用户名: 密码: 验证码:
汞在酸沉降地区陆地生态系统中的分布与行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪50年代初日本水俣湾发生举世震惊的“水俣病(Minamata Disease)”
    事件以来,人们对汞污染问题已进行了一系列的研究,并对汞在水环境中的富集、
    转化、食物链的传递与危害等环节有了较为明晰的认识。至1980年代,人们又认
    识到,由于化石燃料燃烧等人为源向大气散发大量的汞,经大气扩散而使其成为全
    球性的污染物。人为散发的汞经过一定时间和距离的传输后,超过90%的部分最终
    会回落到陆地生态系统,并通过陆生食物链威胁人类健康。
     在酸沉降地区的调查发现,伴随酸沉降的危害使土壤—植物系统遭受汞污染的
    问题严重,汞在陆生食物链的传递呈数量级上升。因此,对陆地生态系统汞问题的
    研究已成为当今不可忽视的重要课题之一。为此,针对目前此研究领域的薄弱环节,
    本文选择耗煤量大、汞散发较严重的酸沉降地区——重庆作为调查对象,通过现场
    调查、野外田间定点观察和室内模拟试验相结合的方法,对汞在酸沉降地区陆地系
    统的分布状况和一些行为特征进行了研究,为预测和控制汞在陆地生态系统的污染
    问题提供科学参考依据。
     本项研究的调查范围包括重庆市主城区、近郊及远郊区共约556km~2的区域,
    调查内容为汞在不同酸沉降危害区近地大气、土壤、植物中的分布状况,区域人为
    汞散发源及散发量,近地大气汞与土壤—植物系统汞富集的关系等。
     田间试验设在酸沉降危害程度不同的三个点,即重污染区(九龙坡区九龙村)、
    轻污染区(北碚区西农农场)和对照区(北碚澄江镇转龙村),各选择一块菜地,
    在菜地中心埋设承接淋滤水的装置。试验从2000年5月至2001年1月共种植了豇
    豆和洋白菜两季蔬菜,试验期间收集并分析所有降水、降尘、淋滤水样品,定时采
    集和分析土壤、植物样品。目的是研究不同酸沉降危害区汞在菜地系统的周转平衡
    状况。
     盆栽试验设置高气汞和低气汞两组,每组8个处理,各重复4次,共进行2次
    莴笋幼苗试验。盆栽试验的目的主要是探讨大气汞对土壤—植物系统的影响规律,
    汞在土壤中的形态转化等。
     结果表明,汞在陆地系统近地大气的空间分布状况为城区>农地系统>林地系
    统;大气汞浓度与酸沉降有关联,酸沉降危害严重的区域近地大气汞浓度较高,随
    着酸沉降危害程度的降低,近地大气汞浓度相应降低;在对近地面0cm、50cm、100cm
    
    
    和 150cm 4个高度的大气进行同步采样监测获得的结果表明,在裸地、林地、果园、
    菜地二种类型的下垫面上,在距地面 150cm高度范围内,均以 50cm层次的气汞浓
    度分布最高,100cm和 150cm层次的大气汞浓度次之,贴近地面(ocm)的大气汞
    浓度最低。下垫面类型对大气汞的垂直分布影响较大。在不同类型的下垫面上,以
    裸地上部的大气汞浓度分布最高u.648.5 11wIY13),为其它类型的 1倍以上。林地
    上部的大气汞浓度最低,仅为 4.1—9.8 "g/th\就点污染源而言,大气汞浓度随着距
    污染源距离的槽加而下降,从距重庆体温计厂不同距离内测得的数据看,大气汞浓
    度与距离呈幂函数关系,两者的关系为:
     y二351.87X刀32M RZ=09538
     近地大气汞的时间变化特征为:在一天内,大气汞浓度以12:opel4:00之间最
    高;大气汞月变化状况是卜8月,月平均气汞浓度逐月升高,吕月后逐渐下降。影
    响气汞时间变化最重要的因素是气温。在酸沉降重污染区月平均大气汞浓度与月平
    均气温的相关系数为0.7666树,轻污染区的相关系数为0.8128的,两地的月平均气
    汞浓度均与气温呈极显著的正相关关系。
     在田间试验点对大气沉降物进行连续1年的定点监测,结果发现,酸沉降地区
    沉降物所含汞的空间分布与大气汞的空间分布大体一致,3个试验点中重污染区九
    龙五队大气汞浓度最高,所测得的降尘汞和雨水汞含量也最高,全年降尘汞含量为
    0.354 mg/kg,雨水平均汞含量为 65.6 "g/L,分别约为对照区的 3 $和 2倍。大气沉
    降物汞的分布趋势为重污染区>轻污染区>对照区。雨水汞的时间分布状况在不同酸
    沉降危害区基本一致,其总的变化状况为l—8月,雨水月平均汞含量逐渐下降,9u
    月则逐渐上升,其中1、2、12月份较高,7、8月份最低。雨水汞含量的这种分布
    趋势与降雨年分布状况密切相关。三个观测点雨水汞含量与降雨量之间均存在显著
    的负相关,即降雨量越高,雨水汞含量越低。相应的直线回归方程为:
     y ’”-0·3726x+97.644 r ’二-0.6754“(n。12)
     y #“-0·267卜73.979 r e二-0.8281”“(=12)
     y M=·0·2350x+52石66 r t=·0.8109”’(n=fi)
     从不同酸沉降区的调查结果可见,出于受到伴随酸沉降危害而产生的汞污染影
     2
    
