用户名: 密码: 验证码:
膜下滴灌灌水技术参数对土壤水热盐动态和作物水分利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜下滴灌技术是滴灌技术与地膜栽培技术的结合,既有节水增产效果,也有增温保墒促使作物早熟的特点。虽然该技术在国内外多种经济作物上都有应用,但对其节水机理的研究并不深入,特别是关于该技术设计参数的研究成果很少,不利于该技术理论的发展。本文通过室内和小区试验以及大田生产实验,采用膜下滴灌、无膜滴灌和畦灌相比较的方法进行棉花种植,较为全面和系统地对滴灌系统设计中滴头流量选择问题、土壤湿润区(或湿润比)设计问题、线源滴灌土壤湿润均匀性问题、膜下滴灌土壤湿润区及土壤温度问题、膜下滴灌棉花根系分布及植株生长问题、膜下滴灌棉花产量和水分利用效率问题、盐化土壤膜下滴灌棉花土壤水、热、盐耦合和棉花生长特点等有关滴灌和膜下滴灌技术设计理论问题进行了试验、观测、分析和研究,得出了如下研究结论。
     (1)点源滴灌条件下,土壤湿润区形状本质上是受滴头流量与土壤入渗速度之间的相互关系影响。当滴头流量大于土壤入渗速度时,土壤表面出现积水区并向四周扩展,促使土壤湿润区水平运移速度增大,而垂直运移速度相应减小;当滴头流量小于土壤入渗速度时,土壤表面积水区很小或不出现积水区,湿润区垂直运移速度比水平运移速度快;当滴头流量不变而增加滴水量时,土壤入渗速度随时间而降低,其入渗速度逐渐小于滴头流量,土壤湿润区的水平运移速度加快。因此,滴灌技术设计中,应当以土壤设计湿润宽度作为滴头流量的设计依据,而在设计滴头流量时,应以土壤入渗特性和地表积水区变化过程作为计算基础。
     (2)线源滴灌土壤湿润均匀度影响着田间作物生长的均匀性,它是确定滴头间距的主要依据,同时也决定着线源滴灌滴头流量和滴水量的取值。沿滴灌毛管方向的土壤湿润均匀性取决于滴头下方土壤湿润区的交汇程度,交汇程度越大,土壤湿润均匀度就越大;垂直滴灌毛管方向的土壤湿润均匀性取决于滴头下方土壤湿润区的宽度,湿润宽度越大,湿润均匀度就越高;沿滴灌毛管方向的土壤湿润均匀度随滴头间距的减小而增大,随滴水量的增加而增加。
     (3)膜下滴灌条件下,地膜阻碍地表积水区向膜外扩展,使膜内土壤含水率远高于膜外土壤含水率,形成膜下整体灌溉的土壤湿润形式。所以,膜下滴灌的土壤设计湿润区就是地膜覆盖区。在行距30+60cm的栽培模式下,膜下滴灌的土壤湿润比为67%-83%,而无膜滴灌的土壤湿润比为33%-67%。膜下滴灌土壤灌水深度比无膜滴灌土壤灌水深度浅,比畦灌灌水深度更浅。
     膜下滴灌条件下,土壤含水率和土壤温度都比无膜滴灌条件下的土壤温度和含水率高。但是,土壤温度的变化主要受气候影响,只是在短期内受土壤含水率变化的影响。土壤温度的变化与土壤含水率的变化之间呈线性负相关。
     (4)膜下滴灌棉花总根量比无膜滴灌棉花总根量大,但比畦灌棉花总根量小。而且,膜下滴灌棉花根系主要分布在膜下土壤中,膜下滴灌毛管附近土壤中的棉花根重是膜外根重的14-23倍。膜边上的棉花根系的侧根大都偏向膜下土壤中生长。在垂直方向,膜下滴灌棉花根系比无膜滴灌棉花和畦灌棉花根系分布浅,0-30cm土层内的棉花根系重量占总根重的87%以上。其中,表层土壤中的棉花根重密度最大,而且根重密度随土层深度的增加呈指数函数递减。膜下滴灌土壤温度高,促使膜下滴灌棉花根系生长比无膜滴灌和畦灌棉花根系生长快,与后者相比,出现明显的早熟早衰现象。膜下滴灌棉花生育期进程比无膜滴灌和畦灌棉花的生育进程快,叶面积指数比后者的叶面积指数大,棉花早熟。
     (5)膜下滴灌棉花和无膜滴灌棉花的籽棉单产都比畦灌棉花籽棉单产增产40%以上。膜下滴灌棉花土壤耗水主要集中在膜下0-60cm土层内,膜内土壤耗水量是膜外土壤耗水量的7倍,而且土壤表层的耗水强度最大。膜下滴灌土壤耗水量随深度的变化与棉花根密度分布有关,它们之间的关系可用指数函数描述。膜下滴灌的棵间蒸发量仅仅是其植株蒸腾量的28.57%,是畦灌棉花棵间蒸发量的17.39%。膜下滴灌棉花的水分利用效率为1.332kg/m3,比无膜滴灌棉花高0.168kg/m3。膜下滴灌棉花灌溉生产率为1.304kg/m3,比无膜滴灌棉花高0.201kg/m3。理论上膜下滴灌棉花每kg籽棉耗水比无膜滴灌棉花节水15.4%。
     (6)盐化土壤上进行膜下滴灌时,土壤盐分呈环状分布,膜外或膜下深层土壤含盐率高,而膜内上层土壤含盐率低。此时,土壤湿润区越大对作物生长越有利,所以盐化土壤上进行膜下滴灌时土壤湿润比和湿润深度比非盐化土壤的同类指标大。重盐化土壤上膜下滴灌棉花受盐分胁迫严重,棉花生长期比正常情况下缩短15d;株高仅为正常生长棉花株高的一半,叶片过早衰亡,棉花产量低,品质差。另外,膜下滴灌条件下,盐化土壤因含水率和矿物质含量高,其温度比非盐化土壤温度稳定,受大气温度的影响不明显。
     盐化土壤膜下滴灌棉花根系分布呈现去盐性特征。棉花根系向含盐率较低的土层中生长,所以,棉花根系主要生长在土层上部,总根量小。
The technique of drip irrigation with plastic film mulch, or called the mulched drip irrigation (MDI) is a combination of drip irrigation (DI) and plasticulture techniques, which is characterized by irrigational water saving, crop being premature and its output increasing, soil temperature increasing, and preservation of soil moisture. This irrigation technique has been used for many kinds of economic value crops over the world, but the water-saving mechanism for the MDI has not been studied thoroughly, especially the research result on the designed parameters for the irrigation technique is so little that is unavailable to the technique development. Experiments had been carried out in laboratory, plot of land, and field, to plant cotton with the irrigation techniques of MDI, DI, and border irrigation (BI) to systematically and comprehensively study the problems about the principle of designing the DI and MDI systems, such as, the design of dripper discharge for DI system, percentage of soil wetted area, soil moisture uniformity for linear source drip irrigation, soil wetting pattern and soil temperature for MDI, cotton growth and its root system distribution in soil with MDI, cotton yield and water use efficiency under MDI, the coupling of soil water and temperature with soil salinity under MDI, cotton growth in the saline land with MDI, and so on. By testing, observing, analyzing, and studying these problems, the results are obtained as follow.
