用户名: 密码: 验证码:
压缩—喷射制冷系统及喷射器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据报道我国供热制冷行业每年消耗掉近40%的能源。因此,制冷系统的节能降耗,已经成为制冷暖通空调行业研究的重要课题之一。压缩-喷射制冷循环,是一种对原有蒸汽压缩制冷系统改动较小,并且能效更高的制冷循环方式,是现有蒸汽压缩制冷系统的理想替代方案。本文以该系统为研究对象,进行了相关研究。
     (1)利用热力学分析法对单温压缩-喷射制冷系统进行了理论分析与研究。研究表明,热力学分析方法采用等面积混合模型比较合理:混合压力在理论取值范围内存在一个最优点,并且随着蒸发温度的升高或冷凝温度的降低,喷射器最优混合压力的取值点越靠近引射压力,喷射系数增加,系统COP升高,但是相对于传统压缩制冷循环的性能提高率减小;喷射器及系统性能对喷射器进口段等熵效率的变化较敏感。
     (2)传统双温蒸汽压缩制冷系统存在两类节流损失,即膨胀阀产生的节流损失和压力调节阀产生的节流损失。应该结合冷凝温度、高低温蒸发器蒸发温度和制冷负荷比的不同情况,选用相应合理的回收方式。
     (3)选择双温压缩.喷射制冷系统中的串联单相和并联两相模式,与传统压缩循环模式进行对比分析,结果表明:在所选择的计算工况范围内,采用压缩-喷射制冷循环的系统性能总高于传统双温压缩制冷系统,并且并联两相模式比串联单相模式性能更优。
     (4)以并联两相模式、串联单相模式的双温压缩-喷射制冷系统为应用对象,分别采用经典热力法和气体动力函数法分析了两相喷射器和单相喷射器的性能受温度、制冷负荷比以及喷射器各部分等熵效率的影响规律。研究表明:两相喷射器的喷射系数随冷凝温度和低温蒸发器B的蒸发温度的升高而增大,随高温蒸发器A的蒸发温度的升高而减小,随着喷射器各部分效率的提高而增加;而单相喷射器喷射系数随温度的变化趋势则相反;并且当这三个温度升高时,单相喷射器的可达到出口压力值均升高,其中两个蒸发温度的影响尤其明显。
     (5)利用FLUENT软件对设计的用于串联单相模式的单相喷射器进行了研究,通过对比结构参数和操作工况对其性能的影响规律,对其结构进行了优化。研究发现,对于本文所设计的喷射器,喷嘴结构、喷嘴距、混合室长度均存在使喷射器性能最优的最佳值。尤其是喷嘴距存在一个临界值,当喷嘴距略小于该值时,喷射器性能会发生骤降。
It is reported that China's heating and cooling industry consumed nearly40%of the energy annually. Therefore, energy saving in the refrigeration system has become one of the most important topics of the HVAC industry. Compression/injection refrigeration cycle is a slightly modified version of the original vapor compression refrigeration system with higher efficiency and is the ideal alternative to the existing vapor compression refrigeration system. In this paper, relevant research about this system is carried out.
     (1) A thermodynamic analysis of single-temperature Compression/injection refrigeration cycle is carried out in this paper. The results show that the constant area model for mixing chamber is appropriate for thermodynamic analysis. Within the theoretical value range, there is an optimum value for mixing pressure. As the evaporation temperature increases or the condensation temperature decreases, the optimum mixing pressure comes closer to the ejection pressure, the entrainment ratio goes up and COP of the system improves. However, compared to traditional compression-refrigeration cycle, the system under study improves on a smaller basis. Besides, COP of the system is more sensitive to changes of the inlet isentropic efficiency.
     (2) There are two types of throttling losses in traditional dual-temperature vapor compression refrigeration system, that is, expansion valve throttling losses and pressure regulating valve throttling losses. Condensation temperature, high and low temperature evaporator evaporation temperature and cooling load ratio should be comprehensively considered in the selection of the appropriate and reasonable recycling.
     (3)The series single-phase model and the parallel two-phase model of dual-temperature compression/injection refrigeration cycle are compared with traditional compression cycle model, and the results show:in the calculated conditions, the two models of dual-temperature compression/injection refrigeration cycle mentioned above have better performance than the traditional double-the isothermal compression refrigeration cycle; the parallel two-phase model is better than the series single-phase model.