     响,与重庆市紫色土汞的自然背景值门.0628“、1.8 mg/kg)相比 (198年X 目前
     酸沉降重污染区的表层土壤汞累积已达到相当高的水平,其表层土壤平均汞含量?
A series of researches about mercury pollution have been conducted since the
     worldwide-shocked Minamata Disease happened in Japan in early I 950s, and some
     important aspects of mercury pollution to aquatic environment have also been understood
     clearly, such as the enrichment, transformation, transfer and endanger of aquatic food-
     chain etc. Since I 980s, mercury have been realized as a globe pollutant since large
     amounts of mercury from man-made sources such as the combustion of fossil fuels were
     emitted into the atmosphere and followed by long-distance transportation. Over 90% of
     mercury emitted into the atmosphere could eventually deposit back to the terrestrial
     ecosystems, and thus posed a great threat to human health via the terrestrial food chains.
    
     Investigations in the acid deposition areas demonstrated that the soil-plant systems
     were seriously polluted by mercury along with the occurring of acid deposition, and
     mercury was significantly bio-concentrated in the food chains. Thus, problems of mercury
     pollution in terrestrial ecosystems have come to be an important research subject. With the
     purpose of better understanding some weak links in this subject, we selected Chongqing,
     the acid deposition area with high consumption of coal and thus high emission of mercury,
     as the our research base to explore the distribution and behaviors of mercury as influenced
     by various environmental factors. Comprehensive methods including on-line investigation,
     on-site field monitoring and indoor simulation experiments were adopted for the purpose.
     The results may be taken as scientific references for the prediction and control of mercury
     pollution in terrestrial ecosystems.
    
     The investigation of this research covered an area of 556 kin2, which involved the
     urban district, its environs and the outer suburbs of Chongqing City. The distribution of
     mercury in the atmosphere close to land surface, the soil and plant in the regions suffering
     the influence of different acid deposition was monitored, the mercury emission from
     different anthropogenic sources was quantified, and the influences of atmosphere mercury
     on its contents in soil-plant systems were analyzed.
    
     Three field experiments were set in vegetable fields with different pollution degree by
     acid deposition for understanding mercury balance under different conditions. The
    
    
     experiments lasted from May 2000 to January 2001. Cowpea was planted followed by
     cabbage. During the experiment, samples of rainfall, deposited dust, leaching water, plant
     and soil were periodically taken for analyses of relevant parameters including mercury
     content.
    
     Pot experiment was designed to explore the effect regulation of air-Hg on soil-plant
     system and the transformation of Hg in soils. The experiment consisted of two groups, i.e.
     low air-Hg and high air-Hg, each with 8 treatments and four replications. Two seasons of
     young lettuce seedlings were planted.
    
     The investigation results showed that the distribution of Hg in the atmosphere with
     different surfaces underneath was in the order of urban area抐arming land>forest land; the
     concentrations of air-Hg were relevant to acid deposition: the air-Hg concentrations were
     higher in the areas suffering severer acid deposition; The vertical distribution of air-Hg
     monitored at the height of 0cm, 50,cm, 100cm and 150cm from the land surfaces
     consistently showed a sequence of SOcm>lOOcm>1 SOcm>Ocm regardless of the types of
     land surfaces underneath. However, Their magnitudes of concentrations of air-Hg were
     significantly af
引文
[1]白瑛,张祖锡,1988.汞在土壤—作物系统中的残留与吸收.中国环境科学,8(6):18~24.
    [2]白瑛,张祖锡,郁明柬,孟筠,张小葳,1986.土壤条件与汞的富集和迁移.北京农业大学学报,12(3):302~305.
    [3]陈乐恬,刘俊华,佟玉芹,林玉环,王文华,Liu S, Carloy R J, 2000.北京地区大气中汞污染状况的初步调查.环境化学,19(4):357~361.
    [4]陈乐恬,张晓山,林玉环,佟玉芹,1999.大气环境中汞的形态及其分析方法.环境化学,18(6):584~588.
    [5]陈怀满等,1996.土壤—植物系统中的重金属污染.北京,科学出版社.
    [6]陈荣华,林鹏,1989.红树苗对汞的吸收和净化.环境科学学报,9(2):219~223.
    [7]城乡环境建设部编写组,1986.环境监测分析方法.北京,中国环境科学出版社.
    [8]陈尧华,1985.重庆市近郊区土壤汞污染的初步探讨.环境科学动态,7(4):7~11.
    [9]崔瑞平,赵彬彬,满洪界,1987.某汞矿冶炼厂附近环境汞污染调查.环境科学,8(3):65~67.
    [10]曹洪法,1981.陆地生态系统中重金属的污染.环境科学,2(2):61~64.
    [11]戴昭华,黄衍初 1983.汞在土壤中的分布.环境科学,4(6):32~35.
    [12]邓明,罗春,杨扬,1989,汞、镉在城郊农业生态环境中的行为及影响研究.农业环境保护,8(2):20~24.
    [13]杜式华,方声钟,1984.植物蒸腾作用、吸汞速率与温度的关系.环境科学,5(1):24~27.
    [14]郭唐勇,牟树森,1992.酸沉降对马尾松林之危害与土壤地理环境的关系.重庆环境科学,14(增):31~34.
    [15]范亦农,涂从,1985.重庆土壤中汞污染的初步调查.重庆环境保护,7(3):48~52.
    [16]冯新斌,洪冰,洪叶汤,1998.两次金汞齐—冷原子吸收光谱法测定雨水中不同形态汞.环境化学,17(4):388~392.
    [17]冯新斌,陈业材,朱卫国,1996a.土壤挥发性释放通量的研究.环境科学,17(2):20~22,25.
    [18]冯新斌,洪叶汤,1996b.酸沉降对人类的威胁之一:引起湖泊体系鱼体汞污染.地质地球环境,(5):50~53.
    
