,李鹏,高明霞.水对针孔试验判别分散性粘土结果影响的试验研究[J].大坝观测与土工测试, 2001, 25(5):42-44.
    [50]樊恒辉,高明霞,李鹏.某大坝心墙土料分散性试验研究[J].岩土工程学报,2003, 25(5):615-618.
    [51]樊恒辉,李鹏,巨娟丽,等.论分散性粘土与判别方法[J].水利建筑与工程学报,2004,2(2):34-38.
    [52]樊恒辉,高明霞.高钠盐渍土分散性的探讨[J].西北农林科技大学学报(自然科学版), 2005,33(7):77-81.
    [53]樊恒辉,吴普特,李鹏,等.分散性土判别试验研究[J].岩土工程学报,2005,27(11): 1310-1316.
    [54]樊恒辉,高明霞,李鹏.粘土分散性的试验研究[J].长安大学学报(自然科学版),2007, 27(2): 76-80.
    [55]樊恒辉,孔令伟,郭敏霞,等.文家沟水库筑坝土粒分散性和抗渗性能试验[J].岩土工程学报,2009,31(3):458-463.
    [56]杨昭,席福来,陈华.盐渍土与分散性针孔试验影响[J].岩土力学,2003,24(增刊): 253-254.
    [57]杨昭,席福来,缪元勋,等.新疆盐渍土分散性研究[J].岩土力学,2003,24(增刊): 35-39.
    [58]崔亦昊,谢定松,杨凯虹等.分散性土均质土坝渗透破坏性状及溃坝原因[J].水利水电技术,2004,35(12):42-45.
    [59]于润波,张滨.水质对分散性粘土冲蚀破坏的影响[J].黑龙江水专学报,2005,32(3): 23-25.
    [60]巨娟丽.粘土分散性鉴定试验研究[D].西安:西北农林科技大学,2007.
    [61]魏迎奇,温彦锋,蔡红,等.分散性粘土鉴定试验的可靠性分析[J].中国水利水电科学研究院学报,2007,5(3):186-195.
    [62]李振,周俊.防渗土样的分散性与渗透变形试验研究[J].岩石力学与工程学报,2007,26(增1):3316-3321.
    [63]徐昭巍,张滨.石灰改良分散性土冻融性能的研究[J].水利科技与经济,2007,13(7):496-497.
    [64]王立文,林治芳,刘玉柏.分散性粘土筑坝质量控制[J].黑龙江水专学报,2008,35(3):49-51.
    [65]陈式华,何耀辉,孙从炎.分散性黏土鉴定的试验研究[J].浙江水利科技,2008,2:39-41.
    [66]高明霞,李鹏,王国栋等.南坪水库筑坝土料分散机理及原因分析[J].岩土工程学报,2009,31(8):1303-1308.
    [67]车茜.基于BP神经网络的季节冻土水分迁移机理研究[D].长春:吉林大学,2008.
    [68]Taber S.Frost heaving[J].J.Geo.,1929,37:428-461.
    [69]徐学祖,邓友生.冻土中水分迁移的试验研究[M].北京:科学出版社,1991.
    [70]Miller,R.D.Freezing and heaving of saturated and unsaturated soils[J].Highway Research Report,1972,393:1-11.
    [71]梁若筠.基于神经网络方法的冻土水分迁移研究[D].兰州:兰州大学,2007.
    [72]Фелъдмангм.ПередвихекиевдагивтальгхИпромерзающихИзбателвствоНаука[M],1988.
    [73]王家澄,程国栋等.饱水砂土反复冻融时成冰条件的实验研究[J].冰川冻土,1992,14(2):101-106.
    [74]陈肖柏,王雅卿,刘建坤,等.土的冻结作用与地基[M].北京:科学出版社, 2006.
    [75]中华人民共和国行业标准编写组.土工试验规程(SDS01–97)[S].北京:水利出版社,1981.
    [76]包卫星,谢永利,杨晓华.天然盐渍土冻融循环时水盐迁移规律及强度变化试验研究[J].工程地质学报,2006,14(3):380-385.
    [77]中华人民共和国建设部.GB50021-2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2001.