     (1) With the point source drip irrigation, soil wetting pattern is influenced by the relation between dripper discharge and soil infiltration intensity. When dripper discharge is larger than soil infiltration intensity, a saturated pond occurs on the soil surface and expands around, then soil wetting front moves quickly in horizontal and slowly in vertical. But when dripper discharge is less than the soil infiltration intensity, the horizontal movement velocity of the soil wetting front would be slower than its vertical one due to no saturated pond occurring on soil surface. When dripper discharge is constant but dripping water is increased, the soil infiltration intensity would lessen with time and eventually be less than the dripper discharge and soil wetting front would move quickly in horizontal. Therefore, the width of soil wetting pattern should be the basis to design the dripper discharge for the DI system, while the soil infiltration and the dynamics of soil saturated pond are the foundation to calculate the dripper discharge.
     (2) Soil moisture uniformity is essential to determine the drippers spacing as well as the dripper discharge and dripping water for linear source drip irrigation system, and it influences the uniformity of crops growing in field. The soil moisture uniformity along the drip line depends on the overlap of soil wetting patterns beneath drippers, and the more the soil wetting pattern overlap, the higher the soil moisture uniformity is. The soil moisture uniformity across the drip line is subject to the width of soil wetting pattern, and the larger the soil wetting width, the higher the soil moisture uniformity. The soil moisture uniformity along drip line is improved by short drippers spacing and large dripping water.
     (3) With the MDI, the fact that soil saturation pond is limited by plastic film to expand around, results in that soil water content beneath film is far more higher than that outside of the film, and the soil beneath the film is wetted in border strip. So the designed soil wetting area for the MDI is just the soil surface area covered by the film. With plant row spacing of 30+60cm, the percentage of soil wetted area is 67%-83% for MDI, while 33%-67% for DI. The soil infiltration depth of MDI is shallower than that of DI or BI. Under the MDI, soil water content and soil temperature are lager than that under DI. Soil temperature is affected mostly by climatic conditions but by soil moisture conditions only in certain period although soil temperature varies with soil water content in negative-linear function.
     (4) With the MDI, the cotton root system distributed in the soil beneath drip line and the film is 14-23 times as weight as that distributed in the soil out of the film, and the lateral root of cotton which grows near by the sides of film distributes chiefly in the soil mulched by the film. So the total weight of cotton root under the MDI, which distributes mainly in the soil mulched by plastic film, is larger than that under the DI, but is less than that under the BI. But under the MDI, cotton root weight in the 0-30cm soil layer accounts for 87% of the total root weight, and it decreases exponentially with soil depth increasing although it is the largest in top soil layer. Therefore, the cotton root system irrigated with the MDI distributes shallowly comparing with that irrigated with the DI or BI. Cotton root under the MDI, by which soil temperature is high, grows quickly than that under the DI or BI, but it is obviously early ageing.
     Comparing with the cotton irrigated with the DI or BI, the cotton irrigated with the MDI grows quickly and its leaves area index is larger, so that it is premature but early ageing.
     (5) The per unit area yield of unginned cotton under MDI and DI is 40% higher than that under BI. Under the MDI, cotton consumes soil water mainly in 0-60cm soil layer where is covered by plastic film, and the water consumption in the soil layer is 7 times as high as it is in the soil out of the film; and of this soil layer, the top layer has the largest water consumption density. The function of soil water consumption with soil depth under the MDI is relative to the distribution of cotton root system density, and the relation of soil water consumption in soil depth and cotton root system density can be expressed exponentially. The evaporation from soil under MDI is only 28.57% of crop transpiration and is 17.39% of evaporation from the soil under BI.
     Water use efficiency of cotton under MDI is 1.332kg/m3, which is higher than that under DI by 0.168kg/m3. The production efficiency of irrigation water for the cotton irrigated with MDI is 1.304kg/m3, which is higher than that with DI by 0.201kg/m3. Theoretically, the water consumption of per kilogram unginned cotton under the MDI is 15.4% less than that under DI.
     (6) When saline soil is irrigated with the MDI, the salinity of soil is distributed in ring-like that soil salinity content is higher in the soil out of film and in deep soil, and is lower in the top soil layer beneath the film. The larger the soil wetting pattern, the more beneficial to crop growing the condition is. Thus the percentage of soil wetted area and soil wetted depth for saline soil is larger than that for un-saline soil. With MDI, the cotton growing on heavy salt soil will be saline stress, so that cotton growing period will be 15 days shorter than that growing normally, the cotton stem is only half of that growing normally, the cotton leaves are early ageing, and cotton yield is low as well as its quality is poor. In addition, the salt soil temperature is usually constant and doesn’t vary with climatic conditions comparing with the un-salt soil, because the salt soil is high water content and mineral. In the salt soil under MDI, cotton root system distribution is characterized by evading salt that cotton root grows in the soil of low salt content. So cotton root mainly distributes in top soil layer, and total root weight is little.
引文
[1] 水利部农水司,中国灌溉排水发展中心.节水灌溉工程实用手册[M].北京:中国水利水电出版社,2005.
    [2] 刘昌明,何希吾.中国 21 世纪水问题方略[M].北京:科学出版社,2001.
    [3] 中华人民共和国水利部.微灌工程技术规范(SL 103-95)[M].北京:中国水利水电出版社,1995.
    [4] Nakayama, F. S., and D. A. Bucks.Trickle Irrigation For Crop Production.Elsevier Science Publishers B.V.,1986.
    [5] Abbott, J. S.Micro irrigation-world wide usage.ICID Bull.,1984,33 (1): 4~6.
    [6] Jensen, M, E.Design And Operation Of Farm Irrigation Systems.ASAE,1980.
    [7] Abbottt, J. S.Micro-irrigation world wide usage report by Micro-irrigation Working Group.ICID Bull.,1988,37(1):1~12.
    [8] Kirkham, M. B.Water Use In Crop Production.Food Products Press,1999,21~23.
    [9] Raats, P. A. C.Steady infiltration from point sources, cavities, and basins.Soil Sci. Soc. Am. Proc.,1971,35: 689~694.
    [10] Bresler, E., J. Heller, and N. Diner, etc.Infiltration from a trickle source: Ⅱ.experimental date and theoretical predictions.Soil Sci. Soc. Am. Proc.,1971,35: 683~689.
    [11] Brandt, A., E. Bresler, and N. Diner, etc.Infiltration from a trickle source: I. mathematical models.Soil Sci. Soc. Am. Proc., 1971,35: 675~682.
    [12] Philip, J. R.Steady infiltration from buried, surface, and perched point and line sources in heterogeneous soil: I. analysis.Soil Sci. Soc. Am. Proc., 1972,36: 268~273.
    [13] Warrick, A.W.Time-dependent linearised infiltration: I. point sources.Soil Soc. Am. J., 1974,38: 383~386.
    [14] Warrick, A.W.Point and line infiltration calculation of the wetted soil surface.Soil Sci. Soc. Am. J., 1985,49:1581~1583.
    [15] Ben-Asher, J., D. O. Lomen, and A. W. Warrick.Linear and nonlinear models of infiltration from a point source.Soil Sci. Soc. Am. J., 1978,42: 3~6.