    
    [19]何锦林,谭红,赵亚民,姚松林,1999.贵州梵净山自然保护区大气汞的沉降.环境科学学报,19(2):164~169.
    [20]李博主编,2000.生态学.北京,高等教育出版社.
    [21]李春兰,1992.北京地区土壤中汞含量较高的原因分析.中国环境监测,8(3):78~80.
    [22]李酉开主编,1990.土壤农业化学分析方法(修订版).北京,科学出版社.
    [23]廖自基,1992.微量元素的环境化学及生物效应.北京,中国环境科学出版社.
    [24]刘德绍,青长乐,杨水平,2001.近地面大气汞的垂直分布.西南农业大学学报,23(1):39y~41.
    [25]刘德绍,王定勇,青长乐,1999.几种蔬菜汞富集能力的初步研究.重庆环境科学,21(1):46~48.
    [26]刘德绍,1998.蔬菜对土壤汞和大气汞的吸收.西南农业大学博士学位论文,重庆.
    [27]刘广深,曾毅强,朴河春,洪叶汤,1996.陆地生态系统中汞的迁移与富集研究的重要意义.四川环境,15(4):8~10.
    [28]刘厚田,1990.重庆南山大气 SO_2 污染与马尾松衰亡的关系.生态学报,10(4):305~310.
    [29]刘金林,肖钊宝,陈炜,1985.树叶重金属含量与生长量对环境质量的指示.上海环境科学,4(9):21~22.
    [30]刘俊华,王文华,彭安,2000a.降水中汞的赋存形态.环境科学,21(5):42~46.
    [31]刘俊华,王文华,彭安,2000b.土壤性质对土壤中汞赋存形态的影响.环境化学,19(5):474~478.
    [32]刘俊华,王文华,彭安,2000c.土壤中汞生物有效性的研究.农业环境保护,19(4):216~220.
    [33]刘俊华,王文华,彭安,2000d.降水中汞及其它元素来源的识别分析.环境科学,21(2)77~80.
    [34]刘俊华,王文华,彭安,1998.北京市二个主要工业区汞污染及其来源的初步研究.环境科学学报,18(3):331~336.
    [35]刘全友,徐良才,庞淑薇,1984.南迦巴峰地区大气中汞的环境自然背景值.环境化学,3(6):62~65.
    [36]罗志刚,游植麟,1996.红壤对汞的吸附特性研究.农业环境保护,15(5):228~230.
    [37]牟树森,青长乐,1997.酸沉降地区作物对汞的积累及其影响因素的研究.重庆环境科学,19(1):1~5.
    
    
    [38]牟树森,青长乐,1993.环境土壤学.北京,农业出版社.
    [39]牟树森,唐书源,1992.酸沉降地区土壤—蔬菜系统中汞污染问题.农业环境保护,11(2):57~60.
    [40]牟树森,杨学春,青长乐,1988.酸雨危害与土壤酸化问题的调查研究.西南农业大学学报,10(1):12~20.
    [41]庞淑薇,邱光葵,孙景芳,1981.连续化学浸提法测定底泥中不同形态汞的探讨.环境科学学报,1(3):234~241.
    [42]钱建平,张力,刘辉利,叶军,2000,桂林市及近郊土壤汞的分布和污染研究,地球化学,29(1):94~99.
    [43]青长乐,牟树森,1995.抑制土壤汞进入陆生食物链.环境科学学报,15(2):148~155.
    [44]谭红,何锦林,花金兰,赵亚民,1999.汞矿区大气汞的流通量与汞干湿沉降研究.环境化学,18(1):34~38.
    [45]谭红,何锦林,1997.用 Moss Bag 测定汞矿附近元素汞的干湿沉降.环境科学,18(6):71~72.
    [46]陶澍,邓宝山,陈伟元,1993,深圳地区土壤汞含量分布及污染.环境科学学报,13(1):35~38.
    [47]陶秀成,赖维平,1989.重庆市燃煤排汞调查.重庆环境科学,11(4):87~90.
    [48]王定勇,牟树森,1999.酸沉降地区大气汞对土壤—植物系统汞累积影响的调查研究.生态学报,19(1):140~144.
    [49]王定勇,牟树森,青长乐,1998.大气汞对土壤—植物系统汞累积的影响研究.环境科学学报,18(2):194~198.
    [50]王定勇,石孝洪,杨学春,1998.大气汞在土壤中转化及其与土壤汞富集的相关性.重庆环境科学,20(5):22~25.
    [51]王定勇,李孝华,吴成,1996.重庆大气汞初步调查,重庆环境科学,18(4):59~61.
    [52]王起超,麻壮伟,沈文国,方凤满,刘汝海,2001.煤炭及其灰渣中的有机汞.中国环境科学,21(1):54~57.
    [53]王起超,沈文国,麻壮伟,1999.中国燃煤汞排放估算.中国环境科学,19(4):318~321.
    [54]王起超,邵庆春,康淑莲,王志刚,邹山同,1996.煤中 15 中微量元素在燃烧产物中的分配.燃料化学学报,24(2):137~142.
    