    [78]唐大雄,刘佑荣,张文殊,等.工程岩土学[M].北京:地质出版社,1999.
    [79]Micromeritics Intrument Corp. An Introduction to the Physical Characterization ofMaterials by Mercury Intrusion Porosinetry with Emphasis On Reduction and Presentation of experimental Data,2001:1-23.
    [80]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [81]秦焱.吉林省黑土肥力质量评价及结构退化机理研究[D].长春:吉林大学,2007.
    [82]张树光,屈小民.非等温条件下道路水分迁移的数值模拟[J].岩土力学,2004,25(增):231-234.
    [83]Π.Я.波卢巴里诺娃-柯琴娜.萧丹森,任荣祖,徐志英译.地下水运动原理[M].北京:地质出版社,1957.
    [84]Fredlund.D.G,Rahardjo.H,陈仲颐译.非饱和土力学[M].北京:中国建筑工业出版社,1997.
    [85]李训华,李训良,邹积宁.冻土的形成、危害及防治措施[J].黑龙江交通科技,2004,7.
    [86]原国红.季节冻土水分迁移的机理及数值模拟[D].长春:吉林大学,2006.
    [87]李杨.季节冻土水分迁移模型研究[D].长春:吉林大学,2008.
    [88]张喜发,辛德刚,张冬青,等.季节冻土区高速公路路基土中的水分迁移变化[J].冰川冻土,2004,26(4):454-459.
    [89]徐学祖,邓友生.冻土中水分迁移的试验研究[M].北京:科学出版社,1991,4.
    [90]Williams.P.J. Propertiesand behavior of freezing soils[J]. Norwegian Geotechnical Institute, 1967,72:1-119.
    [91]罗金明,杨帆,邓伟等.苏打盐渍土的微域特征及土壤表层积盐机理探讨[J].水土保持学报,2008, 22(2):88-92.
    [92]周波.公路路基黄土的湿陷性评价方法研究[D].长春:吉林大学,2009.
    [93]冯晓腊.论深圳淤泥类软土微观结构对工程性质的影响[J].中国地质灾害与防治学报,1996,7(3):34-39.
    [94]周萃英.土体微观结构研究与土力学的发展方向[J].中国地质大学学报,2000,25(2):215-220.
    [95]胡瑞林.粘性土微观结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995.
    [96]刘莹,王清.吹填土沉积后微观结构特征定量化研究[J].水文地质工程地质,2006,3:124-128.
    [97]雷华阳,肖树芳.天津海积软土微观结构与工程性质初探[J].地质与勘探,2002,38(6):81-85.
    [98]王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土, 1996,18(2):184-188.
    [99]赵安平.季冻区路基土冻胀的微观机理研究[D].长春:吉林大学,2008.
    [100]易德生,郭萍.灰色理论与方法[M].北京:石油工业出版社,1992.
    [101]周秀文.灰色关联度的研究与应用[D].长春:吉林大学,2006.
    [102]曹明霞.灰色关联分析模型及其应用的研究[D].南京:南京航空航天大学,2007.
    [103]杨雅军.岩土力学中渗透系数的灰色数学模型[J].华北水利水电学院学报, 2005, 26(2):52-54.
    [104]冯玉国.灰色关联分析在砂质土液化判定中的应用[J].勘察科学技术,1994,4:32-33.
    [105]杨杰.土石坝竖向位移的灰色非线性拟合与预测[J].水电能源科学.2002,4.
    [106]王清印.灰色模糊数学基础[M].武汉:华中理工大学出版社,1996.
    [107]解建喜,宋笔锋.灰色模糊聚类理论在飞机方案优选中的应用研究[J].数学的实践与认识,2005,35(8):67-72.
    [108]李晓红.GM(1,1)优化模型在滑坡预测预报中的应用[J].山地学报,2001,19(3):265-269.
    [109]司秀林.灰色系统关联度分析[J].辽阳石油化工高等专科学校学报,2002, 18(3):40-50.
    [110]王杜.影响路面基层强度因素的灰关联度分析[J].华东公路,1996,30(1):29-31.
    [111]华东水利学院.土石坝工程(第一版)[M].北京:水利电力出版社,1978.