    [16] Armstrong, C. F., and E. Harper.Computer model for moisture distribution in stratified, soils under a trickle source.Trans., ASAE, 1985,26(6): 1704~1709.
    [17] Ben-Asher, J., C. Charach, and A. Zemel.Infiltration and water extraction from trickle irrigation source: the effective hemisphere model.Soil Sci. Soc. Am. J., 1986,50:882~887.
    [18] Lafolie, F., R. Guennelon, and M. Th. Van Genuchten.Analysis of water flow under trickle irrigation: II. experimental evaluation.Soil Sci. Soc. Am. J., 1989,53: 1318~1323.
    [19] Sen, H. S., D. Paul, and B. K. Bandyopadhyay, etc.A simple numerical solution for two-dimensional moisture distribution under trickle irrigation.Soil Sci., 1992,154(5): 350~356.
    [20] 李恩羊.渗灌条件下土壤水分运动的数学模拟[J].水利学报,1982,(4):1-9.
    [21] 刘晓英,杨振刚,王天俊.滴灌条件下土壤水分运动规律的研究[J].水利学报,1990,(1):11-21.
    [22] 李光永,曾德超.滴灌土壤湿润体特征值的数值算法[J].水利学报,1997,(7):1-6.
    [23] 李光永,曾德超,郑耀泉.地表点源滴灌土壤水分运动的动力学模型与数值模拟[J].水利学报,1998,(11):21-24.
    [24] Taghavi, S. A., M. A. Marino, and D. E. Rolston.Infiltration from trickle irrigation source.J. Irrig.Drain. Engng., ASCE, 1984,110(4): 331~341.
    [25] Angelakis, A. N., D. E. Rolston, and T. N. Kadir, etc.Soil-water distribution under trickle source.J. Irrig. Drain. Engng., ASCE, 1993,119(3): 484~500.
    [26] Or, D.Stochastic analysis of soil water monitoring for drip irrigation management in heterogeneous soils.Soil Sci. Soc. Am. J., 1995,59: 1222~1233.
    [27] Or, D.Drip irrigation in heterogeneous soils: steady-state field experiments for stochastic model evaluation.Soil Sci. Soc. Am. J., 1996,60: 1339~1349.
    [28] Or, D.,and F. E. Coelho.Soil water dynamics under drip irrigation: transient flow and uptake models.Trans. ASAE, 1996,39(6): 2017~2025.
    [29] Mmolawa, K., and D. Or.Experimental and numerical evaluation of analytical volume balance model for soil water dynamics under drip irrigation.Soil Sci. Soc. Am. J., 2003,67: 1657-1671.
    [30] Cook, F. J., P. J. Thorburn, and K. L. Bristow, etc.Infiltration from surface and buried point sources: the average wetting water content.Water Resour. Res., 2003,39(12): 1364 TNN 3-1: 3-7.
    [31] Warrick, A. W., and D. O. Lomen.Time-dependent linearized infiltration: III. strip and disc sources. Soil Soc. Am. J., 1976,40: 639-643.
    [32] Warrick, A. W.Steady infiltration from line sources into a layered profile.Water Resour. Res., 2003,39(12):1327 SBH 2-1: 2-6.
    [33] Schmitz, G. H., N. Schutze, and U. Petersohn.New strategy for optimizing water application under trickle irrigation.J. Irrig. Drain. Engng., ASCE, 2002,128(5): 287~297.
    [34] Hassan, G., N. Persaud, and R. B. Reneau, Jr.Utility of Hydrus-2D in modeling profile soil moisture and salinity dynamics under saline water irrigation of soybean.Soil Sci., 2005,170 (1): 28-37.
    [35] 李久生,张建君,薛克宗.滴灌施肥灌溉原理与应用[M].北京:中国农业科学技术出版社,2003.
    [36] Skaggs, T. H., T. J. Trout, J. ?im?nek, etc.Comparison of HYDRUS-2D simulation of drip irrigation with experimental observations.J. Irrig. Drain. Engng., ASCE, 2004,130(4): 304-310.
    [37] Levin, I., P. C. Van Rooyen, and F. C. Van Rooyen.The effect of discharge rate and intermittent water application by point-source irrigation on the soil moisture distribution pattern.Soil Sci. Soc Am. J., 1979,43: 8~16.
    [38] Jury, W. A., and K. D. Earl.Water movement in bare and cropped soil under isolated trickle emitters: I. analysis of bare soil experiments.Soil Sci. Soc. Am. J., 1977,41: 852-861.
    [39] Clothier, B. E.Solute travel times during trickle irrigation.Water Reso. Res., 1984,20 (12): 1848~1852.
    [40] AL-Qinna, M. I., and A. M. Abu-Awwad.Wetting patterns under trickle source in arid soil with surface crust.J. agric. Engng. Res., 2001,80 (3): 301~305.
    [41] Ben-Asher, J., T. Yano, and I. Shainberg.Dripper discharge rates and the hydraulic properties of the soil.Irrig. Drain. Sys., 2003,17: 325-339.
    [42] 付琳.滴灌时的土壤浸润状况[J].灌溉排水,1983,2(3):36-45.
    [43] 陈渠昌,吴忠渤,佘国英 等.滴灌条件下沙地土壤水分分布与运移规律[J].灌溉排水,1999,18(1):28-31.
    [44] 朱德兰,李昭军,王建 等.滴灌条件下土壤水分分布特性研究[J].水土保持研究,2000,7(1):81-84.
    [45] 朱德兰,汪志农,王得祥 等.不同土壤中滴灌水分分布与射击参数的确定[J].西北农业大学学报,2000,28(2):45-48.
    [46] 汪志荣,王文焰,王全九 等.点源入渗土壤水分运动规律实验研究[J].水利学报,2000,(6):39-44.
    [47] 李明思,郑旭荣,贾宏伟 等.棉花膜下滴灌灌溉制度试验研究[J].中国农村水利水电, 2001,(11):13-15.
    [48] 张振华,蔡焕杰,郭永昌 等.滴灌土壤湿润体影响因素的实验研究[J].农业工程学报,2002,18(2):17-20.
    [49] 孙海燕,李明思,王振华 等.滴灌点源入渗湿润锋影响因子的研究[J].灌溉排水学报,2004,23(3):14-16.
    [50] 孙海燕,李明思 等.点源滴灌滴头流量设计模式的实验研究[J].石河子大学学报(自然科学版),2005,23(1):81-84.
    [51] D. 戈德堡,B. 戈内特,D. 里蒙 著,西世良,余康临 译.滴灌原理与应用[M].北京:中国农业机械出版社,1984,120-174,224-254.
    [52] Schwartzman, M., and B. Zur.Emitter spacing and geometry of wetted soil volume.J. Irrig. Drain. Engrg., ASCE, 1986,112(3): 242-253.
    [53] 雷廷武.滴灌湿润比的解析设计[J].水利学报,1994,(1):1-9.
    [54] 郑耀泉,陈渠昌.微灌均匀度参数之间的关系及其应用[J].灌溉排水,1994,13(2):7-10.
    [55] Clemmens, A. J., and K. H. Solomon.Estimation of global irrigation distribution uniformity.J. Irrig. Drain. Engrg., ASCE, 1997,123(6): 454-461.