    
    [55]王起超,1985.微孔滤膜-巯基棉联用现场富集法测定水中总汞.环境科学,6(2):77~79.
    [56]王庆敏,冯国洲,曹洪法,1982.汞的形态与水稻吸收关系的研究.环境科学,3(5):23~26,5.
    [57]吴效虎,齐少华,1984.影响金属汞、氧化汞、硫化汞溶解度因素的研究.环境科学,5(1):30~33.
    [58]徐渝,1994.重庆的空气质量和酸雨十年回顾.重庆环境科学,16(5):33~34.
    [59]薛栋森,Harrison RB, Henry C L, 1995.Tacoma冶炼厂下风区林地土壤植物中汞的含量和分布.农业环境保护,14(2):54~57.
    [60]杨学春,牟树森,1998.酸雨和降尘对植物产量及汞含量的影响.西南农业大学学报,20(4):166~169.
    [61]姚爱军,青长乐,牟树森,1999.腐殖酸对矿物结合汞活性的影响:Ⅰ.腐殖酸对矿物结合汞挥发活性的影响.土壤学报,36(4):477~483.
    [62]许嘉琳,杨居荣,1995.陆地生态系统中的重金属.北京,中国环境科学出版社.
    [63]杨国治,夏家琪,戎捷,1979.土壤中汞的固定与释放的初步研究.土壤学报,16(1):38~47.
    [64]杨勤业,郑度,1996.关于陆地系统科学的若干认识.地理研究,15(4):10~15.
    [65]杨秀虹,仇荣亮,岑慧贤,1999.陆地生态系统对酸沉降的敏感性及其影响因素.农业环境保护,18(2):92~95.
    [66]余国泰,刘公棣,郭作金,1983.汉沽附近大气中汞的污染状况调查.环境科学丛刊,4(5):54~60.
    [67]余贵芬,1999.腐殖酸结合汞在土壤中的分布及植物有效性.西南农业大学博士学位论文,重庆.
    [68]余中盛,孟宪鑫,1982.我国东北城市土壤汞的初步研究.环境科学,3(5):57~59.
    [69]张晓平,朱延明,1994.西藏土壤中汞的含量及其地理分布.环境科学,15(4):27~30.
    [70]周伯兴,徐渝,1996.重庆的酸雨问题及其对策.重庆环境科学,18(2):1~4.
    [71]周玳,龙满金,1983.汞在土壤中的吸附与释放的初步研究.环境化学,4(2):30~33;
    [72]朱寿珩,赵义芳,刘平,白瑛,1987.土壤中汞形态研究.北京农业大学学报,13(1):59~64.
    [73]朱小翠,青长乐,皮广洁,1996.土壤汞形态及其影响因素研究.土壤学报,33(1):94~100.
    
    
    [74]邹邦基,1984.土壤—植物体系中的汞.环境科学丛刊,5(1):65~70.
    [75]喜田村正次,近藤雅臣,泷泽行雄,藤井正美,藤木素士,1977(侯召堂 译,1988).汞.北京,原子能出版社.
    [76]SCOPE CHINA汞工作组,1996.SCOPE CHINA汞污染专题学术讨论会《纪要》.环境化学,15(1):90~91.
    [77]UNEP,1991.保护地球.北京,中国环境科学出版社.
    [78]Ahmed R, May K and Stoeppler M, 1987. Wet deposition of mercury and methylmercury from th atmosphere. Science Total Environment, 60:249~261.
    [79]Bacci E, Calamari D, Gaggi C and Vighi M. 1990, Bioconcentration of organic chemical vapors in plant leaves: Experimental measurements and correlation. Environmental Science and Technology, 24:885~889.
    [80]Baldi F, 1988. Mercury pollution the soil and mosses around a geothermal power plant. Water Air and Soil Pollution, 45(1/2):443~448.
    [81]Billings C F and Matson W R, 1972. Mercury emissions from coal combustion. Science, 176:1232~1233.
    [82]Brosset C and Lord E, 1995. Methylmercury in ambient air. Method of determination and some measurement results. Water Air and Soil Pollution, 82:739~750.
    [83]Brosset C and Iverfelds (?), 1989. Interaction of solid gold with mercury in ambient air. Water Air and Soil Pollution, 43:147~169.
    [84]Brosset C, 1987. The behavior of mercury in the physical environment. Water Air and Soil Pollution, 34:145~166.
    [85]Brosset C, 1982. Total airborne mercury and its possible origin. Water Air and Soil Pollution, 17:37~50.
    [86]Bull K R, Roberts R D, Inskip M S and Goodman G T, 1977. Mercury concentration in soil, grass, earthworms and small mammals near an industrial emission source. Environmental Pollution, 12:135~140.
    [87]Burke J, Hoyer M, Keeler G and Scherbatsloy, 1995. Wet deposition of mercury and ambient mercury concentrations at a site in the Lake Champlain basin. Water Air and Soil Pollution, 80:353~362.
    [88]Cappon C J, 1987. Uptake and speciatation of mercury and selenium in vegetable crops growth on compost-treated soil. Water Air and Soil Pollution, 34:353~361.
    [89]Carpi A, Lindberg S E, Prestbo E M and Bloom N S, 1997. Methyl mercury contamination and emission to the atmosphere from soil amended with municipal
    