     (4)Taking the series single-phase model and the parallel two-phase model of dual-temperature compression/injection refrigeration cycle as subjects, classic thermodynamic method and gas power function method are used to analyze the two-phase ejector and single-phase ejector, aiming to see how their performance is influenced by temperature, ratio of cooling load and ejector part isentropic efficiency. The results show:the entrainment ratio of the two-phase ejector increases with the rise of the condensation temperature and the evaporation temperature of the low temperature evaporator B, decreases with the rise of evaporation temperature of the high temperature evaporator A and increases as the efficiency of the various parts of the ejector increase; the opposite trend is true of single-phase ejector; the outlet pressure single-phase ejector can reach increases with the rise of these three temperatures, wherein the impact of the temperature of the two evaporators is especially apparent.
     (5) FLUENT software is used to study the impact of the structural parameters and operating conditions on the performance of single-phase ejector for series single-phase mode in order to optimize its structure. According to the results:the nozzle structure, the nozzle pitch, and the length of the mixing chamber all have optimum values corresponding to the optimal injector performance, especially that the nozzle pitch has a critical value. When the nozzle pitch is slightly smaller than this value, the performance of the ejector will plunge.
引文
[1]王秀强.我国能源消耗世界第一年均增加近2亿吨标煤[N].21世纪经济报道2012-10-09.
    [2]高新华,高云.制冷系统的节能环保与安全问题的探讨[J].中国制冷学报2007学术年会:889~892.
    [3]杨晓军.制冷剂与制冷系统的节能[N].制冷快报,http://bao.hvacr.cn/200701_1995425.htrnl.
    [4]王莹,马羡平,孙颖.中国食品冷链物流现状及发展策略[J].节能技术,2009,27(115):324~327.
    [5]靳军.带有压缩-喷射混合制冷循环的新型冰箱模拟研究[D].[硕士学位论文].南京:南京理工,2009.
    [6]魏新利,汤本凯马新灵等.两相喷射器对压缩-喷射制冷系统性能的影响[J].制冷与空调,2014,28(01).
    [7]Kornhauser A A The Use of an Ejector as a Refrigerant Expander[C]. Proceedings of USNC/IIR-Purdue refrigeration conference. Indiana, USA:Purdue University,1990:10-19.
    [8]GA Kemper, GF Harper, GA Brown. Multiple phase ejector refrigeration system [P]:USA, 3277660,1966.10.11.
    [9]魏新利,汤本凯.降低压缩机吸气温度对排气量和功耗的影响分析[J].化肥工业,2012,39(03).
    [10]Domanski P A Theoretical evaluation of the vapor compression cycle with a liquid-line/ suction-line heat exchanger, economizer, and ejector [R]. Nistir-5606, National Institute of Standards and Technology,1995.
    [11]刘军朴,陈江平,陈芝久.跨临界二氧化碳蒸汽压缩/喷射制冷循环[J].上海交通大学学报,2004,38(2):273-275.
    [12]邓建强,姜培学,卢涛等.跨临界CO2蒸气压缩-喷射制冷循环理论分析[J].清华大学学报(自然科学版),2006,46(5):670-673.
    [13]邓建强,姜培学,卢涛等.跨临界二氧化碳蒸气压缩-喷射制冷循环性能比较[J].工程热物理学报,2006,27(3):382-384.
    [14]Nehdi E, Kairouani L, Bouzaina M. Performance analysis of the vapor compression cycle using ejector as an expander. International Journal of Energy Research 2007;31(4)364-75.
    [15]Bilir N, Ersoy HK. Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector. International Journal of Energy Research 2009; 33(5):469 — 80.
    [16]Sarkar J. Geometric parameter optimization of ejector-expansion refrigera-tion cycle with natural refrigerants. International Journal of Energy Research 2010;34(1):84-94.
    [17]Sarkar J. Optimization of ejector-expansion transcritical CO2 heat pump cycle. Energy 2008; 33(9):1399-406
    [18]Kornhauser AA, Menegay P. Method of reducing flow metastability in an ejector nozzle. US Patent no.5343711; 1994.
    [19]Menegay P, Kornhauser AA Improvement to the ejector expansion refrigera-tion cycle. In: Proceedings of the intersociety energy conversion engineering conference, vol.2, Washington DC; 1996. p.702-6.
    [20]Harrel GS, Kornhauser AA. Performance test of two-phase ejector. In:Proceedings of the 30th intersociety energy conversion engineering confer-ence, Orlando, FL; 1995. p.49-53.
    [21]Disawas S, Wongwises S. Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration 2004;27(6):587-94.
    [22]Wongwises S, Disawas S. Performance of the two-phase ejector expansion refrigeration cycle. International Journal of Heat and Mass Transfer 2005;48(19-20):4282-6.