    [56] Burt, C. M.Rapid field evaluation of drip and microspray distribution uniformity.Irrig. Drain. Sys., 2004,18: 275-297.
    [57] El-Hafedh,A. V. O. M., H. Daghari, and etc.Analysis of several drip irrigation system.Agric. Water Manage., 2001,52:33~52.
    [58] Lubana, P. P. S., and N. K. Narda.Modelling soil water dynamics under trickle emitters-a review.J. agric. Engng. Res. 2001,78(3): 217~232.
    [59] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994.
    [60] 刘昌明,王会肖.土壤—作物—大气界面水分过程与节水调控[M].北京:科学出版社,1999.
    [61] 邵明安,黄明斌.土—根系统水动力学[M].西安:陕西科学技术出版社,2000.
    [62] 张喜英.作物根系与土壤水利用[M].北京:气象出版社,1999,31-121.
    [63] 左强,王数,陈研.反求根系吸水速率方法的探讨[J].农业工程学报,2001,17(4):17-21.
    [64] 左强,王东,罗长寿.反求根系吸水速率方法的检验与应用[J].农业工程学报,2003,19(2):28-32.
    [65] Dalton, F. N., P. A. C. Raats, and W. R. Gardner.Simultaneous uptake of water and solutes by plant roots.Agron. J., 1975,67: 334~339.
    [66] Taylor, H. M., and B. Klepper.Water relations of cotton. I. root growth and water use as related to top growth and soil water content.Agron. J., 1974,66:584~588.
    [67] Taylor,H. M., and B. Klepper.Water uptake by cotton root systems: an examination of assumptions in the single root model.Soil Sci., 1975,120(1):57~67.
    [68] Hillel, D., and H. Talpaz.Simulation of root growth and its effect on the pattern of soil water uptake by a non-uniform root system.Soil Sci., 1976,121(5): 307~312.
    [69] Chen, D., and J. H. Lieth.A two-dimensional, dynamic model for root growth distribution of potted plants.J. Am. Soc. Hort. Sci., 1993,118(2): 181~187.
    [70] Dunbabin, V. M., A. J. Diggle, Z. Rengel, and etc.Modelling the interactions between water and nutrient uptake and root growth.Plant and Soil, 2002,239: 19~38.
    [71] Willigen, P., M. Heinen, A. Mollier, and etc.Two-dimensional growth of a root system modelled as a diffusion process: I. analytical solutions.Plant and Soil, 2002,240: 225~234.
    [72] Heinen, M., A. Mollier, and P. D. Willigen.Growth of a root system described as diffusion. II. numerical model and application.Plant and Soil, 2003,252: 251-265.
    [73] Wilderotter, O.An adaptive numerical method for the Richards equation with root growth.Plant & Soil, 2003, 251: 255-267.
    [74] Zuo, Q., L. Meng, and R. Zhang.Simulating soil water flow with root-water-uptake applying an inverse method.Soil Sci., 2004,169 (1): 13-24.
    [75] Bruckler, L., F. Lafolie, C. Doussan, and etc.Modeling soil-root water transport with non-uniform water supply and heterogeneous root distribution.Plant and Soil, 2004,260: 205-224.
    [76] Clothier, B., D. Scotter, and E. Harper.Three-dimensional infiltration and trickle irrigation.Trans., ASAE, 1985,28(2): 497~501.
    [77] Mmolawa, K., and D. Or.Water and solute dynamics under a drip-Irrigated crop: experiments and analytical model.Trans., ASAE, 2000,43(6):1597-1608.
    [78] Li Mingsi.Root architecture and water uptake for cotton under furrow and mulched trickle irrigation.Proceedings of International Conference on Water-saving Agriculture and Sustainable Use of Water and Land Resources, Xi`an: Shaanxi Science and Technology Press, 2003, 484-490.
    [79] Green, S. R., and B. E. Clothier.Root water uptake by kiwifruit vines following partial wetting of the root zone.Plant and Soil, 1995,173: 317~328.
    [80] Goldberg, D., B. Gornat, and Y. Bar.The distribution of roots, water and minerals as a result of trickle irrigation.J. Am. Soc. Hort. Sci., 1971,96 (5): 645~648.
    [81] 李明思,孙海燕,谢云 等.滴头流量对土壤湿润体的影响研究[J].沈阳农业大学学报,2004,35(5,6):420-422.
    [82] Earl, K. D., and W. A. Jury.Water movement in bare and cropped soil under Isoland trickle emitters: II. analysis of cropped soil experiments.Soil Sci. Am. J., 1977,41: 856-861.
    [83] Ponder, H. G., and A. L, kenworthy.Trickle irrigation of shade trees growing in the nursery: Ⅱ. influence on root distribution.J. Am. Soc. Hort. Sci., 1976,101(2):104~107.
    [84] Levinson, B., and I. Adato.Influence of reduced rates of water and fertilizer application using daily intermittent drip irrigation on the water requirements, root development and responses of Avocado Trees (cv. Fuerte).J. Hort. Sci., 1991,66(4): 449~463.
    [85] Bar-Yosef,B., J. R. Lambert, and D. N. Bake.Rhizos: a simulation of root growth and soil processes. sensitivity analysis and validation for cotton.Trans., ASAE, 1982,25(5): 1268~1273.
    [86] Randall, H. C., and S. J. Locassio.Root growth and water status of trickle-irrigated cucumber and tomato.J. Am. Soc. Hort. Sci., 1988,113(6):830-835.
    [87] Sander, D. C., T. A. Howell, M. M. S. Hile, and etc.Tomato root development affected by traveling trickle irrigation rate.HortSci., 1989,24(6):930-933.
    [88] Oliveira, M. R. G., and A. M. Calado.Tomato root distribution under drip irrigation.J. Am. Soc. Hort.Sci., 1996,121(4):644-648.
    [89] Machado, R. M. A., M. R. G. Oliveira, and C. A. M. Portas.Tomato root distribution, yield and fruit quality under subsurface drip irrigation.Plant and Soil, 2003,255: 333-341.
    [90] Machado, R. M. A., M. R. G. Oliveira, and C. A. M. Portas.Effect of drip irrigation and fertilization on tomato rooting patterns.Acta Horticulturae, 2000,1 (537): 313-320.
    [91] Ben-Asher, J.Trickle irrigation timing and its effect on plant and soil water status.Agric. Water Manage., 1979,2: 225~232.
    [92] Oron, G.Simulation of water flow in the soil under sub-surface trickle irrigation with water uptake by roots.Agric. Water Manage., 1981,3:179~193.
    [93] Ghali, G. S., and Z. J. Svehlik.Soil-water dynamics and optimum operating regime in trickle-irrigated fields.Agric. Water Manage., 1988,13:127~143.
    [94] 张妙仙.滴灌土壤湿润体与作物根系优化匹配研究[J].中国生态农业学报,2005,13(1):104-107.
    [95] Coelho, F.E., and D. Or.A parametric model for two-dimensional water uptake intensity by corn roots under drip irrigation.Soil Sci. Soc. Am. J., 1996,60:1039~1049.
    [96] Coelho, F. E., and D. Or.Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation.Plant and Soil, 1999,206: 123~136.