    sewage sludge. Journal of Environmental Quality,
    [90] Dumarey R, Dams R and Hoste J.1985. Comparison of the collection and desorption efficiency of activated charcoal, silver, and gold for the determination of vapor-phase atmospheric mercury. Analytic Chemistry, 57:2638-2643.
    [91] Feng X B, Chen Y C, Zhu W G, 1997a. The distribution of various mercury species in soil. Chinese Journal of Geochemistry, 16(2) : 183-188.
    [92] Feng X B, Chen Y C, Zhu W G, 1997b. Vertical fluxes of volatile mercury over soil surfaces in Guizhou Province, China. Journal of Environmental Science, 9(2) : 241-245.
    [93] Fitzgerald W F, 1995. Is mercury increasing in the atmosphere? The need for an atmosphere mercury network (AMNET). Water Air and Soil Pollution, 80:245-254.
    [94] Fitzgerald W F, Mason R P and Vandal G M, 1991. Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water Air and Soil Pollution, 56:745-767.
    [95] Fukuzake N, Tasmura R, Hirano Y and Mizushima Y, 1986. Mercury emissions from a cement factory and its influence on the environment. Atmospheric Environment, 20(12) :2291-2299.
    [96] Germani M S and Zoller W H, 1988. Vapor-phase concentrations of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power plant. Environ. Sci. Tochnoi, 22:1079-1085.
    [97] Gilmour J T and Miller M S, 1973. Fate of a mercuric-mercurous chloride fulngicide added to added to turfgrass. Journal of Environmental Quality, 2: 45-148.
    [98] Grosheva E I, 1993. Mercury transport, transformation, and bioaccumulation in the ecosystem of mercury-stibium geochemical province. Water Air and Soil Pollution, 66:381-388.
    [99] Gustin M S, Taylor G E, Leonard T L and Kerslar R E, 1996. Atmospheric mercury concentrations associated with geologically and anthropogenically enriched sites in central western Nevada. Environ. Sci. Technol., 30:2572-2579.
    [100] Hall B, 1995. The gas phase oxidation of elemental mercury by ozone. Water Air and Soil Pollution, 80:1069-1077.
    [101] Hanson P J, Lindberg S E, Tabberer T A, Owens J G and Kim K-H, 1995. Foliar exchange of mercury vapor: Evidence for a compensation point. Water Air and Soil Pollution, 80:373-382.
    [102] He J L, Tan H, Sommar J, Xiao Z F and Lindqvist O, 1998. Mercury pollution in a mining area of Guizhou, China: Fluxes over contaminated surfaces and concentrations in air, biological and geological samples. Toxicological and
    
    Environmental Chemistry, 67:225-236.
    [103] Holm H W and Cox M F, 1975. Transformation of elemental mercury by bacteria. Applied Microbiology, 29(4) :491-494.
    [104] Hoyer M E and Keeler G J, 1995. Atmospheric sources, transport, and deposition of mercury in Michigan: Two years of event precipitation. Water Air and Soil Pollution, 80:199-208.
    [105] Hogstr6m U, Enger L and Siedlung I, 1979. A study of atmospheric mercury dispersion. Atmospheric Environment, 13:465-476.
    [106] Hudson R J M, Gherini S A, Fitzgerald W F and Porcella D B, 1995. Anthropogenic influences on the global mercury cycle: A model-based analysis. Water Air and Soil Pollution, 80:265-272.
    [107] Hultberg H, Iverfeldt A and Lee Y-H, 1994. Methylmercury input/output and accumulation in forested catchments and critical loads for lakes in southwestern Sweden. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 313-322.
    [108] Hylander L D, 2001. Global mercury pollution and its expected decrease after a mercury trade ban. Water Air and Soil Pollution, 125(l/4) :331-344.
    [109] Iverfeldt A, 199la. Occurrence and turnover of atmospheric mercury over the Nordic countries. Water Air and Soil Pollution, 56:251-265.
    [110] Iverfeldt A, 1991b. Mercury in forest canopy throughfall water and its relation to atmospheric deposition. Water Air and Soil Pollution, 56:553-564.
    [111] Jenne E A and Avotin P, 1975. The time stability of dissolved mercury in water samples. I. Literature review. Journal of Environmental Quality, 4:427-430.
    [112] Jensen S and Jemelov A, 1969. Biological methylation of mercury in aquatic organisms. Nature, 223:753-755.
    [113] Jernelov A, 2000. Some comments on biological methylation, global emissions and trade and on residence time in atmosphere of mercury. Journal of Environmental Science, 12(sup): 102-107.
    [114] Joensuu O I, 1971. Fossil fuels as a source of mercury pollution. Science, 172:1027-1028
    [115] Johnson D W and Lindberg S E, 1995. The biogeochemical cycling of Hg in forest: Alternative methods for quantifying total deposition and soil emission. Water Air and Soil Pollution, 80:1069-1077.
    [116] Keeler G, Glinsom G. and Pirrone N, 1995. Particulate mercury in the atmosphere: its significance, transport, transformation and sources. Water Air and Soil Pollution, 80:159-168.
    