    [23]Chaiwongsa P, Wongwises S. Effect of throat diameters of the ejector on theperformance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration 2007;30(4):601-8.
    [24]Ozaki Y, Takeuchi H, Hirata T. Regeneration of expansion energy by ejector in CO2 cycle. In: Proceedings of the sixth IIR Gustav Lorentzen conference on natural working fluid, Glasgow, UK. Glasgow, UK; 2004. p.11-20
    [25]Kairouani L, Elakhdar M, Nehdi E, Bouaziz N. Use of ejectors in a multi-evaporator refrigeration system for performance enhancement. International Journal Refrigeration 2009; 32: 1173-85.
    [26]Lin C, Cai W, Li Y, Yan J, Hu Y, Pressure recovery ratio in a variable cooling loads ejector-based multi-evaporator refrigeration system, Energy 2012; 44:649-656.
    [27]Tomasak ML, Radermacher R. Analysis of a domestic refrigeration cycle with an ejector. ASHRAE Transactions 1995;101:1431-8.
    [28]Elakdhar M, Nehdi E, Kairouani L. Analysis of a compression/ejection cycle for domestic refrigeration. Industrial Engineering Chemistry Research 2007;46:4639-44.
    [29]郭健翔,谭连城.一种新型压缩-喷射冰箱用混合制冷循环[C].中国工程热物理学会会议论文集,1991,烟台.
    [30]Sarkar J. Performance characteristics of multi-evaporator transcritical CO2 refrigeration cycles with hybrid compression/ejection. Proceedings of the IMECHE, Part A:Journal of Power and Energy 2010;224:773-80.
    [31]苏跃红,葛新石.双温冰箱两种压缩-喷射混合制冷循环的性能比较[J].中国科学技术大学学报,1996,26(3):110-113.
    [32]范晓伟,阴建民,陈钟颀.一种新型蒸气压缩-喷射混合制冷循环的探讨[J].西安交通大学学报,1996,5(30):5-10.
    [33]范晓伟,阴建民,陈钟颀.新型压缩-喷射制冷循环系统的实验研究[J].西安交通大学学报,1997,5(31):6-9.
    [34]苏跃红,葛新石.双温冰箱压缩-喷射混合制冷循环系统的设计和实验研究[J].中国科学技术大学学报,1998,28(1):115-120.
    [35]曹立宏.冰箱压缩-喷射混合制冷循环系统实验及数值研究[D].[硕士学位论文].长沙:中南大学,2009.
    [36]刘志强,沈胜强,李素芬.喷射器一维设计理论的研究进展[J].热能动力工程.2001,16(93):229-232.
    [37]D. W. Sun, I. W. Eames. Recent development in the design theories and application of ejectors-a review. Journal of the Institute of Energy.1995,68:65-79.
    [38]索科洛夫Ё.Я,津格尔Н.М.喷射器(黄秋云译)[M].科学出版社,1977.
    [39]郭金基.高温喷射器的近似计算及应用[J].流体工程.1989,(1):37-42.
    [40]韩惠霖.喷射器的新计算方法[J].流体工程.1988,(12):24-32.
    [41]沈胜强,张琨.可调式气体喷射器调节性能计算分析[J].石油化工高等学校学报.2007,20(3):74-76.
    [42]张博,沈胜强.二维流动模型用于喷射器关键结构设计分析.大连理工大学学报.2004,44(3):388-391
    [43]Hedges K R, Hill P G. Compressible flow ejectors, Part l-Development of a finite-difference flow model[J].ASME Journal of Fluids Engineering,1974,96:272-281.
    [44]Hedges K R, Hill P G. Compressible flow ejectors, Part ll-Flow field measurements and analysis [J].ASME Journal of Fluids Engineering,1974,96:282-288.
    [45]Matsuo K, Sasaguchi K. Investigation of supersonic air ejectors, Part l:Performance in the case of zero-secondary flow [J].Bulletin of JSME,1981,24(198):2090-2097.
    [46]Matsuo K, Sasaguchi K. Investigation of supersonic air ejectors, Part ll:effects of throat-area-ratio on ejector performance[J].Bulletin of JSME.1982,25(210):1898-1905.
    [47]Chang Y J, Chen Y M. Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle [J].Experimental Thermal and Fluid Science,2000,22:203-211.
    [48]刘志强,沈胜强.蒸汽喷射式热泵性能实验研究[J].大连理工大学学摁2001,41(3):67-72
    [49]Liu JP, Chen JP, Chen ZJ. Thermodynamic analysis on transcritical R744 vapor compression-ejection hybrid refrigeration cycle In:Proceedings of the fifth IIR Gustav Lorentzen conference on natural working fluid, Guangzhou, China;2002. p.184-8.