    [97] Coelho, E. F., and D. Or.Flow and uptake patterns affecting soil water sensor placement for drip irrigation management.Trans. ASAE, 1996,39(6): 2007~2016.
    [98] Darusman, A. H. K., L. R. Stone, W. E. Spurgeon, and etc.Water flux below the root zone vs. irrigation amount in drip-irrigated corn.Agron. J., 1997,89: 375~379.
    [99] Darusman, A. H. Khan, L. R. Stone, and etc.Water flux below the root zone vs. drip-line spacing in drip-irrigated corn.Soil Sci. Soc. Am. J., 1997,61:1755~1760.
    [100] Darusman, A. H. Khan, L. R. Stone, and etc.Water flux below the root zone vs. irrigation amount in drip-irrigated corn.Agron. J., 1997,89: 375-379.
    [101] Goldberg, S. D., M. Rinot, and N. Karu.Effect of trickle irrigation intervals on distribution and utilization of soil moisture in a vineyard.Soil Sci. Soc. Am. Proc., 1971,35: 127~130.
    [102] Clothier, B. E., T. J. Sauer.Nitrogen transport during drip fertigation with urea.Soil Sci. Soc. Am. J., 1988,52: 345~349.
    [103] Bar-Yosef, B., C. Stammers, and B. Sagiv.Growth of trickle-irrigated tomato as related to rooting volume and uptake of n and water.Agron. J., 1980,72:815-822.
    [104] Mmolawa, K., and D. Or.Root zone solute dynamics under drip irrigation: a review.Plant and Soil, 2000,222: 163~190.
    [105] Tscheschke, P., J. F. Alfaro, J. Keller, and etc.Trickle irrigation soil water potential as influenced by management of highly saline water.Soil Sci., 1974,117(4): 226-231.
    [106] Hairston, J. E., J. S. Schepers, and W. L. Colville.A trickle irrigation system for frequent application of nitrogen to experimental plots.Soil Sci. Soc. Am. J., 1981,45:880~882.
    [107] Sharmasarkar, F. C., S. Sharmasarkar, S. D. Miller, and etc.Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets.Agric. Water Manage., 2001,46: 241~251.
    [108] Bingham, F. T., B. A. Glaubig, and E. Shade.Water, salinity, and nitrate relations of a Citrus Watershed under drip, furrow, and sprinkler irrigation.Soil Sci., 1984,138(4): 306~313.
    [109] Kachanoski, R. G., J. L. Thony, M. Vauclin, G. Vachaud, and etc.Measurement of solute transportduring constant infiltration from a point source.Soil Sci. Soc. Am. J., 1994,58:304~309.
    [110] Ward, A. L., R. G. Kachanoski,and D. E. Elrick.Analysis of water and solute transport away from a surface point source.Soil Sci. Soc. Am. J., 1995,59: 699~706.
    [111] Khan, A. A., M. Yitayew, and A. W. Warrick.Field evaluation of water and solute distribution from a point source.J. Irrig. Drain. Engng., ASCE, 1996,122 (4):221~227.
    [112] Leib, B. G., A. R. Jarrett, M. D. Orzolek, and etc.Drip chemigation of imidacloprid under plastic mulch increased yield and decreased leaching caused by rainfall.Trans., ASAE, 2000,43(3): 615~622.
    [113] Wu, L.Drip irrigation using low-quality water.Irrig. J., 2000,50(3): 18-20.
    [114] Omary, M., and J. T. Ligon.Three-dimensional movement of water and pesticide from trickle irrigation: finite element model.Trans., ASAE, 1992,35(3): 811~821.
    [115] Bresler, E.Two-dimensional transport of solutes during non-steady infiltration from a trickle source.Soil Sci. Soc. Am. Proc., 1975,39: 604~612.
    [116] Zhang, R.Modeling flood and drip irrigations.ICID J., 1996,45 (2): 81~92.
    [117] West, D. W., I. F. Merrigan, J. A. Taylor, and etc.Soil salinity gradients and growth of tomato plants under drip irrigation.Soil Sci., 1979,127(5): 281~291.
    [118] Alemi, M. H.Distribution of water and salt in soil under trickle and pot Irrigation regimes.Agric. Water Manage., 1981,3: 195~203.
    [119] Nightingale, H. I., G. J. Hoffman, D. E. Rolston, and etc.Trickle irrigation rates and soil salinity distribution in an almond (Prunus Amygdalus) orchard.Agric. Water Manage., 1991,19: 271~283.
    [120] Russo, D.Statistical analysis of crop yield-soil water relationships in heterogeneous soil under trickle irrigation.Soil Sci. Soc. Am. J., 1984,48:1402~1410.
    [121] 王全九,王文焰,吕殿青 等.膜下滴灌盐碱地水盐运移特征研究[J].农业工程学报,2000,16(4):54-57.
    [122] 王全九,王文焰,王志荣 等.盐碱地膜下滴灌技术参数的确定[J].农业工程学报,2001,17(3):47-50.
    [123] 吕殿青,王全九,王文焰 等.膜下滴灌土壤盐分特性及影响因素的初步研究[J].灌溉排水,2001,20(1):28-31.
    [124] 吕殿青,王文焰,王全九.滴灌条件下土壤水盐运移特性的研究[J].灌溉排水,2000,19(1):16-21.
    [125] 李毅,王文焰,门旗 等.宽地膜覆盖条件下土壤温度场特征[J].农业工程学报,2001,17(3):32-36.
    [126] Nassar, N., and R. Horton.Simultaneous transfer of heat, water, and solute in porous media: I. theoretical development.Soil. Sci. Soc. Am. J., 1992,56: 1350~1356.
    [127] Nassar, N., R. Horton, and A. M. Globus.Simultaneous transfer of heat, water, and solute in porous media: Ⅱ. experiment and analysis.Soil. Sci. Soc. Am. J., 1992,56:1357~1365.
    [128] Noborio, K., K. J. Mcinnes, and J. L. Heilman.Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: I. theory.Soil Sci. Soc. Am. J., 1996,60:1001~1009.
    [129] Noborio, K., K. J. Meinnes, and J. L. Heilman.Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: Ⅱ. field evaluation.Soil Sci. Soc. Am. J., 1996,60:1010~1021.
    [130] 杨邦杰,隋红建.土壤水热运动模型及其应用[M].北京:中国科学技术出版社,1997.
    [131] Ham, J. M., G. J. Kluitenberg, and W. J. Lamont.Optical properties of plastic mulches affect the field temperature regime.J. Am. Soc. Hort. Sci., 1993,118(2): 188~193.
    [132] Van Donk, S. J., E. W. Tollner, J. L. Steiner, and etc.Soil temperature under a dormant bermudagrass mulch: simulation and measurement.Trans., ASAE, 2004,47(1): 91-98.
    [133] Horton, R., and P. J. Wierenga.Estimating the soil heat flux form observation of soil temperature near the surface.Soil Sci. Soc. Am. J., 1983,47: 14~20.
    [134] Horton, R., O. Aguirre-Luna, and P. J. Wierenga.Soil temperature in a row crop with incomplete surface cover.Soil Sci. Soc. Am. J., 1984,48: 1225~1232.