    
    [117] Lamborg C H, Fitzgerald W F, Vandal G M and Rolfhus K R, 1995. Atmospheric mercury in northern Wisconsin: sources and species. Water Air and Soil Pollution, 80:189-198.
    [118] Lamborg C H, Hoyer M E, Keeler G J, Olmez I and Huang X D, 1994. Particulate-phase mercury in the atmosphere: Collection/analysis method development and applications. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 251-260.
    [119] Landa E R, 1978. Soil water content and temperature as factors in the volatile loss of applied mercury (Ⅱ) from soils. Soil Science, 126(1 ):44-48.
    [120] Lee Y-H and Iverfeldt A, 1991. Measurement of methylmercury and mercury in run-off, lake and rain waters. Water Air and Soil Pollution, 56:309-321.
    [121] Lindberg S E, Meyers T P and Munthe J, 1996. Evasion of mercury vapor from the surface of a recently limed acid forest lake in Sweden. Water Air and Soil Pollution, 85:725-730.
    [122] Lindberg S E, Kim K-H and Munthe J, 1995a. The precise measurement of concentration gradients of mercury in air over soils: A review of past and recent measurements. Water Air and Soil Pollution, 80:383-392.
    [123] Lindberg S E and Vermette S, 1995b. Workshop on sampling mercury in precipitation for the National Atmospheric Deposition Program. Atmospheric Environment, 29:1219-1220. meteorological gradient approach for quantifying air/surface exchange of mercury vapor: tests over contaminated soils. Environ. Sci. Technol., 29:126-135.
    [125] Lindberg S E, Owens J G and Stratton W J, 1994. Application of Throughfall Methods to estimate dry deposition of mercury. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 261-272.
    [126] Lindberg S E, 1980. Mercury partitioning in a power plant plume and its influence on atmospheric removal mechanisms. Atmospheric Environment, 14:227-231.
    [127] Lindberg S E, Jackson D R, Huckabee J W, Janzen S A, Levin M J and Lund J R, 1979. Atmospheric emission and plant uptake of mercury from agricultural soils around the Almader Mercury Mine. Journal of Environmental Quality, 8:572-578.
    [128] Lindqvist O, 1994. Atmospheric cycling of mercury: An overview. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 181-185.
    [129] Lindqvist O et al., 1991. Mercury in the Swedish environment. Water Air and Soil Pollution, 55:1-261.
    
    
    [130] Lindqvist O and Rodhe H, 1985. Atmospheric mercury-A review. Tellus, 37B:136-159.
    [131] Liu J Y, 2000. Introductory remarks on mercury pollution in China. Journal of Environmental Science, 12(sup):3-8.
    [132] Lodenius M, 1994. Mercury in terrestrial ecosystems: A review. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 343-354.
    [133] Lodenius M, Seppanen A and Autio S, 1987. Sorption of mercury in soils with different humus content. Bull. Environ. Contain. Toxicol., 39:393-600.
    [134] Lodenius M, Seppanen A and Uusi-Ranva A, 1983. Sorption and mobilization of mercury in peat soil. Chemosphere, 12:1575-1581.
    [135] Lu J Y and Schroeder W H, 1999. Sampling and determination of particulate mercury in ambient air: A review. Water Air and Soil Pollution, 100:279-295.
    [136] Mackay D, Wania F and Schroeder W H, 1995. Prospects for modeling the behavior and fate of mercury, globally and in aquatic systems. Water Air and Soil Pollution, 80:941-950.
    [137] Mason R P Fitzgerald W F and Morel M M, 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta. 58:3191-3198.
    [138] Matilainen T, Verta M, Korhonen H, Uusi-Rauva A and Niemi M, 2001. Behavior of mercury in soil profiles: Impact of increased precipitation, acidity, and fertilization on mercury methylation. Water Air and Soil Pollution, 125(1/4) : 105-120.
    [139] Meij R, 1991. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphrization. Water Air and Soil Pollution, 56:21-33.
    [140] Minagaur K, Sasaki, Tamura R and Oshina T, 1980. Accumulation route and chemical form of mercury in mushroom species. Bull. Environ. Contam. Toxi, 25:283-288.
    [141] Morrison K A and Therien N, 1994. Mercury release and transformation from flooded vegetation and soils: Experimental evaluation and simulation modeling. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 355-365.
    [142] Mosbek H, Tjell J C and Sevel T, 1988. Plant uptake of airborne mercury in background area. Chemosphere, 17(6) : 1227-1236.
    [143] Mou S S and Qing C L, 2000. Mercury emission and pollution in Chongqing, China. Journal of Environmental Science, 12(sup): 19-21.
    [144] Mou S S and Qing C L, 1995. Mercury pollution of soil-crop system in acid precipitation area. Pedosphere, 5(3) :283-288.
    