    [112]R.E.格里姆著,许冀泉译.粘土矿物学[M].北京:地质出版社,1960.
    [113]南京大学地质学系岩矿教研室.结晶学与矿物学[M].北京:地质出版社,1978.
    [114]Erono Nemecz.Clay Minerals[M].1981.
    [115]王平全.粘土表面结合水定量分析及水合机制研究[D].成都:西南石油学院,2001.
    [116]H.Bennett,H.Hulbert,Clay Microstructure[M].1987.
    [117]赵爱醒,潘铁虹编.矿物晶体化学[M].武汉:中国地质大学出版社,1993.
    [118]沈明道.粘土矿物及微组构与石油勘探[M].成都:电子科技大学出版社,1993.
    [119]Zhang Jing. Experimental study on dispersive soil in western Jilin[J].Global Geology,2010,13(1):50-55.
    [120]熊毅等.土壤胶体(第二册) [M].北京:科学出版社,1985.
    [121]王鸿禧.膨润土[M].北京:地质出版社,1980.
    [122]H.范.奥尔芬著,许冀泉等译.粘土胶体化学导论[M].北京:农业出版社,1982.
    [123]焦李成著.神经网络系统理论[M].西安:西安电子科技大学出版社,1990,12:1-60.
    [124]孙海蓉.模糊神经网络的研究及其应用[D].保定:华北电力大学,2006.
    [125]徐佩华.基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D].长春:吉林大学,2006.
    [126]吴昌友.神经网络的研究及应用[D].哈尔滨:东北农业大学,2007.
    [127]阙金声.三峡工程涪陵区水库塌岸非线性预测研究[D].长春:吉林大学,2007.
    [128]Martin T.Hagan,Howard B.Demuth,Mark H.Beale.Neural Network Design[M].北京:机械工业出版社,2000.
    [129]Neural Network Toolbox.Math Works,2004.
    [130]飞思科技产品研发中心编著.MARLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [131]董长虹编著.Matlab神经网络与应用[M].北京:国防工业出版社,2005.
    [132]飞思科技产品研发中心著.神经网络理论与MARLAB7实现[M].北京:电子工业出版社,2005.
    [133]从爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001.
    [134]从爽.面向MATLAB工具箱的神经网络理论与应用[M].北京:中国科学技术大学出版社,1998.
    [135]Rumelhart D.,Mc Celland J.Parallel Distributed Processing,Explorations in the Microstructure of Cognition. Cambridge:Bradford Books,MIT Press.pp. Vo1-Vo2,1986.
    [136]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999,10:88-130.
    [137]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M]北京:清华大学出版社,2005.7:70-85.
    [138]Dennis J.E,Schnabe R.B.L.Numericl methods for unconstrained optimization and nonlinear equations.Englewood Cliffs,NJ:Prentice-Hall,1983.
    [139]陆金桂,王石刚,胡于进等.多层神经网络BP算法的研究[J].计算机工程,1994,20(1):17-19.
    [140]王双红,蔡美峰.利用神经网络对地应力测量的结果进行分析[J].黄金,1998,19(11):16-19.
    [141]张治国.BP神经网络的数学模型和计算方法及其计算机程序实现[D].长春:吉林大学,2003.
    [142]许东,吴铮.基于MATLAB6.x的系统分析与设计-神经网络[M].西安:西安电子科技大学出版社,2002.
    [143]R.P.Lippmann.An Introduction to Computing With Neural Nets[M],IEEE ASSP Magazine,1989.
    [144]Cyberko,G..Approximations by Super positions of a Sigmoidal Function[A].Math Control Sin gualSystem,1989:45-89.
    [145]Hecth-Nielsen R.Theory of back propagation neural network[J].Proc of IJCNN,1989,1:593-603.
    [146]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1995.
    [147]王国栋,刘相华等.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    [148]Hecth-Nielsen R.Application of Back Propagation Neural Nets[J].Neural Networks, 1988,(1):131-139.
    [149]Kuarychi.On Hidden Nodes for Neural Nets[J].IEEE Transactions on Crircuits and Systems,1989,36(5):661-664.
    [150]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2001.
    [151]张青贵.人工神经网络导论[M].北京:中国水利水电出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700