    [135] Horton, R.Canopy shading effects on soil heat and water flow.Soil Sci. Sco. Am. J., 1989,53: 669~679.
    [136] Kluitenberg, G. J., and R. Horton.Analytical solution for two-dimensional heat conduction beneath a partial surface mulch.Soil Sci. Soc. Am. J., 1990,54:1197~1206.
    [137] Chung, S., and R. Horton.Soil heat and water flow with a partial surface mulch.Water Reso. Res., 1987,23(12): 2175~2186.
    [138] Mahrer, Y., and J. katan.Spatial soil temperature regime under transparent polyethylene mulch: numerical and experimental studies.Soil Sci., 1981,131(2): 82~87.
    [139] Mahrer,Y., O. Naot, E. Rawitz, and J. Katan.Temperature and moisture regimes in soil mulched with transparent polyethylene.Soil Sci. Soc. Am. J., 1984,48: 362~367.
    [140] 刘毓中.对地膜覆盖棉田增温、保墒、提墒和地面水入渗补给作用机理的探讨[J].灌溉排水,1989,8(3):10-17.
    [141] 虎胆·吐马拜尔.作物在秸秆覆盖条件下土壤水分运动的模型及应用[M].乌鲁木齐:新疆科技卫生出版社,1999.
    [142] 夏自强,蒋洪庚,李琼芳 等.地膜覆盖对土壤温度、水分的影响及节水效益[J].河海大学学报,1997,25(2):39-45.
    [143] 胡芬,梅旭荣,陈尚谟.秸秆覆盖对春玉米农田土壤水分的调控作用[J].中国农业气象,2001,22(1):15-18.
    [144] 王康,黄介生.塑料薄膜覆盖时土壤内水热传输模拟[J].灌溉排水,1999,18(1):32-38
    [145] 王康,沈荣开,黄介生.地膜覆盖条件下冬小麦耗水量计算及田间试验研究[J].水利学报,2000,(10):87-91.
    [146] 王艳芳,王俊学,王计平 等.棉花局部滴灌水分利用效果研究[J].山西农业大学学报,2001,21(3):236-238.
    [147] Fipps, G.Melons demonstrate drip under plastic efficiency.Irrig. J., 1993,43(6): 8~12.
    [148] Shrivastava, P. K., M. M. Parikh, N. G. Sawani, and etc.Effect of drip irrigation and mulching on tomato yield.Agric. Water Manage., 1994,25: 179~184.
    [149] Bhella, H. S., and W. F. Kwolek.The effects of trickle irrigation and plastic mulch on zucchini.HortSci., 1984,19(3): 410~411.
    [150] Bhella, H. S.Muskmelon growth, yield, and nutrition as influenced by planting method and trickle irrigation.J. Am. Soc. Hort. Sci., 1985,110(6):793-796.
    [151] Bhella, H. S.Effect of trickle irrigation and black mulch on growth, yield, and mineral composition of watermelon.HortSci., 1988,23(1):123~125.
    [152] Bhella, H. S.Tomato response to trickle irrigation and black polyethylene mulch.J. Am. Soc. Hort.Sci., 1988,113(4):543-546.
    [153] Renquist, A. R., P. J. Breen, and L. W. Martin.Effect of polyethylene mulch and summer irrigation regimes on subsequent flowering and fruiting of ‘Olympus’ strawberry.J. Am. Soc. Hort. Sci., 1982,107(3):373~376.
    [154] Renquist, A. R., P. J. Breen, and L. W. Martin.Vegetative growth response of ‘ Olympus ’ strawberry to polyethylene mulch and drip Irrigation regimes.J. Am. Soc. Hort. Sci., 1982,107(3):369-372.
    [155] Spiers, J. M.Root distribution of ‘Tifblue’ rabbiteya blueberry as influenced by irrigation, incorporated peatmoss, and mulch.J. Am. Soc. Hort. Sci., 1986,111(6): 877~880.
    [156] Battikhi, A. M., and I. Ghawi.Muskmelon production under mulch and trickle irrigation in the Jordan Valley.HortSci., 1987,22(4):578-581.
    [157] Layne, R. E. C., and C. S. Tan.Influence of cultivars, ground covers, and trickle irrigation on early growth, yield, and cold hardiness of peaches on Fox Sand.J. Am. Soc. Hort. Sci., 1988,113(4): 518-525.
    [158] Bonanno, A. R., and W. J. Lamont, Jr.Effect of polyethylene mulches, irrigation method, and row covers on soil and air temperature and yield of muskmelon.J. Am. Soc. Hort. Sci., 1987,112(5): 735~738.
    [159] Blatt, C. R.Irrigation, mulch, and double row planting related to fruit size and yield of ‘Bounty’ strawberry.Hort. Sci., 1984, 19 (6): 826-827.
    [160] Tindall, J. A., R. B. Beverly, and D. E. Radcliffe.Mulch effect on soil properties and tomato growth using micro-irrigation.Agron. J., 1991,83: 1028-1034.
    [161] Van Derwerken, J. E., and D. W. Lee.Influence of plastic mulch and type and frequency of irrigation on growth and yield of bell pepper.HortSic., 1988,23(6): 985~988.
    [162] Sweeney, D. W., and etc.Tomato yield and nitrogen recovery as influenced by irrigation method, nitrogen source, and mulch.HortSic., 1987,22 (1): 27~29.
    [163] Clough, G. H., and S. J. Locascio.Yield of successively cropped polyethylene-mulched vegetables as affected by irrigation method and fertilization management.J. Am. Soc. Hort. Sci., 1990,115(6): 884-887.
    [164] Tiwari, K. N., A. Singh, and P. K. Mal.Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions.Agric. Water Manage., 2003,58: 19-28.
    [165] Woods, H., and A. Z. Collidge.We bought a drip system for our cotton….Irrig. J., 1981,31(3): 35~39.
    [166] Oron, G., J. Ben-Asher, and Y. DeMalach.Effluent in trickle irrigation of cotton in arid zones.J. Irrig. Drain. Div., ASCE, 1982,108(2): 115~126.
    [167] Fangmeier, D. D., D. J. Garrot, Jr., S. H. Husman, and etc.Cotton water stress under trickle irrigation.Trans. ASAE, 1989,32(6): 1955~1959.
    [168] Wanjura,D. F., R. Mahan,and D. R. Upchurch.Irrigation starting time effect on cotton under high—frequency irrigation.Agron. J., 1996,88:561~566.
    [169] Wanjura, D. F., D. R. Upchurch, J. R. Mahan, and etc.Cotton yield and applied water relationships under drip irrigation.Agric. Water Manage., 2002,55: 217~237.
    [170] Yazar, A., S. M. Sezen, and S. Sesveren.LEPA and trickle irrigation of cotton in the southeast Anatolia Project (GAP) area in Turkey.Agric. Water Manage.,2002,54: 189~203.
    [171] Mateos, L., J. Berengena, F. Orgaz, J. Diz, and etc.A comparison between drip and furrow irrigation in cotton at two levels of water supply.Agric. Water Manage., 1991,19: 313~324.
    [172] Moreshet, S., M. Fuchs, Y. Cohezkel, and etc.Water transport characteristics of cotton as affected by drip irrigation layout.Agron. J., 1996,88: 717-722.