    
    [145] Munthe J, Hultberg H, Lee Y-H, Parkman H, Iverfeldt A and Renberg I, 1995a. Trends of mercury and methylmercury in deposition, run-off water and sediments in relation to experimental manipulations and acidification. Water Air and Soil Pollution, 85:743-748.
    [146] Munthe J, Hultberg H and Iverfeldt A, 1995b. Mechanisms of deposition of and methylmercury to coniferous forests. Water Air and Soil Pollution, 80:363-371.
    [147] Munthe J, 1994. The atmospheric chemistry of mercury: kinetic studies of redox reactions. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 273-280.
    [148] Munthe J, 1992. The aqueous oxidation of elemental mercury by ozone. Atmospheric Environment, 26A: 1461-1568.
    [149] Munthe J, Xiao Z and Lindqvist O, 1991. The aqueous reduction of divalent mercury by sulfite. Water Air and Soil Pollution, 56:621-630.
    [150] Munthe J, Schroeder W H, Xiao Z and Lindqvist O, 1990. Removal of gaseous mercury from air using a gold coated denuder. Atmospheric Environment, 24A(8) :2271-2274.
    [151] Nakagawa R, 1995. Study on the levels in atmospheric concentrations of mercury in Japan. Chemosphere, 31(2) :2669-2676.
    [152] Nriagu J O, 1989. A global assessment of natural sources of atmospheric trace metals. Nature, 338:47-49.
    [153] Nriagu J O and Pacyna J M, 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333:134-139.
    [154] Otani Y, Emi H, Kanaoka C and Matrui S, 1984. Behavior of metal mercury in gases. Environ. Sci. Technol, 18:793-796.
    [155] Petersen G, Iverfeldt A and Munthe J, 1995. Atmospheric mercury species over central and northern Europe. Model calculations and comparison with observations from the Nordic air and precipitation network for 1987 and 1988. Atmospheric Environment, 29:47-67.
    [156] Pheiffer-Madsen D, 1981. Peat bog records of atmospheric mercury deposition. Nature, 293:127-129.
    [157] Pirrone N, Keeler G J and Nriagu J O, 1996. Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30(17) : 2981-2997.
    [158] Plerjel K and Munthe J, 1995a. Modeling the atmospheric chemistry of mercury-The importance of a detailed description of the chemistry of cloud water. Water Air and Soil Pollution, 80:317-324.
    
    
    [159] Plerjel K and Munthe J, 1995b. Modeling the atmospheric mercury cycle-chemistry in fog droplets. Atmospheric Environment, 29:2981-2987.
    [160] Porcella D B, 1994. Mercury in the environment: Biogeochemistry. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, 3-20.
    [161] Qing C L, Mou S S, Guo T Y and Li Q H, 1998. Chemical forms of mercury in soils and their influencing factors. Pedosphere, 8(2) : 175-180.
    [162] Qing C L and Mou S S, 1993. Preventing Hg transference from soil to terrestrial food chain. Pedosphere, 3(1) :67-73.
    [163] Rasmussen P, 1994. Current methods of estimating atmospheric mercury fluxes inremote areas. Environ. Sci. Technol., 28:2233-2241.
    [164] Revis N W, Osbourne T R, Holdsworth G and Hadden C, 1989. Distribution of mercury species in soil from a Hg-contamination site. Water Air and Soil Pollution, 45(1/2) : 105-113.
    [165] Richardson R, Egyed M and Currie D J, 1995. Human exposure to mercury may decrease as acidic deposition increases. Water Air and Soil Pollution, 80:31-39.
    [166] Rogers R D and Mcfarlane J C, 1979. Impact factors of mercury volatile from soils. Journal of Environmental Quality, 8:255-260.
    [167] Ross H B, 1990. On the use of mosses for estimating atmospheric trace metal deposition. Water Air and Soil Pollution, 50:63-76.
    [168] Schluter K, Seip H M and Alstad J, 1996. Mercury translation in and evaporation of mercury from soil.Ⅲ. Quantification of evaporation of mercury from podzolized soil profiles treated with HgCl2. Journal of Soil Contamination, 5:121-139.
    [169] Schluter K, Seip H M and Alstad J, 1995a. Mercury translocation in and evaporation of mercury from soil. Ⅲ. Evaporation of mercury from podzolized soil profiles treated with HgCl2 and CH3HgCl. Journal of Soil Contamination, 4:296-298.
    [170] SchlUter K, Alstad J and Seip H M, 199b. Mercury translocation in and evaporation of mercury from soil. I. Soil lysimeter experiments with 203Hg-radiolabeled compounds. Journal of Soil Contamination, 4:327-353.
    [171] Schroeder W H and Munthe J, 1998. Atmospheric mercury-An overview. Atmospheric Environment, 32(5) :809-822.
    [172] Schroeder W H, Lingdqvist 0, Munthe J and Xiao Z, 1992. Volatilization of mercury from lake surfaces. The Science of the Total Environment, 125:47-66.
    [173] Schroeder W H, Yarwood G and Niki H, 1991. Transformation processes involving mercury species in the atmosphere-results from a literature survey. Water Air and Soil Pollution, 56:653-666.
    