    [50]Li D, Groll EA Transcritical CO2 refrigeration cycle with ejector-expansion device. International Journal of Refrigeration 2005,28(5):766-73.
    [51]Yari M, Sirousazar M. Cycle improvements to ejector-expansion transcritical CO2 two-stage refrigeration cycle. International Journal of Energy Research 2008; 32(7):677-87.
    [52]Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. International Journal of Refrigeration 2008,31(3):411-22.
    [53]Elbel S. Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. International Journal of Refrigeration 2011;34(7):1545-61.
    [54]刑桂菊,李文忠.固定结构的气体喷射器效率研究[J].热能动力工程2000,15(9):467-469.
    [55]沈胜强,李素芬,夏远景.喷射式热泵的设计计算与性能分析[J].大连理工大学学报,1998,38(5):558-561.
    [56]季建刚,王如竹,黎立新.蒸汽喷射压缩器特性计算与分析[J].船舶工程,2006,28(5):46-49.
    [57]季建刚,黎立新,王如竹.蒸汽喷射压缩器的变工况特性分析[J],化学工程,2007,35(2):68-71.
    [58]李海军,沈胜强.蒸汽喷射制冷系统中喷射器内特殊流动现象的研究[J].工程热物理学报,2006,27(3):54-456.
    [59]李海军,沈胜强.蒸汽喷射器流动参数与性能的数值分析.热科学与技术.2005,4(1):52-56
    [60]李海军,沈胜强,李素芬.纸机干燥部开式供热系统中喷射式热泵的结构分析.中国造纸学报.2003,18(1):133-137.
    [61]Li Haijun, Shen Shengqiang. Numerical analysis on performance parameters and flow field of a steam ejector.6th International Symposium on Heat Transfer. Beijing, China.2004, June,604-609.
    [62]Li Haijun, Shen Shengqiang, Zhang Bo. Comparison of Turbulence models applied to the calculation of flow in ejector. Proceedings of the Fourth International Conference on Fluid Mechanics, Dalian, China.2004, July,20-23.
    [63]张少维,徐海涛,桑芝富.新型喷嘴结构下蒸汽喷射式热泵性能的数值研究[J].热能动力工程,2004,19(5):506-509.
    [64]徐海涛,桑芝富,王晓东.蒸汽喷射泵的虚拟设计及集成制造模式[J].南京工业大学学报.2002,24(91)47-51.
    [65]祝金丹,张少维,桑芝富.蒸汽喷射器用双喷嘴结构性能的数值研究[J].南京工业大学学报.2005,27(5):70-73.
    [66]王菲,吕恒林,冯伟,沈胜强.压缩-喷射制冷循环中两相喷射器性能[J].化工学报,2012,63(10):3094-3100.
    [67]Liao SM, Zhao TS, Jakobsen A. Correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles[J].Applied Thermal Engineering,2000,20(9):831-841.
    [68]K.Sumeru, H.Nasution, F.N.Ani.A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle[J].Renewable and Sustainable Energy Reviews,2012,16(7): 4927-4937.
    [69]Praitoon Chaiwongsa, Somchai Wongwises. Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device[J]. Applied Thermal Engineering,2008, 28(5-6):467-477.
    [70]Jahar Sarkar. Ejector enhanced vapor compression refrigeration and heat pump systems-A review[J].Renewable and Sustainable Energy Reviews,2012,16(9):6647-6659.
    [71]刘敬辉,陈江平,陈芝久.四种双温蒸汽压缩制冷循环的制冷性能比较[J].应用科学学报,2006,24(5):538-542.
    [72]靳军.带有压缩-喷射混合制冷循环的新型冰箱模拟研究[D].[硕士学位论文].南京:南京理工大学,2009.
    [73]陆宏圻.喷射技术理论及应用[M].武汉大学出版社,2003.
    [74]张永兴,张永生’赵成纲,席浩君.蒸汽喷射器设计及其计算[J].发酵科技通讯2011,40(3):3-5.
    [75]王福军.计算流体力学分析一一CFD软件原理与应用[M].清华大学出版社,2004.[76]韩占忠FLUENT:流体工程仿真计算实例与分析[M].北京理工大学出版社,2009.
    [77]温正,石良辰,任毅如FLUENT流体计算应用教程.清华大学出版社,2009.
    [78]沈志勇.微小型蒸汽喷射器的数值模拟和优化研究[D].[硕士学位论文].上海:东华大学,2007.
    [79]董志勇.射流力学[M].北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700