    [173] Meiri, A., H. Frenkel, and A. Mantell.Cotton response to water and salinity under sprinkle and drip.Agron. J., 1992,84:44~50.
    [174] Kamara, L., R. Zartman, and R.H. Ramsey.Cotton-root distribution as a function of trickle irrigation emitter depth.Irrig. Sci., 1991,12: 141~144.
    [175] Ayars, J. E., R. B. Hutmacher, R. A. Schoneman, and etc.Drip irrigation of cotton with saline drainage water.Trans., ASAE, 1986,29(6): 1668~1673.
    [176] Nightingale, H. I., K. R. Davis and C. J. Phene.Trickle irrigation of cotton: effect on soil chemical properties.Agric. Water Manage., 1986,11: 159~168.
    [177] Ertek, A., and R. Kanber.Effects of different drip Irrigation programs on the boll number and shedding percentage and yield of cotton.Agric. Water Manage., 2003,60: 1-11.
    [178] Aujla, M. S., H. S. Thind, and G. S. Buttar.Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting.Agric. Water Manage., 2005,71: 167-179.
    [179] 肖俊夫,刘祖贵,俞希根.滴灌条件下不同供水模式对棉花产量及品质的影响[J].棉花学报,2000,12(4):194-197.
    [180] Bennett, O. L., D. A. Ashley, and B. D. Doss.Cotton responses to black plastic mulch and irrigation.Agron. J., 1966,58: 57~60.
    [181] 马富裕,严以绥.棉花膜下滴灌技术理论与实践[M].乌鲁木齐:新疆大学出版社,2002.
    [182] 李明思,贾宏伟. 棉花膜下滴灌湿润锋的试验研究[J].石河子大学学报,2001,5(4):316-319.
    [183] 李明思,马富裕,郑旭荣 等.膜下滴灌棉花田间需水规律研究[J].灌溉排水,2002,21(1):58-60.
    [184] 李富先,杨举芳,张玲 等.棉花膜下滴灌需水规律和最大耗水时段及耗水量的研究[J].新疆农业大学学报,2002,25(3):43-47.
    [185] 蔡焕杰,邵光成,张振华.不同水分处理对膜下滴灌棉花生理指标及产量的影响[J].西北农林科技大学学报,2002,30(4):29-30.
    [186] 蔡焕杰,邵光成,张振华.荒漠气候区膜下滴灌棉花需水量和灌溉制度的试验研究[J].水利学报,2002,(11):119-123.
    [187] 蔡焕杰,邵光成,张振华.棉花膜下滴灌毛管布置方式的研究[J].农业工程学报,2002,18(1):45-48.
    [188] 张振华,蔡焕杰,杨润亚.基于 CWSI 和实际耗水量的膜下滴灌作物需水量研究[J].中国村水利水电,2005,(3):4-6.
    [189] 张振华,蔡焕杰,杨润亚.沙漠绿洲灌区膜下滴灌作物需水量及作物系数研究[J].农业工程学报,2004,20(5):97-102.
    [190] 穆彩芸,马富裕,郑旭荣 等.覆膜滴灌棉田蒸散量的模拟研究[J].农业工程学报,21(4):25-29.
    [191] 危常州,马富裕,雷咏雯.棉花膜下滴灌根系发育规律的研究[J].棉花学报,2002,14(4):209-214.
    [192] 胡晓棠,李明思.膜下滴灌对棉花根际土壤环境的影响研究[J].中国生态农业学报,2003,11(3):121-123.
    [193] 胡晓棠,李明思,马富裕.膜下滴灌棉花的土壤干旱诊断指标与灌水决策[J].农业工程学报,2002,18(1):49-52.
    [194] 张鑫,蔡焕杰,邵光成 等.膜下滴灌的生态环境效应研究[J].灌溉排水,2002,21(2):1-4.
    [195] 李富先,杨举芳,季枫 等.棉花膜下滴灌田间小气候规律的试验研究[J].石河子大学学报(自然科学版),2002,6(2):105-108.
    [196] 张琼,李光永,柴付军.棉花膜下滴灌条件下灌水频率对土壤水盐分布和棉花生长的影响[J].水利学报,2004,(9):123-126.
    [197] 张旺锋,王振林,余松烈 等.膜下滴灌对新疆高产棉花群体光合作用冠层结构和产量形成的影响[J].中国农业科学,2002,35(6):632-637.
    [198] Van Genuchten, M. Th.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Sci. Soc. Am. J., 1980,44: 892-898.
    [199] Tyner, J. S., and G. O. Brown.Improvements to estimating unsaturated soil properties from horizontal infiltration.Soil Sci. Soc. Am. J., 2004,68: 1-6.
    [200] Hachum, A. Y., J. K. Alfaro, and L. S. Willardson.Water movement in soil from trickle source.J. Irrig. Drain. Div., ASCE, 1976,102(2): 179~192.
    [201] Lafolie, F., R. Guennelon, and M. Th. Van Genuchter.Analysis of water flow under trickle irrigation: I. theory and numerical solution.Soil Sci. Soc. Am. J., 1989,53: 1310~1318.
    [202] Lockington, D., J. Y. Parlange, and A. Surin.Optimal prediction of saturation and wetting fronts during trickle irrigation.Soil Sci. Soc. Am. J., 1984,48: 488~494.
    [203] Coelho, F. E., and D. Or.Applicability of analytical solutions for flow from point sources to drip irrigation management.Soil Sci. Soc. Am. J., 1997,61: 1331~1341.
    [204] Healy, R. W., and A. W. Warrick.A generalized solution to infiltration from a surface point source.Soil Sci. Soc. Am. J., 1988,52: 1245-1251.
    [205] Kachanoski, R. G., I. J. Van Wesenbeeck, P. Von Bertoldi, and etc.Measurement of soil water content during three-dimensional axial-symmetric water flow.Soil Sci. Soc. Am. J., 199054: 645~649.
    [206] 陆君安,尚涛,谢进 等.偏微分方程的 MATLAB 解法[M].武汉:武汉大学出版社,2004.
    [207] Chapman, S. J.MATLAB Programming For Engineers ( Second Edition).北京:科学技术出版社,2004.
    [208] 王沫然.MATLAB 与科学计算[M].北京:电子工业出版社,2001.
    [209] Howell, T. A., and E. A. Hiler.Designing trickle irrigation laterals for uniformity.J. Irrig. Drain. Div., ASCE, 1974,100(4): 443-454.
    [210] Keller, J., and D. Karmeli.Trickle irrigation design parameters.Trans., ASAE, 1974,678~684.
    [211] Solomon, K., and J. Keller.Trickle irrigation uniformity and efficiency.J. Irrig. Drain. Div., ASCE, 1978,104(3): 293-306.
    [212] Wu, I., and M. Gitlin.Hydraulics and uniformity for drip irrigation.J. Irrig. Drain. Div., ASCE, 1973,99(2): 157-168.
    [213] Elmaloglou, S., and G. Grigorakis. Linear and nonlinear models of infiltration from surface line source of trickle irrigation.ICID. J., 1997,46(2): 81~92.
    [214] Warrick, A. W.Analycal solutions to the one-dimensional linearized moisture flow equation for arbitrary Input.Soil Sci., 1975,120(2): 79-84.