    
    [174] Schroeder W H, Munthe J and Lindqvist O, 1989. Cycling of mercury between water, air, and soil compartments of the environment. Water Air and Soil Pollution, 48:337-347.
    [175] Schuster E, 1991. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-A review of the literature. Water Air and Soil Pollution, 56:667-680.
    [176] Seigneur C, Wrobel J and Constantinu E, 1994. A chemical kinetic mechanism for atmospheric inorganic mercury. Environ. Sci. Technol., 28:1589-1597.
    [177] Semu E, Singh B R and Selmer-Olsen A R, 1987. Adsorption of mercury compounds by tropical soils. II. Effect of soil: solution ratio, ionic strength, pH, and organic matter. Water Air and Soil Pollution, 32:1-10.
    [178] Semu E, Singh B R and Selmer-Olsen A R, 1986. Mercury pollution of effluent, air, and soil near a battery factory in Tanzania. Water Air and Soil Pollution, 27:141-146.
    [179] Shannon J D and Voldner E C, 1995. Modeling atmospheric concentrations of mercury and deposition to the Great Lakes. Atmospheric Environment, 29:1649-1662.
    [180] Siegel S M, Siegel B Z, Barghigiani C, Aratini K, Penny P and Penny D, 1987. A contribution to the environmental biology of mercury accumulation in plants. Water Air and Soil Pollution, 33:65-72.
    [181] Slemr F and Langer E, 1992. Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature, 355:434-437.
    [182] Slemr F, Schuster G and Seiler W, 1985. Distribution speciation and budget of atmospheric mercury. Journal of Atmospheric Chemistry, 3:407-434.
    [183] Sommar J, 2001. The atmospheric chemistry of mercury-kinetics, mechanisms and speciation. Ph. D. dissertation, Department of Chemistry, Goteborg University, Sweden.
    [184] Sommar J, Feng X B and Lindqvist O, 1999. Speciation of volatile mercury species present in digester and deposit gases. Applied Organometallic Chemistry, 13:441-447.
    [185] Tamura R, Fukuzaki N, Hirno Y and Mizushima Y, 1985. Evaluation of mercury contanmintion using plant leaves and humus as indicators. Chemoshpere, 14(11/12) :1687-1693.
    [186] Tan H, He J L, Liang L, Lazoff S, Sommar J, Xiao Z F and Lindqvist O, 2000. Atmospheric mercury deposition in Guizhou, China. Science of the Total Environment, 259:223-229.
    
    
    [187] Temmerman L de, Vandeputte R and Guns M, 1986. Biological monitoring and accumulation of airborne mercury in vegetables. Environmental Pollution (Series A), 41:135-151.
    [188] Tessier A, Campbell W G and Baisson M, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7) :844-850.
    [189] Vermette S Lindberg S and Bloom N, 1995. Field tests for aregional mercury deposition network-Sampling design and preliminary test results. Atmospheric Environment, 29:1247-1251.
    [190] Wang D Y, Liu D S, Yao A J, Pi G J, Mou S S, Qing C L, 2000. Effects of atmospheric mercury pollution on terrestrial ecosystem in Chongqing, China. Journal of Environmental Sciences, 12(SI):31-38.
    [191] Wang D Y, Qing C L, Guo T Y, Guo Y J, 1997. Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water Air and Soil Pollution, 95:35-43.
    [192] Wei S Q, Sommar J, Lindqvist 0, Xiao Z F, 1997. Effect of mercury deposition on mercury content and distribution in rye grass. Pedosphere, 7(2) : 155-164.
    [193] Wei S Q, Mou S S, Lindqvist O, Qing C L and Xiao Z, 1995. Inventory of anthropogenic mercury emission in southwest China: I. Guizhou Province. Proceedings of the 10th World Clean Air Congress, May 28-June 2, Espoo, Finland.
    [194] Whitby L M, Gaynor J, 1978. Metals in soil of some agricultural watersheds in Ontario (Canada). Canadian Journal of Soil Sciences, 58:325-330.
    [195] Windmoller C C, Wilken R-D and Jardim W de F, 1996. Mercury speciation in contaminated soils by thermal release analysis. Water Air and Soil Pollution, 89:399-416.
    [196] Yin Y, Allen H E, Li Y, Huang C P and Sanders P F, 1996. Heavy metals in the environment: Adsorption of mercury(Ⅱ) by soil: Effects of pH, chloride, and organic matter. J. Environ. Qual., 25:837-844.
    [197] Xiao Z F, Munthe J and Lindqvist 0, 1991. Sampling and determination of gaseous and prticulate mercury in the atmosphere using gold-coated denuders. Water Air and Soil Pollution, 56:141-151.
    [198] Xiao Z F, Munthe J, Schroeder W H and Lindqvist O, 1991. Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus, 438:267-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700