    [215] Bralts, V. F., and C. D. Kesner.Drip irrigation field uniformity estimation.Trans., ASAE, 1983,1369-1374.
    [216] Al-Jamal, M. S., S. Ball, and T. W. Sammis.Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production.Agric. Water Manage., 2001,46: 253~266.
    [217] Abu-Hamdeh, N. H., and R. C. Reeder,Soil thermal conductivity: effects of density, moisture, salt concentration, and organicmatter.Soil Sci. Soc. Am. J., 2000,64: 1285~1290.
    [218] Asrar, G., and E. T. Kanemasu.Estimating thermal diffusivity near the soil surface using Laplace Transform: uniform initial conditions.Soil Sci. Soc. Am. J., 1983,47: 397~401.
    [219] Gurr, C. G., T. J. Marshall, and J. T. Hutton.Movement of water in soil due to a temperature gradient.Soil Sci., 1952,74 (5): 335~345.
    [220] Robins, J. S.Some thermodynamic properties of soil moisture.Soil Sci., 1951,73: 127~139.
    [221] Sepaskhah, A. R., and L. Boersma.Thermal conductivity of soils as a function of temperature and water content.Soil Sci. Soc. Am. J., 1979,43: 439~444.
    [222] Cary, J. W., and S. A. Taylor.The interaction of the simultaneous diffusions of heat and water vapor.Soil Sci. Soc. Am. Proc., 1962,413~416.
    [223] Cary, J. W.Soil moisture transport due to thermal gradients: practical aspects.Soil Sci. Soc. Am. Proc., 1966,30: 428~433.
    [224] Cary, J. W.Soil heat transducers and water vapor flow.Soil Sci. Soc. Am J., 1979,43: 835~839.
    [225] 雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [226] Wang, D., M. C. Shannon,C. M. Grieve, and etc.Soil water and temperature, regimes in drip and sprinkler irrigation, and implications to soybean emergence.Agric. Water Manage., 200043: 15~28.
    [227] 张朝勇,蔡焕杰.膜下滴灌棉花土壤温度的动态变化规律[J].干旱区农业研究,2005,23(2):11-15.
    [228] 康绍忠,梁银丽,蔡焕杰.旱区水—土—作物关系及其最有调控原理[M].北京:中国农业出版社,1998.
    [229] Acock, B., and Y. A. Pachepsky.Convective-diffusive model of two-dimensional root growth and proliferation.Plant and Soil, 1996,180: 231~240.
    [230] Coelho, M. B., F. J. Villalobos, and L. Mateos.Modeling root growth and the soil-plant-atmosphere continuum of cotton crops.Agric. Water Manag., 2003,60: 99-118.
    [231] Feddes, R. A., E. Bresler, and S. P. Neuman.Field test of a modified numerical model for water uptake by root systems.Water Reso. Res., 1974,10 (6): 1199~1206.
    [232] Hayhoe, H.Analysis of a diffusion model for plant root growth and an application to plant soil-water uptake.Soil Sci., 1981,131(6): 334~343.
    [233] Herkelrath, W. N., E. E. Miller, and W. R. Gardner.Water uptake by plants: I. divided root experiments.Soil Sci. Soc. Am. J., 1977,41: 1033~1043.
    [234] Hupet, F., S. Lambot, R. A. Feddes, and etc.Estimation of root water uptake parameters by inverse modeling with soil water content data.Water Resour. Res., 2003,39 (11): 1312 SBH 1-1: 1-16.
    [235] Neuman, S. P., R. A. Feddes, and E. Bresler.Finite element analysis of two-dimensional flow in soils considering water uptake by roots: I. theory.Soil Sci. Soc. Am. Proc., 1975,39: 224~230.
    [236] Shekhar, C., P. Ojha, and A. K. Rai.Nonlinear Root –Water uptake model.J. Irrig. Drain. Engng., ASCE, 1996,122(4): 198~202.
    [237] Steudle, E.Water transport across roots.Plant and Soil, 1994,167: 79-90.
    [238] Steudle, E.Water uptake by plant roots: an Integration of Views.Plant and Soil, 2000,226: 45~56.
    [239] Van Bavel, C. H. M., G. B. Stirk, and K. J. Brust.Hydraulic properties of a clay loam soil and the field measurement of water uptake by roots: I. interpretation of water content and pressure profiles.Soil Sci. Soc. Am. Proc., 1968,32: 310~325.
    [240] Vrugt, J. A., J. W. Hopmans, and J. Simunek.Calibration of a two-dimensional root water uptake model.Soil Sci. Soc. Am. J., 2001,65: 1027~1037.
    [241] Whalley, W. R., P. B. Leeds-Harrison, P. K. Leech, and etc.The hydraulic properties of soil at root-soil interface.Soil Sci., 1999,169(2): 91-99.
    [242] Battam, M., D. Boughton, P. Hulme, and etc.Drip irrigatied cotton observing wetting patterns.Irrig. J., 2001,51(4): 13-16.
    [243] Andria, R. D., R. Novero, D. H. Smith, and etc.Drip irrigation of tomato using carbonated water and mulch in colorado.Acta. Hort., 1990,278: 179-185.
    [244] Catzeflis, J.Amount of water for drip irrigation of tomatoes grown under cover.Acta. Hort., 1981,119: 343-347.
    [245] Cevik, B., C. Kirda, and G. Dinc.Effects of some irrigation systems on yield and quality of tomato grown in a plastic covered greenhouse in the south of turkey.Acta. Hort., 1981,119: 333-342.
    [246] Pettigrew, W. T.Moisture deficit effects on cotton lint yield, yield components, and boll distribution.Agron. J., 2004,96: 377-383.
    [247] 王荣栋,尹经章.作物栽培学[M].北京:高等教育出版社,2005.
    [248] Meerbach, D., C. Dirksen, S. Cohen, and etc.Influence of drip irrigation layout on salt distribution and sapflow in effluent irrigated cotton.Acta. Hort., 2000,537: 709-718.
    [249] Philip, T., J. J. Alfaro, J. Keller, and etc.Trickle irrigation soil water potential as influenced by management of highly saline water.Soil Sci., 1974,117(4): 226~331.
    [250] Ross, P. J.Modeling soil water and solute transport – fast, simplified numerical solutions.Agron. J., 2003,95: 1352-1361.
    [251] 李毅,王文焰,王全九.论膜下滴灌技术在干旱—半干旱地区节水抑盐灌溉中的应用[J].灌溉排水,2001,20(2):42-46.
    [252] Black, J. D. F.Trickle irrigation – a review.Hort. Abs., 1976,46 (1):1-7; 46(2): 69-74.
    [253] Wu,I., and J. Barragan.Design criteria for micro-irrigation systems.Trans., ASAE, 2000,43(5): 1145~1154.
    [254] 水利部国际合作司,中国灌排技术开发公司,水利部农田灌溉研究所.美国国家灌溉工程手册[M].北京:中国水利水电出版社,1998.
    [255] Wu, I. P., and H. M. Gitlin.Drip irrigation application efficiency and schedules.Trans., ASAE, 1983,26(1): 92-99.
    [256] 李明思,康绍忠,孙海燕.点源滴灌滴头流量与湿润体关系研究[J].农业工程学报,2006,22(4):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700